EP0212338B1 - Verfahren zum spanabhebenden Bearbeiten der Oberfläche eines Nockens - Google Patents

Verfahren zum spanabhebenden Bearbeiten der Oberfläche eines Nockens Download PDF

Info

Publication number
EP0212338B1
EP0212338B1 EP86110285A EP86110285A EP0212338B1 EP 0212338 B1 EP0212338 B1 EP 0212338B1 EP 86110285 A EP86110285 A EP 86110285A EP 86110285 A EP86110285 A EP 86110285A EP 0212338 B1 EP0212338 B1 EP 0212338B1
Authority
EP
European Patent Office
Prior art keywords
point
grinding wheel
cam
profile
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP86110285A
Other languages
English (en)
French (fr)
Other versions
EP0212338A2 (de
EP0212338A3 (en
Inventor
Horst Josef Dr. Ing. Wedeniwski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fortuna Werke Maschinenfabrik GmbH
Original Assignee
Fortuna Werke Maschinenfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6278462&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0212338(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fortuna Werke Maschinenfabrik GmbH filed Critical Fortuna Werke Maschinenfabrik GmbH
Publication of EP0212338A2 publication Critical patent/EP0212338A2/de
Publication of EP0212338A3 publication Critical patent/EP0212338A3/de
Application granted granted Critical
Publication of EP0212338B1 publication Critical patent/EP0212338B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/08Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section
    • B24B19/12Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section for grinding cams or camshafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30084Milling with regulation of operation by templet, card, or other replaceable information supply
    • Y10T409/301176Reproducing means
    • Y10T409/301624Duplicating means
    • Y10T409/30168Duplicating means with means for operation without manual intervention
    • Y10T409/30224Duplicating means with means for operation without manual intervention and provision for circumferential relative movement of cutter and work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303752Process
    • Y10T409/303808Process including infeeding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/13Pattern section

Definitions

  • the invention relates to a method for machining the surface of a cam, the outer contour of which has a base circle section, a secondary circle section, and two flanks which continuously connect the circle sections, in which the cam extends around a first, spatially fixed, through the center of the base circle going axis is rotatable, wherein a grinding wheel rotatable about a second axis parallel to the first axis is provided and the spacing of the axes is adjustable, so that, starting from a raw contour, a nominal contour can be generated by removing the surface by changing the grinding wheel by varying the distance the axes are moved while the cam is rotating, so that on the one hand a section of the grinding wheel which is in engagement on the surface can be guided along the contour in web operation and on the other hand can be adjusted in the feed operation by the surface distance between the raw contour and the desired contour.
  • the camshaft is rotatably arranged about a fixed axis, and a grinding wheel is rotatably mounted about an axis parallel to the camshaft axis.
  • the distance between the grinding wheel axis and the camshaft axis is changed with the camshaft rotating slowly in such a way that the surface section of the grinding wheel engaged in each case removes the surface of the cam in such a way that the desired target contour is finally created.
  • the distance variation is necessary in order to compensate for the respective contour of the cam to be machined. This part of the distance variation is referred to as "railway operation".
  • the distance between the axes must be varied in such a way that a certain infeed of the grinding wheel takes place, i.e. an approximation to the cam to be machined by the amount of the distance from the raw dimension to the target dimension. This part of the distance variation is referred to as "delivery operation".
  • the known methods which usually use numerically controlled processing machines, provide for simultaneous execution of rail operations and delivery operations.
  • next point to be approached is continuously interpolated depending on the rotation of the camshaft, the path movement and the infeed movement being numerically superposed as part of the interpolation.
  • the grinding wheel is mounted on a two-part carriage, one part of which runs on the other part, one part of the carriage being controlled as a function of the rail operation and the other as a function of the infeed operation.
  • the required superposition is achieved by mechanical superimposition.
  • a numerically controlled camshaft grinding machine in which the control is carried out via two different punched strips.
  • One of the punched tapes contains the information about the cam shape, while the other punched tape contains general processing parameters, for example for infeed, dressing, firing and the like.
  • the two punched strips are processed alternately by first adjusting the grinding machine to the cam by a certain delivery amount using the second punched tape and then generating the desired cam profile using the first mentioned punched tape.
  • the cam is stopped during the infeed of the grinding wheel and in a position in which the grinding wheel lies against the cam tip.
  • the cam tip is also the zero point for the polar coordinate system, in which the cam contour is stored in the former punched tape and which is called up again as soon as a further infeed step has been carried out by means of the second punched tape.
  • the deep grinding principle can also be used for grinding camshafts, although it is expressly stated as a disadvantage that the infeed specified with the workpiece allowance is not large enough to achieve high cutting performance and work simultaneously in a workpiece speed range that is sufficiently low in relation to the workpiece edge zone temperature.
  • a compensation system for a numerically controlled machine tool which is used for a cam grinding machine.
  • the known system uses a certain mathematical algorithm for adjusting the distance between the axis of the workpiece and the axis of rotation of the grinding wheel and for adjusting the angular position of the workpiece.
  • the known system therefore uses the interpolation already described above to calculate the path points in "path operation".
  • camshaft grinding machine is also known from DE-A-28 21 753, in which a number of cams are ground as a function of profiles of pattern cams, which are scanned by means of a button.
  • This known machine is therefore a conventional copy grinding machine, geared to the needs of camshaft grinding.
  • the invention is based on the object of developing a method of the type mentioned in such a way that the desired target contours can be achieved without loss of accuracy with significantly reduced effort and high processing speed.
  • This object is achieved according to the invention in that the section is first guided from a first point on the surface of the base circle of the raw contour only in the delivery mode to a second point of the base circle of the target contour and then is guided along the target contour by switching the operation only in rail operation, whereby the first point and the second point define an angle of rotation of the first axis which is between 20 ° and 180 °.
  • the measure to start the feed operation in the first phase from a point on the surface of the base circle of the raw contour has the advantage that there is a cylindrical outer contour, so that the operation in a particularly simple manner by suitable coordination of the angular speed of the cam and the Feed speed of the grinding axis can be adjusted.
  • the measure of doing this in an angular range between 20 and 180 ° has the advantage that suitable time / machining volumes can be set, depending on how this is expedient for the respective material or workpiece.
  • the section is first guided from a third point on the target contour only in the delivery mode to a fourth point of a second target contour and then guided along the second target contour by switching the operation only in rail mode.
  • the desired effect can be achieved even with large volumes of material to be removed.
  • This is particularly advantageous if the raw contour is very irregular, so that the required target contour cannot be achieved with a single machining process for machining reasons.
  • the point of the machining tool that is in engagement is not guided along a spiral that is wound several times, but the infeed area is always limited to a spatially narrow surface area, while the rest of the time, in turn, is driven exclusively in rail operation.
  • the location curve of the processing point thus has the shape of several location curves concentrically running at a parallel distance.
  • the locus of the respective processing point has the form of an Archimedean spiral, which can be handled particularly easily for control tasks in numerical control.
  • a camshaft 12 is rotatably arranged about a fixed axis 11, which is also referred to in technical terms as the C axis.
  • the camshaft 12 is clamped between two tips 13 and 14 of a headstock 15 or a tailstock 16, and a rotationally fixed connection 17 between the camshaft 12 and a spindle of the headstock 15 ensures that the camshaft 12 is driven.
  • a cam 18 of the camshaft 12 is being machined by means of a grinding wheel 19.
  • the grinding wheel 19 is actuated by a drive 20 which can be moved by means of a feed 21 relative to a fixed base 22 along an axis 23, which is also referred to in technical terminology as the x-axis.
  • the grinding wheel 19 itself is rotatable about an axis 24, so that the feed 21 is able to adjust the distance between the axes 11 and 24 in the direction of the axis 23 perpendicular thereto.
  • FIGS. 1 and 2 do not show the control and regulating units which derive control signals for the feed 21 from the respective rotational position of the camshaft 12 in a manner known per se.
  • 3 and 4 show, in a greatly enlarged representation and rotated 90 ° clockwise in relation to the representation of FIG. 1, the conditions when machining the cam 18 by means of the grinding wheel 19.
  • FIGS. 3 and 4 show the starting position of the cam 18.
  • the cam 18 is provided with an outer contour in which a base circle 30 and a secondary circle 31 occur, which are connected to one another by straight or curved flanks 32.
  • the sections 30, 31, 32 drawn thick in FIGS. 3 and 4 denote a raw contour, i.e. a not yet finished cam, while the reference numerals 30a, 31a, 32a denote the corresponding elements of a target contour that is to be produced.
  • an infeed 33 is required, which corresponds to the distance of the contour 30/31/32 from the contour 30a / 31a / 32a.
  • An arrow 34 indicates the direction of rotation of the cam 18, and an arrow 35 indicates the direction of rotation of the grinding wheel 19.
  • Fig. 3 shows the cam 18 in the starting position.
  • the grinding wheel 19 has been moved up to the point where the cam 18 comes into contact with it, namely that the cam 18 in this basic position is aligned in its rotational position in such a way that the cam 18 and grinding wheel 19 meet one another at a first point 40 in the transition from the flank 32 to the base circle Touch 30.
  • a locus 41 drawn in FIG. 4 thus arises from the first point 40 on the raw contour to a second point 42 on the target contour, which is within a rotation angle ⁇ of, for example, 120 ° is achieved. Due to the linear feed of the grinding wheel 19, the locus 41 has the shape of an Archimedean spiral.
  • the grinding wheel 19 has thus been moved in a linearly controlled manner from the position 19 ′ shown in broken lines to the position 19 shown in solid lines.
  • the deflection of the grinding wheel 19 in the direction of the x-axis 23 is set such that the point on the surface of the grinding wheel 19 that is engaged in each case follows the desired contour 30a / 31a / 32a exactly.
  • FIG. 5 shows a variant in which the sequence of the two process sections described above is repeated cyclically.
  • the thick curve in Fig. 5 of the respective processing point again starts at the first point 40 and runs in the manner described in the pure delivery mode along the locus 51 to the second point 42, where the method changes to the rail mode, so that the path curve now runs along the desired contour 30a / 31a / 32a, as already described: this railway operation now continues to a third point 40a, which lies radially next to the first point 40.
  • the method returns to the pure infeed mode, and the path curve of the respective processing point in turn runs along a locus 41a which runs within the locus 41 already described.
  • the pure infeed operation now continues up to a fourth point 42a, which is located radially next to the second point 42, at which point the method again switches to pure rail operation, so that a further target contour 30b / 31b / 32b is created.
  • This further target contour is continued via a fifth point 40b located radially next to the first point 40 and the third point 40a, so that the further target contour 30b / 31b / 32b is traversed to the fourth point 42a, so that the desired further target contour 30b / 31b / 32b is now completely processed.
  • a four-cylinder camshaft was machined at a peripheral speed of the grinding wheel 19 of 45 m / s, the cams of which had a base circle of 38 mm in diameter and a cam stroke of approximately 10 mm.
  • the radial grinding allowance was between 2 and 2.5 mm.
  • the cam was rotated a total of four times for pre-grinding, a feed operation and a rail operation being set successively in the manner described. It was followed by a turn in pure rail operations. In the subsequent finish grinding, three revolutions with infeed operation and subsequent rail operation were set, and five revolutions without infeed operation followed.
  • the ratio of the infeed speed and the angular speed of the cam was chosen so that an angle ⁇ of 30 ° was set during pre-grinding and an angle ⁇ of 60 ° during finish-grinding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum spanabhebenden Bearbeiten der Oberfläche eines Nockens, dessen Außenkontur einen Grundkreis-Abschnitt, einen Nebenkreis-Abschnitt, sowie zwei, die Kreisabschnitte stetig verbindende Flanken aufweist, bei dem der Nocken um eine erste, raumfeste, durch den Mittelpunkt des Grundkreises gehende Achse drehbar ist, wobei eine um eine zweite, zur ersten Achse parallele Achse drehbare Schleifscheibe vorgesehen und der Abstand der Achsen einstellbar ist, so daß, ausgehend von einer Rohkontur, durch Abtragen der Oberfläche eine Sollkontur erzeugt werden kann, indem die Schleifscheibe durch Abstandsvariation der Achsen bei rotierendem Nocken so bewegt wird, daß einerseits ein jeweils im Eingriff an der Oberfläche befindlicher Abschnitt der Schleifscheibe im Bahnbetrieb entlang der Kontur geführt und andererseits im Zustellbetrieb um den Oberflächenabstand zwischen Rohkontur und Sollkontur zugestellt werden kann.
  • Ein Verfahren der vorstehend genannten Art ist aus der EP-A-0 093 352 bekannt.
  • Bei dem bekannten Verfahren ist die Nockenwelle um eine raumfeste Achse drehbar angeordnet, und eine Schleifscheibe ist um eine zur Nockenwellenachse parallele Achse drehbar gelagert. Um eine vorgegebene Sollkontur der Nokken zu schleifen, wird der Abstand der Schleifscheibenachse zur Nockenwellenachse bei sich langsam drehender Nockenwelle so verändert, daß der jeweils im Eingriff befindliche Oberflächenabschnitt der Schleifscheibe die Oberfläche des Nockens so abträgt, daß schließlich die gewünschte Sollkontur entsteht.
  • Die Variation des Abstandes zwischen Schleifscheibenachse und Nockenwellenachse gehorcht dabei zwei Randbedingungen:
  • Zum einen ist die Abstandsvariation erforderlich, um die jeweilige Kontur des zu bearbeitenden Nockens zu kompensieren. Diesen Teil der Abstandsvariation bezeichnet man als "Bahnbetrieb".
  • Zum anderen muß jedoch der Abstand der Achsen so variiert werden, daß zusätzlich eine gewisse Zustellung der Schleifscheibe erfolgt, d.h. eine Annäherung an den zu bearbeitenden Nocken um den Betrag des Abstandes von Rohmaß auf Sollmaß. Diesen Teil der Abstandsvariation bezeichnet man als "Zustellbetrieb".
  • Die bekannten Verfahren, die sich üblicherweise numerisch gesteuerter Bearbeitungsmaschinen bedienen, sehen eine gleichzeitige Durchführung von Bahnbetrieb und Zustellbetrieb vor.
  • Bei einem dieser bekannten Verfahren wird hierzu ständig in Abhängigkeit von der Drehung der Nockenwelle der nächste anzufahrende Punkt interpoliert, wobei die Bahnbewegung und die Zustellbewegung im Rahmen der Interpolation numerisch superponiert werden.
  • Bei einem anderen bekannten Verfahren ist die Schleifscheibe auf einem zweiteiligen Schlitten montiert, dessen einer Teil auf dem anderen Teil läuft, wobei der eine Teil des Schlittens in Abhängigkeit von dem Bahnbetrieb und der andere in Abhängigkeit vom Zustellbetrieb angesteuert werden. Bei diesem bekannten Verfahren wird somit die erforderliche Superposition durch mechanische Überlagerung erzielt.
  • Den beiden vorstehend erläuterten bekannten Verfahren ist somit gemeinsam, daß sich der jeweils im Eingriff befindliche Punkt eines Oberflächenabschnitts der Schleifscheibe von der Rohkontur zur Sollkontur auf einem mehrfach gewundenen spiraligen Weg bewegt, wobei diese Bewegung durch ständige Zustellung stets eine radiale Komponente aufweist und - wie bereits erwähnt - durch kontinuierliche Superposition von Bahnbetrieb und Zustellbetrieb eingestellt werden muß.
  • Die beiden bekannten Verfahren haben somit die folgenden wesentlichen Nachteile:
  • Zum einen erfordert die ständige Superposition von Bahnbetrieb und Zustellbetrieb einen erheblichen Aufwand. Bei einer Superposition im Rahmen der Interpolation des nächsten anzufahrenden Bearbeitungspunktes ist nämlich entweder eine sehr schnelle und damit teure Recheneinheit erforderlich, oder aber es wird eine einfachere Recheneinheit verwendet, wodurch sich dann jedoch die Bearbeitungszeit drastisch erhöht, weil die erforderliche Rechenzeit zum Bestimmen des nächsten anzufahrenden Punktes unzuträglich hoch wird.
  • Bei der mechanischen Superposition entsprechend dem zweiten der geschilderten bekannten Verfahren ergeben sich erhebliche mechanische Probleme, insbesondere deshalb, weil beispielsweise bei der Bearbeitung von Nockenkonturen abschnittsweise kreisförmige Bereiche auftreten, während derer der Bahnbetrieb eine konstante Steuerungsgröße aufweist. Der für den Bahnbetrieb vorgesehene Teil des Vorschubes muß während des Bearbeitens dieses kreisförmigen Abschnittes somit stillstehen, was jedoch im Rahmen der im vorliegenden Zusammenhang erforderlichen Präzision der Bearbeitung kaum möglich ist. In der Praxis treten vielmehr bei noch vertretbarem Regelaufwand für die Positionierung des Bahnbetrieb-Vorschubs Zitterbewegungen auf, die von kleinen Regelspielen um eine konstante Position herum herrühren.
  • Schließlich ist den bekannten Verfahren der gemeinsame Nachteil eigen, daß infolge der kontinuierlichen Zustellung stets eine radiale Komponente der Bearbeitungsrichtung vorhanden ist, was entweder zu Problemen bei der Oberflächengüte führen kann oder aber eine gesonderte Nachbehandlung erforderlich macht.
  • Aus der US-A-3,344,559 ist eine numerisch gesteuerte Nockenwellen-Schleifmaschine bekannt, bei der die Steuerung über zwei verschiedene Lochstreifen vorgenommen wird. Einer der Lochstreifen enthält dabei die Informationen über die Nockenform, während der andere Lochstreifen generelle Bearbeitungsparameter, beispielsweise für die Zustellung, das Abrichten, das Ausfeuern und dgl. enthält. Bei dieser bekannten Schleifmaschine werden die beiden Lochstreifen abwechselnd abgearbeitet, indem zunächst über den zweitgenannten Lochstreifen die Schleifmaschine um einen bestimmten Zustellbetrag auf den Nocken zu eingestellt und anschließend über den erstgenannten Lochstreifen das gewünschte Nockenprofil erzeugt wird. Während der Zustellung der Schleifscheibe wird der Nocken jedoch angehalten und zwar in einer Position, in der die Schleifscheibe an der Nockenspitze anliegt. Die Nockenspitze ist dabei auch der Nullpunkt für das Polar-Koordinatensystem, in dem die Nockenkontur im erstgenannten Lochstreifen abgelegt ist und die jeweils neu aufgerufen wird, sobald mittels des zweiten Lochstreifens ein weiterer Zustellschritt vollzogen wurde.
  • Eine ähnliche numerisch gesteuerte Nockenwellen-Schleifmaschine, bei der die Zustellung bei stillstehendem Nocken an der Nockenspitze vorgenommen wird, ist auch in der EP-A-0 085 225 beschrieben.
  • Weiterhin ist in der US-A-3,919,614eine Nockenwellen-Schleifmaschine beschrieben, bei der jedoch das Nockenprofil nicht in einem numerischen Speicher abgelegt, sondern vielmehr mechanisch von einem Masternocken abgegriffen wird.
  • Aus der DE-Z "wt-Zeitschrift für industrielle Fertigung", 1979, Seiten 613 bis 620, ist es bekannt, beim Außenrund-Schleifen von Fräs- und Bohrwerkzeugen zum Schleifen einer geschlossenen Ringnut die Schleifscheibe zunächst radial in das Werkstück eintauchen zu lassen, bevor der eigentliche Tiefschliff durch Drehung des Werkstücks beginnt. Alternativ ist aus der DE-Z bekannt, diese Eintauch- und die nachfolgende Schnittbewegung (Rotation des Werkstücks) einander zu überlagern, wodurch ein schräges Eintauchen in die geschlossene Ringnut entsteht. Schließlich ist an anderer Stelle der DE-Z noch angegeben, daß man auch zum Schleifen von Nockenwellen das Tiefschleifprinzip verwenden könne, wobei jedoch ausdrücklich als Nachteil angegeben ist, daß die mit dem Werkstückaufmaß vorgegebene Zustellung nicht groß genug sei, um hohe Zerspanleistungen zu verwirklichen und gleichzeitig in einem in bezug auf die Werkstückrandzonen-Temperatur ausreichend niedrigen Werkstück-Geschwindigkeits-Bereich zu arbeiten.
  • Aus der DE-C-26 21 430 ist noch ein Kompensationssystem für eine numerisch gesteuerte Werkzeugmaschine bekannt, das für eine Nockenschleifmaschine eingesetzt wird. Das bekannte System verwendet einen bestimmten mathematischen Algorithmus zum Einstellen des Abstandes zwischen der Achse des Werkstücks und der Drehachse der Schleifscheibe und für die Einstellung der Winkelstellung des Werkstücks. Das bekannte System benutzt daher die bereits oben geschilderte Interpolation zum Berechnen der Bahnpunkte im "Bahnbetrieb".
  • Schließlich ist aus der DE-A-28 21 753 noch eine Nockenwellen-Schleifmaschine bekannt, bei der eine Anzahl von Nocken in Abhängigkeit von Profilen von Musternocken geschliffen werden, die mittels eines Tasters abgetastet werden. Bei dieser bekannten Maschine handelt es sich somit um eine übliche Kopier-Schleifmaschine, ausgerichtet auf den Bedarf beim Nockenwellenschleifen.
  • Der Erfindung liegt demgegenüber die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art dahingehend weiterzubilden, daß mit deutlich vermindertem Aufwand und hoher Bearbeitungsgeschwindigkeit die gewünschten Sollkonturen ohne Genauigkeitseinbuße erzielt werden können.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Abschnitt zunächst von einem ersten Punkt auf der Oberfläche des Grundkreises der Rohkontur nur im Zustellbetrieb auf einen zweiten Punkt des Grundkreises der Sollkontur geführt und alsdann durch Umschalten des Betriebes nur im Bahnbetrieb entlang der Sollkontur geführt wird, wobei der erste Punkt und der zweite Punkt einen Drehwinkel der ersten Achse definieren, der zwischen 20° und 180° liegt.
  • Die der Erfindung zugrundeliegende Aufgabe wird damit vollkommen gelöst, weil durch die strenge zeitliche Trennung von Zustellbetrieb und Bahnbetrieb ineinander nachfolgende Verfahrensschritte erreicht werden, daß die Lageregelung jeweils nur unter einem Gesichtspunkt arbeiten muß, so daß die vorstehend ausführlich geschilderten Nachteile, die sich aus dem simultanen Betrieb ergeben, vermieden werden.
  • Bei Verwendung einer numerischen Steuerung kann somit während der beiden zeitlich aufeinanderfolgenden Phasen jeweils nur die eine der Bewegungen interpoliert werden, wodurch die Rechenzeit verkürzt und/oder die Anforderungen an die benötigte Recheneinheit vermindert werden. Bei Verwendung einer mechanischen Superposition kann hingegen während des Wirksamwerdens des jeweils einen Vorschubteils der jeweils andere Vorschubteil gesteuert mechanisch arretiert werden, so daß insoweit keine Fehler auftreten können.
  • Die Maßnahme, in der ersten Phase den Zustellbetrieb ab einem Punkt auf der Oberfläche des Grundkreises der Rohkontur beginnen zu lassen, hat den Vorteil, daß dort eine zylindrische Außenkonturvorliegt, so daß der ZusteNbetrieb in besonders einfacher Weise durch geeignete Abstimmung der Winkelgeschwindigkeit des Nockens und der Vorschubgeschwindigkeit der Schleifachse eingestellt werden kann. Die Maßnahme, dies in einem Winkelbereich zwischen 20 und 180° zu vollziehen, hat den Vorteil, daß geeignete Zeit/ Zerspanungsvolumina eingestelltwerden können, je nachdem, wie dies beim jeweiligen Werkstoff bzw. Werkstück zweckmäßig ist.
  • Bei einer bevorzugten Ausgestaltung der Erfindung wird nach der Führung des Abschnittes auf der Sollkontur dieser von einem dritten Punkt auf der Sollkontur zunächst nur im Zustellbetrieb auf einen vierten Punkt einer zweiten Sollkontur geführt und alsdann durch Umschalten des Betriebes nur im Bahnbetrieb entlang der zweiten Sollkontur geführt.
  • Diese Maßnahme, bei der somit die Schritte mehrfach nacheinander vollzogen werden, kann die gewünschte Wirkung auch bei großen abzutragenden Materialvolumina erreicht werden. Dies ist dann von besonderem Vorteil, wenn die Rohkontur sehr unregelmäßig ist, so daß die erforderliche Sollkontur aus bearbeitungstechnischen Gründen nicht mit einem einzigen Bearbeitungsvorgang erreicht werden kann. Im Gegensatz zum Stand der Technik wird aber auch bei dieser Vorgehensweise der jeweils im Eingriff befindliche Punkt des Bearbeitungswerkzeugs nicht entlang einer mehrfach gewundenen Spirale geführt, sondern der Zustellbereich ist stets auf einen räumlich engen Oberflächenbereich beschränkt, während im übrigen wiederum ausschließlich im Bahnbetrieb gefahren wird. Die Ortskurve des Bearbeitungspunktes hatsomit, abgesehen vom kleinen Zustellbereich, die Form mehrerer konzentrisch in parallelem Abstand verlaufender Ortskurven.
  • Schließlich ist noch eine Weiterbildung der Erfindung bevorzugt, bei der das Bearbeitungswerkzeug im Zustellbetrieb mit gleichförmiger Zustellung geführt wird.
  • Bei dieser Vorgehensweise hat die Ortskurve des jeweiligen Bearbeitungspunktes die Form einer archimedischen Spirale, die sich für Steuerungsaufgaben in der numerischen Steuerung besonders einfach behandeln läßt.
  • Weitere Vorteile ergeben sich aus der Beschreibung und der beigefügten Zeichnung.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
    • Fig. 1 und 2 eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens in zwei senkrecht zueinander liegenden Ansichten;
    • Fig. 3 und 4 einen stark vergrößerten Ausschnitt aus der Vorrichtung gemäß den Fig. 1 und 2 zur Erläuterung des erfindungsgemäßerr Verfahrens in zwei Bearbeitungsphasen;
    • Fig. 5 eine schematische Darstellung einer Ortskurve eines Bearbeitungspunktes bei in mehreren Schichten erfolgender Bearbeitung des Profils. In den Fig. 1 und 2 ist mit 10 gesamthaft eine Schleifmaschine bezeichnet, wie sie zur Durchführung des erfindungsgemäßen Verfahrens verwendet werden kann.
  • Um eine raumfeste Achse 11, die in der Fachsprache auch als C-Achse bezeichnet wird, ist eine Nockenwelle 12 drehbar angeordnet. Hierzu ist die Nockenwelle 12 zwischen zwei Spitzen 13 und 14 eines Spindelstocks 15 bzw. eines Reitstocks 16 eingespannt, und eine drehfeste Verbindung 17 zwischen Nockenwelle 12 und einer Spindel des Spindelstocks 15 sorgt für einen Antrieb der Nockenwelle 12.
  • Bei der in den Fig. und 2 dargestellten Betriebsstellung wird gerade ein Nocken 18 der Nockenwelle 12 mittels einer Schleifscheibe 19 bearbeitet. Die Schleifscheibe 19 wird von einem Antrieb 20 betätigt, der mittels eines Vorschubes 21 relativ zu einer raumfesten Basis 22 entlang einer Achse 23 verfahrbar ist, die in der Fachsprache auch als x-Achse bezeichnet wird. Die Schleifscheibe 19 selbst ist um eine Achse 24 drehbar, so daß der Vorschub 21 den Abstand der Achsen 11 und 24 in Richtung der dazu senkrechten Achse 23 zu verstellen vermag.
  • In den Fig. 1 und 2 sind der Übersichtlichkeit halber die Steuer- und Regeleinheiten nicht dargestellt, die in an sich bekannter Weise aus der jeweiligen Drehlage der Nockenwelle 12 Steuersignale für den Vorschub 21 ableiten.
  • Die Fig. 3 und 4 zeigen in stark vergrößerter Darstellung und gegenüber der Darstellung von Fig. 1 um 90° in Uhrzeigerrichtung gedreht die Verhältnisse beim Bearbeiten des Nockens 18 mittels der Schleifscheibe 19.
  • Fig. 3 zeigt die Ausgangsposition des Nockens 18. Der Nocken 18 ist mit einer Außenkontur versehen, bei der ein Grundkreis 30 sowie ein Nebenkreis 31 auftreten, die miteinander über gerade oder gekrümmte Flanken 32 verbunden sind. Die in Fig. 3 und 4 dick ausgezogenen Abschnitte 30, 31, 32 bezeichnen eine Rohkontur, d.h. einen noch nicht fertig bearbeiteten Nocken, während mit den Bezugszeichen 30a, 31a, 32a die entsprechenden Elemente einer Sollkontur bezeichnet sind, die hergestelltwerden soll. Hierzu ist insgesamt eine Zustellung 33 erforderlich, die dem Abstand der Kontur 30/31/32 von der Kontur 30a/31a/32a entspricht.
  • Mit einem Pfeil 34 ist die Drehrichtung des Nockens 18, und mit einem Pfeil 35 ist die Drehrichtung der Schleifscheibe 19 angedeutet.
  • Fig. 3 zeigtden Nocken 18 in Ausgangsstellung. Die Schleifscheibe 19 ist bis zur Berührung des Nockens 18 an diesen herangefahren worden, und zwar wird der Nocken 18 in dieser Grundstellung so in seiner Drehlage ausgerichtet, daß Nocken 18 und Schleifscheibe 19 einander an einem ersten Punkt 40 im Übergang von der Flanke 32 zum Grundkreis 30 berühren.
  • In einem ersten Verfahrensschritt wird nun der Nocken 18 entlang der Richtung des Pfeiles 34 verdreht, und gleichzeitig wird die Schleifscheibe 19 linear entlang der Achse 23 nach links verfahren. Bei geeigneter Abstimmung der Winkelgeschwindigkeit des Nockens 18 und der Vorschubgeschwindigkeit der Schleifscheibe 19 entsteht somit eine in Fig. 4 eingezeichnete Ortskurve 41 von dem ersten Punkt 40 auf der Rohkontur zu einem zweiten Punkt 42 auf der Sollkontur, der innerhalb eines DrehwinkeIs ψ von beispielsweise 120° erreicht wird. Aufgrund des linearen Vorschubs der Schleifscheibe 19 hat die Ortskurve 41 die Form einer archimedischen Spirale.
  • In der Darstellung von Fig. 4 wurde somit die Schleifscheibe 19 aus der gestrichelt eingezeichneten Position 19'in die durchgezogen eingezeichnete Stellung 19 linear gesteuert verfahren.
  • Nach Erreichen des zweiten Punktes 42 wird nun in einen zweiten Verfahrensabschnitt übergegangen.
  • In diesem zweiten Verfahrensabschnitt wird die Auslenkung der Schleifscheibe 19 in Richtung der x-Achse 23 so eingestellt, daß der jeweils im Eingriff befindliche Punkt an der Oberfläche der Schleifscheibe 19 exakt der Sollkontur 30a/31 a/32a folgt.
  • Dies hat u.a. die Auswirkung, daß bei diesem Verfahrensabschnitt das Material bezüglich der Sollkontur 30a/31a/32a stets tangential abgetragen wird. In Fig. 4 ist dies anhand einer Position 45 der Schleifscheibe 19 relativ zum Nocken 18 veranschaulicht, und man erkennt deutlich, daß die Schleifscheibe 19 in dieser Position 45 die Sollkontur, in jenem Fall die Flanke 32a an einer einzigen Stelle 46 berührt.
  • Schließlich zeigt Fig. 5 noch eine Variante, bei der die vorstehend geschilderte Folge der beiden Verfahrensabschnitte zyklisch wiederholt wird.
  • Die in Fig. 5 dick ausgezogene Bahnkurve des jeweiligen Bearbeitungspunktes beginnt wiederum am ersten Punkt 40 und verläuft in der beschriebenen Weise im reinen Zustellbetrieb entlang der Ortskurve 51 bis hin zum zweiten Punkt 42, wo das Verfahren in den Bahnbetrieb übergeht, so daß die Bahnkurve nunmehr entlang der Sollkontur 30a/31a/32a verläuft, wie bereits beschrieben: Dieser Bahnbetrieb setzt sich nun bis zu einem dritten Punkt 40a fort, der radial neben dem ersten Punkt 40 liegt. Bei Erreichen des dritten Punktes 40a geht das Verfahren wieder in den reinen Zustellbetrieb über, und die Bahnkurve des jeweiligen Bearbeitungspunktes verläuft wiederum entlang einer Ortskurve 41a, die innerhalb der bereits geschilderten Ortskurve 41 verläuft. Der reine Zustellbetrieb setzt sich nun bis zu einem vierten Punkt 42a fort, der radial neben dem zweiten Punkt 42 liegt, in welchem Punkt das Verfahren wieder in den reinen Bahnbetrieb übergeht, so daß eine weitere Sollkontur 30b/31b/32b entsteht. Diese weitere Sollkontur setzt sich über einen radial neben dem ersten Punkt 40 und dem dritten Punkt 40a gelegenen fünften Punkt 40b fort, so daß die weitere Sollkontur 30b/31b/32b bis hin zum vierten Punkt 42a durchfahren wird, so daß die gewünschte weitere Sollkontur 30b/31b/32b nunmehr vollkommen bearbeitet ist.
  • Bei einem praktischen Ausführungsbeispiel des erfindungsgemäßen Verfahrens wurde bei einer Umfangsgeschwindigkeit der Schleifscheibe 19 von 45 m/s eine Vier-Zylinder-Nockenwelle bearbeitet, deren Nocken einen Grundkreis von 38 mm Durchmesser und einen Nockenhub von ca. 10 mm aufwiesen. Das radiale Schleifaufmaß lag zwischen 2 und 2,5 mm.
  • Zum Vorschleifen wurde der Nocken insgesamt viermal gedreht, wobei in der beschriebenen Weise aufeinanderfolgend ein Zustellbetrieb und ein Bahnbetrieb eingestellt wurden. Es schloß sich eine Umdrehung im reinen Bahnbetrieb an. Beim nachfolgenden Fertigschleifen wurden drei Umdrehungen mit Zustellbetrieb und nachfolgendem Bahnbetrieb eingestellt, und es schlossen sich fünf Umdrehungen ohne Zustellbetrieb an.
  • Das Verhältnis von Zustellgeschwindigkeit und Winkelgeschwindigkeit des Nockens wurde dabei so gewählt, daß während des Vorschleifens ein WinkeI ψ von 30° und während des Fertigschleifens ein Winkel ψ von 60° eingestellt wurden.
  • Auf diese Weise konnte gegenüber dem herkömmlichen Verfahren eine Verminderung der Gesamtschleifzeit pro Nocken auf weniger als die Hälfte erzielt werden.

Claims (3)

1. Verfahren zum spanabhebenden Bearbeiten der Oberfläche eines Nockens (18), dessen Außenkontur einen Grundkreis-Abschnitt (30), einen Nebenkreis-Abschnitt (31), sowie zwei, die Kreisabschnitte (30, 31) stetig verbindende Flanken (32) aufweist, bei dem der Nocken (18) um eine erste, raumfeste, durch den Mittelpunkt des Grundkreises (30) gehende Achse (11) drehbar ist, wobei eine um eine zweite, zur ersten Achse (11) parallele Achse (24) drehbare Schleifscheibe (19) vorgesehen und der Abstand der Achsen (11, 24) einstellbar ist, so daß, ausgehend von einer Rohkontur (30/31/32) durch Abtragen der Oberfläche eine Sollkontur (30a/31a/32a) erzeugt werden kann, indem die Schleifscheibe (19) durch Abstandsvariation der Achsen (11, 24) bei rotierendem Nocken (18) so bewegt wird, daß einerseits ein jeweils im Eingriff an der Oberfläche befindlicher Abschnitt der Schleifscheibe (19) im Bahnbetrieb entlang der Kontur geführt und andererseits im Zustellbetrieb um den Oberflächenabstand zwischen Rohkontur (30/31/32) und Sollkontur (30a/31a/32a) zugestellt werden kann, dadurch gekennzeichnet, daß der Abschnitt zunächst von einem ersten Punkt (40) auf der Oberfläche des Grundkreises (39) der Rohkontur (30/31/32) nur im Zustellbetrieb auf einen zweiten Punkt (42) des Grundkreises (30a) der Sollkontur (30a/31a/32a) geführt und alsdann durch Umschalten des Betriebes nur im Bahnbetrieb entlang der Sollkontur (30a/31 a/32a) geführt wird, wobei der erste Punkt (40) und der zweite Punkt (42) einen Drehwinkel (tp) der ersten Achse (11) definieren, der zwischen 20° und 180° liegt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach der Führung des Abschnittes auf der Sollkontur (30a/31a/32a) dieser von einem dritten Punkt (40a) auf der Sollkontur (30a/31a/ 32a) zunächst nur im Zustellbetrieb auf einen vierten Punkt (42a) einer zweiten Sollkontur (30b/ 31b/32b) geführt und alsdann durch Umschalten des Betriebes nur im Bahnbetrieb entlang der zweiten Sollkontur (30b/31b/32b) geführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Bearbeitungswerkzeug im Zustellbetrieb mit gleichförmiger Zustellung geführt wird.
EP86110285A 1985-08-14 1986-07-25 Verfahren zum spanabhebenden Bearbeiten der Oberfläche eines Nockens Revoked EP0212338B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853529099 DE3529099A1 (de) 1985-08-14 1985-08-14 Verfahren und vorrichtung zum spanabhebenden bearbeiten einer oberflaeche von profilen mit einer von einer kreisform abweichenden kontur, insbesondere nockenwellen
DE3529099 1985-08-14

Publications (3)

Publication Number Publication Date
EP0212338A2 EP0212338A2 (de) 1987-03-04
EP0212338A3 EP0212338A3 (en) 1988-01-13
EP0212338B1 true EP0212338B1 (de) 1990-11-22

Family

ID=6278462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110285A Revoked EP0212338B1 (de) 1985-08-14 1986-07-25 Verfahren zum spanabhebenden Bearbeiten der Oberfläche eines Nockens

Country Status (3)

Country Link
US (1) US4747236A (de)
EP (1) EP0212338B1 (de)
DE (2) DE3529099A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384845A (ja) * 1986-09-24 1988-04-15 Toyoda Mach Works Ltd 非真円形工作物の加工方法
DE4023587C2 (de) * 1990-07-25 1993-11-18 Fortuna Werke Maschf Ag Verfahren zum meßgesteuerten Umfangsschleifen von radial unrunden Werkstücken
DE4029129C2 (de) * 1990-09-13 1994-12-22 Bayerische Motoren Werke Ag Vorrichtung zum Schleifen von insbesondere hohlen Nocken
JPH06106410A (ja) * 1992-09-29 1994-04-19 Komatsu Ltd カムシャフトミラーのカムシャフト加工方法
GB9401462D0 (en) * 1994-01-26 1994-03-23 Western Atlas Uk Ltd Improvements in and relating to grinding
DE19626189A1 (de) * 1996-06-29 1998-01-02 Schaudt Maschinenbau Gmbh Verfahren zum Schleifen rotierender Werkstücke
GB2346574B (en) * 1999-02-03 2001-09-19 Unova Uk Ltd Angle head grinding method and apparatus
EP1034865B1 (de) * 1999-03-08 2001-08-22 ALSTOM (Schweiz) AG Fräsverfahren
MXPA02004140A (es) * 1999-10-27 2002-10-11 Unova Uk Ltd Metodo para rectificar munones de ciguenal.
GB9928825D0 (en) * 1999-12-06 2000-02-02 Unova Uk Ltd Improvements in and relating to grinding
JP3850224B2 (ja) * 2001-03-26 2006-11-29 株式会社ジェイテクト 研削加工方法及び数値制御研削盤
JP4065185B2 (ja) * 2002-11-26 2008-03-19 武蔵精密工業株式会社 非円形回転体ワークの研削方法及びその装置
DE10327623B4 (de) * 2003-06-19 2006-07-13 Mtu Aero Engines Gmbh Fräsverfahren zur Fertigung von Bauteilen
JP5228554B2 (ja) * 2008-03-19 2013-07-03 株式会社ジェイテクト 非真円箇所研削盤における工作物異常回転検出装置
DE102008061528A1 (de) 2008-12-10 2010-06-17 Wedeniwski, Horst Josef, Dr. Verfahren zum numerisch gesteuerten Schleifen von Nocken mit konkaven Flanken einer Nockenwelle
DE102014018784A1 (de) * 2014-12-19 2016-06-23 Thyssenkrupp Presta Teccenter Ag Verfahren zur Erzeugung eines Nockenprofils eines Nockenpaketes einer Nockenwelle und Nockenwelle
JP6844772B2 (ja) * 2017-02-28 2021-03-17 株式会社シギヤ精機製作所 研削装置及び、研削方法
CN110802474B (zh) * 2019-11-16 2021-04-20 湖南腾盛智能科技有限公司 一种直线滑轨打磨装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1062818A (en) * 1963-08-09 1967-03-22 Toyo Kogyo Kabushiki Kaisha Rotating type cam grinding machine
US3482357A (en) * 1965-10-27 1969-12-09 Fujitsu Ltd Automatically controlled cam grinding system
US3919614A (en) * 1972-01-17 1975-11-11 Warner Swasey Co Dual-cycle cam grinding machine with electrical pulse operated wheel feed
US4084243A (en) * 1975-05-19 1978-04-11 Oki Electric Industry Co., Ltd. Cutter radius compensation system
FR2391033A1 (fr) * 1977-05-18 1978-12-15 Clichy Const Sa Machine a rectifier les arbres a cames
US4443976A (en) * 1982-01-29 1984-04-24 Litton Industrial Products, Inc. Cylindrical grinding machine
JPS58192743A (ja) * 1982-04-29 1983-11-10 Toyoda Mach Works Ltd カム研削方法
DE3316619A1 (de) * 1983-05-06 1984-11-08 Otto 4010 Hilden Helbrecht Schleifmaschine fuer die raender von brillenglaesern
JPS6090667A (ja) * 1983-10-20 1985-05-21 Toyoda Mach Works Ltd カム研削方法

Also Published As

Publication number Publication date
DE3529099C2 (de) 1989-04-27
EP0212338A2 (de) 1987-03-04
DE3675706D1 (de) 1991-01-03
EP0212338A3 (en) 1988-01-13
DE3529099A1 (de) 1987-02-19
US4747236A (en) 1988-05-31

Similar Documents

Publication Publication Date Title
EP0212338B1 (de) Verfahren zum spanabhebenden Bearbeiten der Oberfläche eines Nockens
DE69127833T2 (de) Verfahren und vorrichtung zur herstellung gerad- und schrägzahnstirnräder
EP1590712B1 (de) Verfahren zur steuerung von relativbewegungen eines werkzeuges gegen ein werkstück
EP0543079B1 (de) Verfahren zum numerisch gesteuerten Schleifen von Nocken einer Nockenwelle
DE69122247T2 (de) Verfahren zum schleifen der oberflächen von schneideblättern und schleifscheibe zum ausführen dieses verfahrens
DE19910747B4 (de) Verfahren und Vorrichtung zum Einmitten eines Abrichtwerkzeuges in die Ganglücke einer Schleifschnecke
DE4138087C2 (de) Schleifmaschine zum Anfasen einer Kerbe in der Umfangsfläche eines scheibenförmigen Werkstücks
DE2822346C2 (de) Elektrische numerische Programmsteuerung für Kurbelwellenfräsmaschinen und Kurbelwellen-Schleifmaschinen
CH630832A5 (de) Numerisch steuerbare schleifmaschine.
DE4210710A1 (de) Verfahren und Einrichtung zum Schleifen rillenförmiger Außenprofile eines Werkstückes
DE4023587C2 (de) Verfahren zum meßgesteuerten Umfangsschleifen von radial unrunden Werkstücken
EP2923790B1 (de) Verfahren zum schleifenden Bearbeiten von Kegelrädern im Einzelteilverfahren
DE102012002126A1 (de) Verfahren zur Ansteuerung der Bewegung eines Abrichtwerkzeugs
CH697397B1 (de) Verfahren und Vorrichtung zum Schleifen eines Profils eines Werkstücks.
EP0342528A2 (de) Verfahren zum Schleifen von Nocken einer Nockenwelle
WO2018130495A1 (de) Verfahren zum bearbeiten von kegelrädern unter einsatz einer exzentrisch bewegten, abrichtbaren topfschleifscheibe
EP0174280A1 (de) Verfahren und Vorrichtung zur Bearbeitung eines Stirnzahnrades mittels eines rotierenden, zahnradartigen Werkzeuges
DE2755982A1 (de) Werkzeugmaschine
DE1954845B2 (de) Vorrichtung zur optimalen anpassung einer numerisch gesteuerten werkzeugmaschine an den bearbeitungsvorgang eines werkstueckes
EP2851150A2 (de) Werkzeug, Verfahren und Maschine zum Erzeugen eines Verzahnungsprofils an einem Werkstück durch Wälzschälen
EP2470319B1 (de) Verfahren zur spanenden drehbearbeitung und drehbearbeitungsvorrichtung
EP0360953B1 (de) Maschine zum Feinbearbeiten der Zahnflanken von verzahnten Werkstücken
DE3750688T2 (de) Werkzeugmaschine.
DE3914549C2 (de)
EP0227663B1 (de) Bearbeitungseinrichtung zur verzahnung von zahnrädern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19880129

17Q First examination report despatched

Effective date: 19890404

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3675706

Country of ref document: DE

Date of ref document: 19910103

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SCHIESS AG, GESCHAEFTSBEREICH SCHIESS-KOPP,

Effective date: 19910810

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SCHIESS KOPP WERKZEUGMASCHINEN GMBH

Effective date: 19910810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930929

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

APAU Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970619

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970716

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970820

Year of fee payment: 12

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: KOPP WERKZEUGMASCHINEN GMBH

Effective date: 19910810

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980725

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19990809

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO