EP0531776B1 - Hitzebeständiger warmverformbarer austenitischer Stahl - Google Patents

Hitzebeständiger warmverformbarer austenitischer Stahl Download PDF

Info

Publication number
EP0531776B1
EP0531776B1 EP92114280A EP92114280A EP0531776B1 EP 0531776 B1 EP0531776 B1 EP 0531776B1 EP 92114280 A EP92114280 A EP 92114280A EP 92114280 A EP92114280 A EP 92114280A EP 0531776 B1 EP0531776 B1 EP 0531776B1
Authority
EP
European Patent Office
Prior art keywords
austenitic steel
steel according
installations
production
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92114280A
Other languages
English (en)
French (fr)
Other versions
EP0531776A1 (de
Inventor
Ulrich Dr.-Ing. Brill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp VDM GmbH
Original Assignee
Krupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp VDM GmbH filed Critical Krupp VDM GmbH
Publication of EP0531776A1 publication Critical patent/EP0531776A1/de
Application granted granted Critical
Publication of EP0531776B1 publication Critical patent/EP0531776B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention relates to a heat-resistant, thermoformable austenitic steel and its use as a material for heat and corrosion-resistant objects.
  • this steel is an inexpensive alternative to the high nickel-containing materials, e.g. the nickel alloy according to material no. 2,4856.
  • this austenitic steel 1.4876 shows strong carburizing phenomena under strong carburizing conditions at temperatures above 900 ° C, which is expressed in a significant weight gain through strong carbide deposits and carbon absorption. As a result, the mechanical properties, in particular the long-term strength, are additionally adversely affected. Even under oxidizing / sulfidizing conditions such as in a gas atmosphere made of nitrogen and 10% SO2 at 750 ° C, austenitic steel 1.4876 shows significant damage due to sulfur absorption.
  • an austenitic steel consisting of (details in% by weight): max. 0.10% carbon, 1 - 5% silicon, max. 3% manganese, 15 - 30% chromium, 7 - 35% nickel, max. 0.10% aluminum, calcium + rare earths in total max. 0.10% and max. 0.03% nitrogen.
  • This steel shows the material no. 1.4876 an improved resistance to oxidation under cyclic loads at temperatures up to 1100 ° C., in particular due to carbon contents which are said to be below 0.10% by weight, and by limiting the sulfur content to values less than 0.003, preferably 0.0015% by weight .
  • carbon and nitrogen contents to less than 0.10 or 0.03% by weight in favor of improved resistance to oxidation, the heat resistance of the material in the temperature interval specified for its use is insufficient.
  • the limits on carbon, nitrogen and sulfur can only be achieved with great technical effort when melting this steel.
  • an austenitic steel consisting of (data in% by weight) carbon 0.10 to 0.20 silicon 2.5 to 3.0 manganese 0.2 to 0.5 phosphorus Max. 0.015 sulfur Max. 0.005 chrome 25 to 30 nickel 30 to 35 aluminum 0.05 to 0.15 Calcium 0.001 to 0.005 Rare earth 0.05 to 0.15 nitrogen 0.05 to 0.20
  • the steel according to the invention is advantageously suitable as a material for the production of objects which have to be resistant to carburization, sulfidation and oxidation at temperatures in the range from 500 to 1000 ° C., in particular in the case of cyclic loading. It is preferably used as a material for the production of plants for thermal waste disposal or for coal gasification and parts thereof. Especially when it comes to waste disposal in incineration plants, the furnace parts are subjected to high cyclical stresses due to changing temperatures during heating and cooling as well as fluctuations in the exhaust gas composition.
  • the steel according to the invention can be used without restriction as a material for the production of thermally stressed furnace components, such as support frames for furnaces, conveyor rails and conveyor belts.
  • the carbon and nitrogen contents in solution act as very efficient solid-solution strengthening elements and thus increase the heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)

Description

  • Die Erfindung betrifft einen hitzebeständigen warmverformbaren austenitischen Stahl und seine Verwendung als Werkstoff für hitze- und korrosionsbeständige Gegenstände.
  • Für Gegenstände, die im Temperaturbereich von 500 bis 1000 °C beständig sein müssen gegen Aufkohlung, Sulfidierung und Oxidation, insbesondere bei zyklischer Beanspruchung, wird vorwiegend der austenitische Stahl mit der Werkstoff-Nr. 1.4876 gemäß Stahleisen-Liste des Vereins deutscher Eisenhüttenleute eingesetzt. Er besteht aus (in Gew.-%) max. 0,12 % Kohlenstoff, max. 1,0 % Silizium, max. 2,0 % Mangan, 19 - 23 % Chrom, 30 - 34 % Nickel, 0,15 - 0,60 % Titan, 0,15 - 0,60 % Aluminium, Rest Eisen.
    Für weniger scharfe Korrosionsbedingungen ist dieser Stahl eine preisgünstige Alternative zu den hoch nickelhaltigen Werkstoffen, z.B. der Nickel-Legierung gemäß Werkstoff-Nr. 2.4856.
    Dieser austenitische Stahl 1.4876 zeigt jedoch unter stark aufkohlenden Bedingungen bei Temperaturen oberhalb 900 °C starke Aufkohlungserscheinungen, die sich in einer deutlichen Gewichtszunahme durch starke Karbidausscheidungen und Kohlenstoffaufnahme ausdrücken. Hierdurch werden zusätzlich die mechanischen Eigenschaften, insbesondere die Langzeitfestigkeit ungünstig beeinflußt. Auch unter oxidierend/sulfidierenden Bedingungen wie z.B. in einer Gasatmosphäre aus Stickstoff und 10 % SO₂ bei 750 °C zeigt der austenitische Stahl 1.4876 deutliche Schädigungen durch Schwefelaufnahme.
  • Der aus der EP-PS 0 135 321 bekannte austenitische Stahl (Angaben in Gew.-%) mit max. 0,03 % Kohlenstoff, 20 - 35 % Chrom, 17 - 50 % Ni sowie 2 - 6 % Silizium, ist zwar aufgrund seines hohen Si-Gehaltes beständig gegen Korrosion in stark oxidierenden Mineralsäuren, wie Salpetersäure, eignet sich aber nicht für den Einsatz bei Temperaturen oberhalb von 500 °C unter aufkohlenden, sulfidierenden und oxidierenden Bedingungen.
  • In der GB-PS 2 036 077 ist ein austenitischer Stahl beschrieben, bestehend aus (Angaben in Gew.-%): max. 0,10 % Kohlenstoff, 1 - 5 % Silizium, max. 3 % Mangan, 15 - 30 % Chrom, 7 - 35 % Nickel, max. 0,10 % Aluminium, Calcium + Seltene Erden in Summe max. 0,10 %, sowie max. 0,03 % Stickstoff.
  • Dieser Stahl zeigt gegenüber dem eingangs genannten Stahl der Werkstoff-Nr. 1.4876 eine verbesserte Oxidationsbeständigkeit unter zyklischer Belastung bei Temperaturen bis 1100 °C, insbesondere bedingt durch Kohlenstoffgehalte, die unter 0,10 Gew.-% liegen sollen, sowie durch eine Begrenzung des Schwefelgehaltes auf Werte kleiner 0,003, vorzugsweise 0,0015 Gew.-%. Durch die Begrenzung der Kohlenstoff- und Stickstoffgehalte auf kleiner 0,10 bzw. 0,03 Gew.-% zugunsten einer verbesserten Oxidationsbeständigkeit ist jedoch die Warmfestigkeit des Werkstoffes in dem für seine Verwendung angegebenen Temperaturintervall unzureichend. Darüber hinaus sind die Begrenzungen an Kohlenstoff, Stickstoff und Schwefel bei der Erschmelzung dieses Stahls nur mit hohem technischen Aufwand erzielbar.
  • Es ist Aufgabe der Erfindung, einen austenitischen Stahl zu schaffen, der unter aufkohlenden, sulfidierenden und oxidierenden Bedingungen, insbesondere unter zyklischer Beanspruchung, im Temperaturbereich von 500 bis 1000 °C mit ausreichender Warmfestigkeit ohne Einschränkung einsetzbar ist.
  • Gelöst wird diese Aufgabe durch einen austenitischen Stahl, bestehend aus (Angaben in Gew.-%)
    Kohlenstoff 0,10 bis 0,20
    Silizium 2,5 bis 3,0
    Mangan 0,2 bis 0,5
    Phosphor max. 0,015
    Schwefel max. 0,005
    Chrom 25 bis 30
    Nickel 30 bis 35
    Aluminium 0,05 bis 0,15
    Calcium 0,001 bis 0,005
    Seltene Erden 0,05 bis 0,15
    Stickstoff 0,05 bis 0,20
  • Rest Eisen und übliche erschmelzungsbedingte Verunreinigungen.
  • Der erfindungsgemäße Stahl eignet sich vorteilhaft als Werkstoff zur Herstellung von Gegenständen, die bei Temperaturen im Bereich von 500 bis 1000 °C, insbesondere bei zyklischer Beanspruchung, beständig sein müssen gegen Aufkohlung, Sulfidierung und Oxidation. Er wird bevorzugt eingesetzt als Werkstoff zur Herstellung von Anlagen zur thermischen Müllentsorgung oder zur Kohlevergasung und Teilen davon. Insbesondere bei der Müllentsorgung in Verbrennungsanlagen werden die Ofenteile stark durch wechselnde Temperaturen beim Auf- und Abheizen sowie durch Schwankungen in der Abgaszusammensetzung zyklisch beansprucht.
  • Er ist auch hervorragend geeignet als Werkstoff für Heizleiter, bei denen es in erster Linie neben einer guten Oxidationsbeständigkeit bei Temperaturen bis 1000 °C auch auf eine gute Warmfestigkeit ankommt.
    Da in Öfen, wie Brennöfen, die Heizgase stark aufkohlend auf Ofeneinbauteile wirken, und außerdem je nach verwendetem Brennstoff Kontaminationen durch Schwefel auftreten können, kann der erfindungsgemäße Stahl ohne Einschränkung als Werkstoff zur Herstellung von thermisch beanspruchten Ofeneinbauteilen, wie Stützgerüste für Brennöfen, Transportschienen und Transportbänder eingesetzt werden.
  • Das vorteilhafte Korrosionsverhalten des erfindungsgemäßen Stahls wird erreicht durch:
    • Siliziumgehalte von 2,5 - 3,0 Gew.-% in Verbindung mit 25 - 30 Gew.-% Chrom wirken sich günstig auf die Sulfidierungsbeständigkeit aus. Außerdem ist bei diesen Siliziumgehalten eine noch ausreichende Warmverformbarkeit durch Walzen und Schmieden gegeben. Die gewählten Siliziumgehalte beeinträchtigen ebenfalls nicht die Schweißbarkeit des Werkstoffes.
    • Der Nickelgehalt von 30 - 35 Gew.-%, in Verbindung mit 2,5 - 3,0 Gew.-% Silizium bedingt die Beständigkeit in stark aufkohlenden Medien.
    • Die Chromgehalte von 25 - 30 Gew.-% in Verbindung mit einem Calciumgehalt von 0,001 - 0,005 Gew.-%, sowie einem Gehalt an Seltenen Erden (wie Cer, Lanthan und den anderen Elementen der Gruppe der Aktiniden und Lanthanoiden) in Höhe von insgesamt 0,05 - 0,15 Gew.-% bewirken eine ausgezeichnete Oxidationsbeständigkeit, insbesondere unter zyklisch/thermischen Betriebsbedingungen, durch den Aufbau einer dünnen, gut haftenden und schützenden Oxidschicht.
  • In Ergänzung der für das Korrosionsverhalten wichtigen Gehaltsbereiche der vorstehend genannten Elemente ist
    • die Festlegung des Kohlenstoffgehaltes auf 0,10 - 0,20 Gew.-% in Verbindung mit Stickstoffgehalten von 0,05 - 0,20 Gew.-% ursächlich für die gute Warm- und Zeitstandfestigkeit des erfindungsgemäßen Stahls.
  • Die in Lösung befindlichen Gehalte an Kohlenstoff und Stickstoff sind als sehr effiziente mischkristallverfestigende und somit die Warmfestigkeit steigernde Elemente wirksam.
  • Darüber hinaus bewirken die Kohlenstoff- und Stickstoffgehalte in den angegebenen Gehaltsgrenzen gerade in dem für den Einsatz vorgegegebenen Temperaturintervall eine verstärkte Ausscheidung von Chromkarbiden und -karbonitriden, die ebenfalls eine Steigerung der Warmfestigkeit bewirken.
  • Im folgenden wird der erfindungsgemäße Stahl (Leg. A) im Vergleich zum bekannten Stahl 1.4876 (Leg. B) näher erläutert.
  • Die Ist-Analysen der Vergleichslegierungen A und B sind in Tabelle 1 aufgeführt (Angaben in Gew.-%) Tabelle 1
    Leg. A Leg. B
    Kohlenstoff 0,14 0,06
    Silizium 2,77 0,45
    Mangan 0,36 0,70
    Phosphor 0,014 0,010
    Schwefel 0,003 0,003
    Chrom 27,75 20,50
    Nickel 30,40 30,50
    Aluminium 0,05 0,25
    Calcium 0,002 ---
    Seltene Erden 0,075 ---
    Stickstoff 0,08 0,02
    Titan --- 0,34
    Eisen Rest Rest
    • Figur 1 zeigt das Aufkohlungsverhalten der Leg. A im Vergleich zu Leg. B.
      Dargestellt ist hier die spezifische Massenänderung in g/m² über der Zeit in Stunden. Das Prüfmedium war ein Gasgemisch aus CH₄/H₂ mit einer Kohlenstoffaktivität von ac = 0,8. Die Prüftemperatur betrug 1000 °C. Die Prüfung erfolgte zyklisch, d. h. bei einer Zyklus-Dauer von 24 Stunden betrug die Haltezeit auf Prüftemperatur 16 Stunden bei insgesamt 8 Stunden Auf- und Abheizen.
      Die erfindungsgemäße Leg. A zeichnet sich durch eine deutlich geringere Massenzunahme aus gegenüber der Vergleichslegierung B.
    • Figur 2
      Diese Darstellung entspricht in Ausführung und Versuchsdurchführung der Darstellung in Fig. 1. Lediglich das Versuchsmedium war in diesem Fall Stickstoff + 10 % SO₂ bei 750 °C zur Prüfung der Sulfidierungsbeständigkeit. In diesem Test ergibt sich eine Überlegenheit von Leg. A gegenüber Leg. B mit Bezug auf die Massenänderung, insbesondere nach Prüfzeiten über 800 Stunden.
    • Figur 3 beschreibt das zyklische Oxidationsverhalten der Vergleichswerkstoffe A und B in Luft bei 1000 °C. Die Versuchsbedingungen und die Darstellung der Ergebnisse entsprechen Fig. 1.
      Das deutlich verbesserte Oxidationsverhalten der erfindungsgemäßen Leg. A unter zyklischer Temperaturbeaufschlagung ist ersichtlich aus der selbst nach mehr als 1000 Stunden Prüfzeit noch gemessenen Gewichtszunahme (Massenänderung = (+)), was ein Beweis für das Vorhandensein einer gut haftenden Oxidschicht ist.
      Die Massenverluste der Vergleichslegierung B (Massenänderung = (-)) bedeuten, daß diese Legierung unter den vorliegenden oxidierenden Bedingungen starke Zunderabplatzungen aufweist, somit beim praktischen Einsatz versagt.
    • Figur 4 zeigt die Warmfestigkeit in MPa am Beispiel der 0,2 %-Dehngrenze (Rp0,2) in Abhängigkeit von der Prüftemperatur in °C.
      Die erfindungsgemäße Legierung A weist nicht nur im Temperaturbereich von 500 bis 1000 °C eine um ca. 100 MPa höhere Dehngrenze auf, sondern auch im Bereich von Raumtemperatur bis 500 °C. Dies wirkt sich besonders vorteilhaft bei Auf- und Abheizvorgängen aus, denen der Werkstoff beim praktischen Einsatz zwangsläufig unterliegt.

Claims (6)

  1. Hitzebeständiger warmverformbarer austenitischer Stahl, bestehend aus (in Gew.-%) Kohlenstoff 0,10 bis 0,20 Silizium 2,5 bis 3,0 Mangan 0,2 bis 0,5 Phosphor max. 0,015 Schwefel max. 0,005 Chrom 25 bis 30 Nickel 30 bis 35 Aluminium 0,05 bis 0,15 Calcium 0,001 bis 0,005 Seltene Erden 0,05 bis 0,15 Stickstoff 0,05 bis 0,20
    Rest Eisen und übliche erschmelzungsbedingte Verunreinigungen.
  2. Verwendung eines austenitischen Stahls nach Anspruch 1 als Werkstoff zur Herstellung von Gegenständen, die bei Temperaturen im Bereich von 500 bis 1000 °C, insbesondere bei zyklischer Beanspruchung, beständig sein müssen gegen Aufkohlung, Sulfidierung und Oxidation.
  3. Verwendung eines austenischen Stahls nach Anspruch 1 als Werkstoff zur Herstellung von Anlagen zur thermischen Müllentsorgung und Teilen solcher Anlagen.
  4. Verwendung eines austenitischen Stahls nach Anspruch 1 als Werkstoff zur Herstellung von Anlagen zur Kohlevergasung und Teilen solcher Anlagen.
  5. Verwendung eines austenitischen Stahls nach Anspruch 1 als Werkstoff für Heizleiter.
  6. Verwendung eines austenitischen Stahls nach Anspruch 1 als Werkstoff zur Herstellung von Ofen-Einbauteilen, wie Stützgerüste für Brennöfen, Transportschienen und -bänder.
EP92114280A 1991-09-11 1992-08-21 Hitzebeständiger warmverformbarer austenitischer Stahl Expired - Lifetime EP0531776B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4130140A DE4130140C1 (de) 1991-09-11 1991-09-11
DE4130140 1991-09-11

Publications (2)

Publication Number Publication Date
EP0531776A1 EP0531776A1 (de) 1993-03-17
EP0531776B1 true EP0531776B1 (de) 1995-11-15

Family

ID=6440318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92114280A Expired - Lifetime EP0531776B1 (de) 1991-09-11 1992-08-21 Hitzebeständiger warmverformbarer austenitischer Stahl

Country Status (5)

Country Link
US (1) US5302097A (de)
EP (1) EP0531776B1 (de)
JP (1) JPH05195167A (de)
AT (1) ATE130376T1 (de)
DE (2) DE4130140C1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130139C1 (de) * 1991-09-11 1992-08-06 Krupp-Vdm Ag, 5980 Werdohl, De
DE19524234C1 (de) * 1995-07-04 1997-08-28 Krupp Vdm Gmbh Knetbare Nickellegierung
US7118636B2 (en) * 2003-04-14 2006-10-10 General Electric Company Precipitation-strengthened nickel-iron-chromium alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114118A (en) * 1974-07-25 1976-02-04 Nisshin Steel Co Ltd Oosutenaitokeitainetsuko
SE419102C (sv) * 1974-08-26 1985-12-23 Avesta Ab Anvendning av ett kromnickelstal med austenitisk struktur till konstruktioner som erfordrar hog extrem krypbestendighet vid konstant temperatur upp till 1200?59c
JPS5456018A (en) * 1977-10-12 1979-05-04 Sumitomo Metal Ind Ltd Austenitic steel with superior oxidation resistance for high temperature use
JPS6033345A (ja) * 1983-08-05 1985-02-20 Sumitomo Metal Ind Ltd 耐硝酸性オ−ステナイトステンレス鋼
US4853185A (en) * 1988-02-10 1989-08-01 Haynes International, Imc. Nitrogen strengthened Fe-Ni-Cr alloy

Also Published As

Publication number Publication date
EP0531776A1 (de) 1993-03-17
DE59204329D1 (de) 1995-12-21
US5302097A (en) 1994-04-12
DE4130140C1 (de) 1992-11-19
JPH05195167A (ja) 1993-08-03
ATE130376T1 (de) 1995-12-15

Similar Documents

Publication Publication Date Title
EP0531775B1 (de) Hitzebeständige, warmverformbare austenitische Nickel-Legierung
DE102012011161B4 (de) Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE102012011162B4 (de) Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE69013335T2 (de) Eisenaluminidlegierungen mit verbesserten eigenschaften für hochtemperaturverwendungen.
DE4111821C1 (de)
EP0290719A1 (de) Halbfertigerzeugnis aus ferritischem Stahl und seine Verwendung
DE102018107248A1 (de) Verwendung einer nickel-chrom-eisen-aluminium-legierung
EP0752481B1 (de) Knetbare Nickellegierung
DE69904291T2 (de) Hochtemperatur-korrosionsbeständige legierung
EP0531776B1 (de) Hitzebeständiger warmverformbarer austenitischer Stahl
EP0411282A2 (de) Verwendung von ausscheidungshärtenden ferritisch-perlitischen (AFP -) Stählen als Werkstoff für Gaswechselventile von Verbrennungsmotoren
DE2125534B2 (de) Verwendung von gesinterten Eisenlegierungen als Werkstoff für Ventilsitze im Brennkraftmaschinenbau
DE1914230A1 (de) Chrom-Nickel-Legierung
DE69903357T2 (de) Legierungen für hochtemperaturbetrieb in aggressiven umgebungen
DE10260600A1 (de) Gusseisen mit verbesserter Oxidationsbeständigkeit bei hohen Temperaturen
DE69125868T2 (de) Gleitschienenteil benutzend dispersionsverstärkte Eisen-Chrom-Basis-Legierungen
DE2331100B2 (de) Hitzebeständige, austenitische Eisen-Chrom-Nickel-Legierungen
DE4411228C2 (de) Hochwarmfeste Nickelbasislegierung und Verwendung derselben
DE2308107A1 (de) Austenitischer rostfreier stahl
DE2608511A1 (de) Legierungen und aus ihnen hergestellte gusstuecke
DE3121782C2 (de) Verwendung einer austenitischen Chrom-Nickel-Stahllegierung für Wärmetauscherkomponenten
DE3806303C1 (en) Use of a steel alloy
DE4422521C1 (de) Hochtemperatur-Knetlegierung
DE2331098C3 (de) Verwendung hochsiliziumhaltiger vollaustenitischer Eisen-Chrom-Nickel-Legierungen fur Beanspruchungen bei Temperaturen über 800 Grad C in aufkohlender Atmosphäre
DE3017620C2 (de) Verwendung einer Eisen-Nickel-Chrom-Legierung für Gegenstände mit hoher Zeitstandfestigkeit, Korrosionsbeständigkeit und großer Gefügestabilität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19930211

17Q First examination report despatched

Effective date: 19950426

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 130376

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59204329

Country of ref document: DE

Date of ref document: 19951221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951129

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970722

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970729

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970801

Year of fee payment: 6

Ref country code: AT

Payment date: 19970801

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971007

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980821

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980822

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

EUG Se: european patent has lapsed

Ref document number: 92114280.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050821