EP0519359A1 - Textile Flächengebilde für Schutzkleidung - Google Patents

Textile Flächengebilde für Schutzkleidung Download PDF

Info

Publication number
EP0519359A1
EP0519359A1 EP19920110000 EP92110000A EP0519359A1 EP 0519359 A1 EP0519359 A1 EP 0519359A1 EP 19920110000 EP19920110000 EP 19920110000 EP 92110000 A EP92110000 A EP 92110000A EP 0519359 A1 EP0519359 A1 EP 0519359A1
Authority
EP
European Patent Office
Prior art keywords
fibers
fabric according
textile fabric
clothing
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19920110000
Other languages
English (en)
French (fr)
Other versions
EP0519359B1 (de
Inventor
Achim Gustav Dr. Fels
Georg Karl Brustmann
Dieter Hans Peter Dr. Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel NV
Original Assignee
Akzo NV
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo NV, Akzo Nobel NV filed Critical Akzo NV
Publication of EP0519359A1 publication Critical patent/EP0519359A1/de
Application granted granted Critical
Publication of EP0519359B1 publication Critical patent/EP0519359B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/442Cut or abrasion resistant yarns or threads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/911Penetration resistant layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2936Wound or wrapped core or coating [i.e., spiral or helical]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition
    • Y10T442/3073Strand material is core-spun [not sheath-core bicomponent strand]
    • Y10T442/3081Core is synthetic polymeric material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3504Woven fabric layers comprise chemically different strand material
    • Y10T442/3512Three or more fabric layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/425Including strand which is of specific structural definition
    • Y10T442/438Strand material formed of individual filaments having different chemical compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/45Knit fabric is characterized by a particular or differential knit pattern other than open knit fabric or a fabric in which the strand denier is specified
    • Y10T442/456Including additional strand inserted within knit fabric
    • Y10T442/463Warp knit insert strand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/668Separate nonwoven fabric layers comprise chemically different strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Definitions

  • the invention relates to a textile fabric for the production of protective clothing, in particular clothing for stab, cut, splinter and projectile protection.
  • Aromatic polyamide fibers have proven themselves very well for the use of protective clothing, especially for protection against stab, cut, splinter or projectile injuries.
  • the World Fencing Federation has prescribed the use of fencing vests made of aromatic polyamide fibers in order to avoid the serious injuries that occur repeatedly when practicing this sport (High Performance Textiles, Volume 8, No. 3, p. 14).
  • Protective clothing made of aromatic polyamide fibers has proven to be extremely reliable in preventing injuries, particularly in body protection against gunshot and splinter injuries during military, police and disaster operations.
  • polyolefin fibers especially polyethylene fibers, which are produced using the gel spinning process, application.
  • Aromatic polyamide fibers have some disadvantages when used in protective clothing.
  • the yellow inherent color of the aromatic polyamide fibers has a disruptive effect in many areas of application. Dyeing these fibers is possible with restrictions, but it does not help in all cases to cover the intrusive color of the aromatic polyamide fibers.
  • protective clothing is usually made from aromatic polyamide fibers in such a way that the protective fabric made from aromatic polyamide fibers is covered with an outer material made from fibers that can be easily colored, printed or optically brightened, in order to achieve an aesthetic appearance of the clothing.
  • the protective layer made of aromatic polyamide fibers is provided with an outer fabric made from a fabric made from polyester-cotton yarns (High Performance Textiles, Volume 8, No. 3, p. 14).
  • This cover layer in the form of an outer fabric over the actual protective layers also fulfills other tasks, namely the protection of the aromatic polyamide fiber against damage by light radiation.
  • the aromatic polyamide fiber suffers a loss of strength when exposed to intense light.
  • an outer fabric made of, for example, natural fibers the wearing comfort of protective clothing is increased.
  • a wound yarn which consists of a core made of aromatic polyamide or another fiber suitable for this, such as, for example, gel-spun polyethylene fiber and a sheath composed of easily dyeable, printable and optically lightenable natural or chemical fibers or mixtures thereof.
  • a wound yarn which consists of a core made of aromatic polyamide or another fiber suitable for this, such as, for example, gel-spun polyethylene fiber and a sheath composed of easily dyeable, printable and optically lightenable natural or chemical fibers or mixtures thereof.
  • the use of wound yarns for the production of the textile fabrics according to the invention makes it possible to process yarns made from aromatic polyamide fibers in a way that is much more gentle and thus less loss of strength.
  • the serviceability of the protective vests made from the textile fabrics according to the invention is also significantly increased.
  • the production of wound yarns for further processing to the textile fabrics according to the invention is not intended to be restricted to the DREF 3 process. Any other method with which yarns with the same properties can be achieved is equally suitable for the production of yarns for further processing into the textile fabrics according to the invention.
  • a further disadvantage of yarns which have been produced by the DREF 2 process is noticeable during the further processing into the textile fabrics according to the invention in a layer structure which is poorer than yarns of the DREF 3 process.
  • the core and sheath layer is not as clearly separated in the case of yarns which have been produced by the DREF 2 process as in the case of yarns from the DREF 3 process, that is to say the core and sheath layer run in the case of DREF 2 - Yarns interlock more than with DREF 3 yarns.
  • This disadvantage of the DREF 2 process is particularly noticeable in areas of application where very good protection of the core substance against light radiation is required.
  • the core substance of the yarns which are used for the production of the textile fabrics according to the invention preferably consists of aromatic polyamide fibers.
  • These fibers often referred to in the short form as aramid fibers, are generally known in the textile industry under brand names such as Twaron. They have proven themselves very well, especially when used for clothing that is intended to protect against stab, cut, splinter or projectile injuries.
  • polyolefin fibers particularly polyethylene fibers produced by the gel spinning process
  • polyethylene fibers produced by the gel spinning process can also be used to form the core.
  • Mixtures of these fibers for example mixtures of aramid and polyethylene fibers, can also be used.
  • the fibers for the core substance can be used both as filament yarns and as spun yarns. Which of the two forms is chosen depends on the desired yarn properties. In the production of yarns for further processing into protective clothing, filament yarns are preferred as the core substance, since filament yarns can achieve higher strength values than spun fiber yarns.
  • the filament and yarn titer for the core material.
  • the selection of the yarn titer depends on the article to be manufactured. Finer titers are preferred to coarser ones.
  • the filament yarns in the core can be used twisted or untwisted. Untwisted yarns are preferred because the core yarn is rotated anyway when spinning using the DREF 3 process.
  • Spun fibers are used to form the shell substance. These can be natural or chemical fibers or their mixtures.
  • synthetic fibers such as polyester, polyamide or polyacrylonitrile fibers.
  • synthetic fibers such as polyester, polyamide or polyacrylonitrile fibers.
  • mixtures of synthetic fibers and cotton or viscose staple fibers in the interest of good wearing comfort.
  • a known mixture that is used very frequently in other articles is e.g. the combination of 50% cotton and 50% polyester staple fibers.
  • wool alone or in a mixture with viscose or synthetic staple fibers, can also be used.
  • the fiber to be used for this is in the form of a stretch belt with a belt weight of 2-3 g / m submitted to the spinning apparatus.
  • This conveyor belt is manufactured with the help of machines that are common in the three-cylinder spinning mill.
  • cotton it is advisable to use combed cotton.
  • Fiber blends can be produced using the blending processes customary in spinning technology.
  • the so-called flake mixture is expedient, but it is also possible to mix the conveyor belt, with several stretching passages having to be carried out in the interest of a homogeneous distribution of the mixing partners.
  • Fibers with a stack length of 30-60 mm are particularly suitable for spinning using the DREF 3 process. Such fibers are offered in a variety of forms by man-made fiber manufacturers. When using cotton, it is also possible to use fibers with a shorter staple length.
  • wool is used to form the coat, it is processed on the machines of the three-cylinder spinning mill.
  • the name wool short combs has become common for tapes made of wool that are manufactured on this machine range. If wool is used in a mixture with a chemical staple fiber, the fiber length of the mixing partner is selected accordingly. Chemical staple fibers with a stack length of 60 mm have proven themselves well in this area.
  • the core material against the action of light rays it is expedient to cover the core of aromatic polyamide fibers with a double jacket. It is particularly well suited an inner jacket made of polyester fibers and an outer jacket made of cotton or viscose spun fiber.
  • This double sheath substance is produced by running a drawstring made of, for example, polyester staple fibers into the spinning unit together with the aramid yarn provided for the core, and forming the outer sheath with cotton or viscose staple fiber in the manner customary in the DREF 3 process.
  • Fig. 1 the production of wound yarns with a double jacket is shown schematically.
  • An aramid filament yarn 2 is drawn off from a bobbin 1 and fed to the spinning apparatus 6.
  • a drawstring 3, which consists, for example, of polyester staple fibers, is drawn off from a can (not shown), stretched on the drafting device 4 and brought together with the aramid filament yarn 2 in front of the pinch rollers 5.
  • the yarn passes through the spinning apparatus 6, which consists of the perforated drums 7 and 7a. Both drums contain suction inserts, not shown.
  • the fibers of the drawstring 3 are wrapped around the aramid filament yarn 2 as a result of the false twist that arises in the gusset area above the suction drums and thus form the inner jacket.
  • the stretch belts 8a-8e which consist, for example, of cotton, are fed from opening cans (not shown) to the opening rollers 9 and 9a and dissolved into individual fibers.
  • the number of belts fed to the opening rollers can be varied as desired.
  • the 5 bands mentioned here are only to be understood as an example.
  • the dissolved fibers are sucked in by the perforated drums 7 and 7a and are wrapped here as an outer sheath around the aramid filament yarn 2 already spun with the fibers from the drawstring 3.
  • the end of the spinning apparatus Yarn 10 is fed to the take-off unit 11.
  • the false twist triggered by the clamping that occurs here fixes the sheath fibers. Conversely, these fibers fix the false twist generated on the core yarn. In this way, the yarn 12 wound with a double jacket is produced.
  • FIG. 2 shows the cross section of the yarn 12 produced on the apparatus described.
  • an inner jacket 14 which in this example consists of polyester spun fibers and an outer jacket 15, in this example made of cotton, placed.
  • the invention is not limited to the polyester staple fibers mentioned here for the inner jacket and to cotton for the outer jacket.
  • the choice of fiber material for the two cladding layers is determined by the properties desired for the yarn. If, for example, good light protection of the aramid yarn core is desired, it is expedient to use polyester staple fibers for the inner jacket, since these have good light absorption. Polyester fibers with appropriate additives are particularly suitable. Matted polyester staple fibers have also proven to be very suitable. These usually contain titanium dioxide, which has an absorbing effect, especially in the UV range. In the same way, other fibers with similar properties can be used.
  • the main criteria for choosing the fibers to form the outer sheath are comfort and easy dyeing, printing or optically brightening.
  • cotton or viscose staple fibers or their blends are very useful here, but blends of cotton or viscose staple fibers with synthetic staple fibers can also be used here come. Even when using viscose staple fibers, matt types that contain spun-in titanium dioxide are preferred.
  • the spun yarns with a core of aromatic polyamide fibers or other suitable fibers or mixtures of these fibers with aramid fibers and a single or double sheath made of fibers that can be easily colored, printed or optically brightened are further processed into textile fabrics.
  • Textile fabrics are to be understood as meaning fabrics, knitted fabrics, knitted fabrics, sewing agents, laid scrims, etc. Which method is chosen for the production of flat fabrics from wound yarns depends on a number of different aspects, from which the desired properties of the protective vests to be made from the flat fabrics are of particular importance. For example, it has proven expedient to provide knitted fabrics such as knitted fabrics or knitted fabrics instead of fabrics if a special elasticity of the vest to be produced from the textile fabrics is required. Threads have proven to be particularly inexpensive because of the low manufacturing costs and the gentle processing of yarns made from aromatic polyamide fibers. However, the latter advantage cannot be given increased importance when using wound yarns.
  • the number of threads to be selected depends on the titer of the thread used and on the type of protective clothing to be manufactured.
  • the yarns are used in a titer range of 200 - 4000 dtex.
  • a yarn count of 9-12 threads / cm is selected with a yarn titer of approximately 850 dtex. With a titer of approx. 1300 dtex the thread count is 7-10 / cm and with a titer of approx. 1700 dtex 6-9 / cm. This information refers to fabrics that are made in plain weave.
  • the plain weave has proven useful, but also other weaves, for which as examples the twill and the Panama weave can be used.
  • the sheathed layer of the wound yarn also provides protection for the aramid core during processing on textile machines and thus makes a significant contribution to maintaining the favorable strength properties of the aramid yarn during its further processing.
  • the textile fabrics according to the invention can be dyed, printed or optically lightened using the methods customary in textile finishing.
  • fencing vests for example, the color white is common.
  • the fibers used for the coat have to be bleached and optically brightened.
  • the bleaching of the sheath fiber should be done appropriately before spinning in the flake.
  • Piece bleaching is also possible, however, due to the oxidizing agents that are almost always used for bleaching, damage to the aramid core must be accepted during piece bleaching.
  • Whether bleaching is necessary at all depends on the fiber used to form the coating substance. In the case of cotton and wool, this is necessary in the interest of a good degree of whiteness, in many cases the man-made fibers already produced with good whiteness do not require the bleaching process.
  • the producers of man-made fibers also offer so-called bright white types. These contain optical brighteners that are spun in or applied in the aftertreatment. When using synthetic fibers or their mixtures, it is advisable to use such types.
  • a yarn with a double jacket shows an advantage of the viscose staple fiber over the cotton when used to form the outer jacket.
  • Treatment of the textile fabrics according to the invention with optical brighteners presents no problems. This treatment can take place in the flake, for example after bleaching the cotton, but it is also possible to lighten the piece goods optically.
  • the processes for this are known in the textile finishing industry.
  • the choice of a suitable product and the treatment conditions depend on the fibers or fiber mixtures selected for the sheath substance.
  • Clothing for splinter, bullet or cut protection is either dyed or printed.
  • the latter is common especially in military use.
  • dyeing and Printing on the textile fabrics according to the invention are well known in the textile finishing industry. The selection of the dyes and the treatment methods depends on the type of fiber or fiber mixture used for the covering of the wound yarns as well as on the desired fastness properties and any other desired properties, such as camouflage colors for protective clothing in the military sector. Dyeing in dark shades is particularly favorable with regard to protecting the aramid core against damage from light radiation.
  • Whether the dyeing is limited to the sheath layer or whether the aramid core yarn is also dyed depends on the desired effect and the yarn construction.
  • Aramid fibers have an inherent yellow color. If a yarn with a simple sheath is used, the yellow color of the core material may shine through in some yarn constructions. In some areas of application, this can be disruptive. In such cases, it is possible to dye the aramid core yarn with disperse dyes.
  • the high-temperature process known in the textile finishing industry under the abbreviation HT process, is suitable for this purpose, with dyeing temperatures up to 135 ° C. in the same way as the dyeing process with carriers. Both methods are well known in dyeing technology.
  • the textile fabrics according to the invention are processed in one or more layers.
  • single-layer processing there is a particular advantage of the textile fabrics according to the invention, since sewing with an upper and possibly a lower material can be omitted, which is not only easier to dispose of the materials to be kept in stock also has a very cost-effective effect during the assembly process.
  • Fencing vests, which are produced from the textile fabrics according to the invention also show considerable advantages over the conventional fencing vests in terms of comfort, which is particularly true for the single-layer processing of the textile fabrics manufactured according to the invention.
  • a fencing vest made without the use of an outer or lower fabric fits snugly on the body of the athlete and thus offers optimal freedom of movement.
  • Protective vests for bullet and splinter protection must be built up in several layers.
  • the conventional way of working is to sew together several layers of fabrics made from aromatic polyamide fibers. This package out several of these fabrics are placed in a shell made of coated fabric, for example cotton. An upper and lower fabric made of colored or printed cotton is placed over the wrapped package formed in this way and the vest is made up in such a way that the package can be removed for cleaning the outer shell.
  • the textile fabric according to the invention is used for the cover placed around the fabrics made of aromatic polyamide fibers. Compared to the coated fabrics used hitherto, this has the essential advantage that the loss of antiballistic effect caused by the coating does not take place here.
  • the textile fabric according to the invention can also be used for the upper and lower fabric. In addition to the simpler disposition option for the materials to be kept in stock, this offers the advantage that, in comparison to the cotton fabric previously used for this purpose, with the textile fabric according to the invention a higher ballistic protective effect of the vests and moreover a better strength can be achieved.
  • layers made of metal fabrics can also be used in the actual cut protection package.
  • the shell of these packages and the upper and lower fabrics what has already been said about protective clothing for bullet and splinter protection applies.
  • the actual cut protection layers can consist of the textile fabrics according to the invention.
  • the use of the textile fabrics according to the invention for clothing for stitch, cut, projectile and splinter protection thus offers considerable advantages with regard to easier disposition in the materials to be used for this purpose, since the storage of the required articles can be significantly reduced.
  • it is possible to achieve significantly better usage properties of the protective clothing by a substantially lower loss of strength in the manufacture of the textile fabrics and by the replacement of cotton fabric with less strength by the textile fabrics according to the invention.
  • the wearing comfort is significantly improved compared to the protective clothing previously used.
  • This example describes the use of the textile fabrics according to the invention for the production of fencing vests.
  • a filament yarn made of aromatic polyamide fibers with a titer of 840 dtex was spun on a DREF 3 spinning apparatus with a double jacket.
  • the inner cladding was formed from a polyester fiber with a spun optical brightener.
  • the polyester fiber had a titer of 1.7 dtex and a fiber length of 32 mm.
  • the polyester fiber was used as a draw frame and was fed to the spinning system as described in FIG. 1.
  • the outer coat was made of cotton.
  • the cotton was previously bleached with sodium chlorite and optically brightened.
  • the flake was treated Add a finishing agent to cotton to facilitate the formation of a draw frame and processing on the DREF 3 spinning system.
  • the products to be used for this are known in the textile finishing industry.
  • the yarn was obtained by spinning, which consisted of 40% aromatic polyamide fiber, 30% polyester fiber and 30% cotton.
  • the yarn thus obtained was processed in a twill 1/3 weave into a woven fabric.
  • the number of threads in the warp was 13 / cm, in the weft 12 / cm.
  • a basis weight of 510 g / m2 was achieved.
  • Example 1 was repeated using a viscose staple fiber with a titer of 1.7 dtex and a fiber length of 40 mm instead of cotton to form the outer jacket.
  • the viscose staple fiber was a highly white type, so that the bleaching and optically brightening in the flake described in Example 1 was not necessary.
  • the fabric was produced in the same manner as in Example 1. An average value of 830 N was determined when testing the puncture force.
  • Examples 3a and 3b show the influence of the fabric density set by the number of threads in warp and weft or the related weight per unit area on the penetration force of fabrics for fencing vests.
  • a fabric was made from the yarn described in Example 1 in plain weave with a thread count of 8 / cm in the warp and 7 / cm in the weft.
  • the fabric showed a weight of 320 g / m2.
  • the average value of the puncture force was 710 N.
  • a fabric was made from the yarn described in Example 1 in cross twill 2/2 weave with a thread count of 9 / cm in warp and weft.
  • the fabric showed a weight of 380 g / m2.
  • the average value of the puncture force was 690 N.
  • This example describes the use of the textile fabrics according to the invention for the production of shatterproof vests.
  • a filament yarn made of aromatic polyamide fibers with a titer of 840 dtex was spun on a DREF 3 spinning apparatus with a double jacket.
  • the inner jacket was made of a polyester fiber. This had a titer of 1.7 dtex and a fiber length of 32 mm.
  • the polyester fiber was used as a conveyor belt and was fed to the spinning system as described in FIG. 1.
  • the outer coat was made of cotton. Cotton was also used as a conveyor belt. According to the description of FIG. 1, it was fed to the DREF 3 spinning system.
  • a spinning yarn was obtained from the spinning 40% aromatic polyamide fiber, 30% polyester fiber and 30% cotton existed.
  • the yarn thus obtained was made into a woven fabric in plain weave.
  • the number of threads in warp and weft was 7 / cm each.
  • the fabric was produced on a rapier weaving machine.
  • the tissue obtained was dyed dark green. Vat dyes were used for the cotton outer coat and disperse dyes for the polyester inner coat. By dyeing at 135 ° C., the disperse dyes used also stained the core of aromatic polyamide, but the depth of the color was significantly lighter than that of the polyester inner jacket.
  • the fabrics produced in this way were further processed into a splinter protection vest, these fabrics being used for the outer and lining layers instead of conventional cotton fabrics.
  • a vest was made that consisted of 14 layers of conventional aramid fabrics, each weighing 190 g / m2.
  • the fabrics produced according to the invention with a weight of 283 g / m 2 formed an additional outer or inner layer.
  • This vest was subjected to a shattered fire under the conditions of STANAG 2920.
  • the coating was carried out with 1.1 g splinters.
  • a V50 value of 476 m / sec was achieved when the dry package was bombarded. This value means that there is a 50% probability of penetration at this speed.
  • the corresponding value was 456 m / sec.
  • the vest is stored in a vertical position in water for one hour before being bombarded and is subjected to the bombardment test after a draining time of 3 minutes.
  • the comparison material consisted of a vest which was also made up of 14 layers of aramid fabric, each weighing 190 g / m2.
  • the upper and lower fabric consisted of a cotton fabric with a weight of 272 g / m2. With this vest, the V50 value was 455 m / sec when bombarded in the dry state and 428 m / sec when bombarded in the wet state.
  • the fabric from Example 4 was used to manufacture a bullet-resistant vest.
  • 20 layers of aramid fabric with a weight of 280 g / m2 were used.
  • the fabric produced according to the invention formed two additional layers each on the outside and on the inside. These layers once served as cover for the picture the so-called ballistic package, on the other hand as an upper and lower fabric.
  • This vest had a total of 24 layers: from the outside in, the vest consisted of the following layers: 2 layers of the fabric according to the invention, 20 layers of aramid fabric, 2 layers of the fabric according to the invention.
  • the test of the vest which was produced on a trial basis, was carried out in comparison to a vest which consisted of 24 layers of aramid fabric with a weight of 280 g / m 2 and a layer of coated polyester fabric on the outside and inside of the ballistic package and as top or Cotton fabric had under fabric. So this vest had a total of 28 layers. From the outside in, the vest consisted of the following layers: outer fabric made of cotton fabric, coated polyester fabric, 24 layers of aramid fabric, coated polyester fabric, lining made of cotton fabric.
  • the bullet test was carried out according to the NIJ standard. In both cases, the projectile used for the bombardment did not pass through the protective vest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Textile Flächengebilde wie Gewebe, Gestricke, Gewirke, Nähwirkstoffe, Fadengelege etc., die für Kleidung für den Stich-, Schnitt-, Splitter- und Geschoßschutz vorgesehen sind, werden in allen Fadenrichtungen aus umsponnenen Garnen hergestellt. Diese Garne weisen im Kern aromatische Polyamidfasern, Polyethylenfasern oder deren Mischungen und im Mantel leicht färb-, bedruck- oder optisch aufhellbare Natur- und/oder Chemiefasern auf. <IMAGE>

Description

  • Die Erfindung betrifft ein textiles Flächengebilde zur Herstellung von Schutzkleidung, insbesondere von Kleidung für den Stich-, Schnitt-, Splitter- und Geschoßschutz.
  • Für den Einsatz von Schutzkleidung, besonders für den Schutz gegen Stich-, Schnitt-, Splitter- oder Geschoßverletzungen, haben sich aromatische Polyamidfasern sehr gut bewährt. So hat zum Beispiel der Weltverband der Fechter den Einsatz von Fechtwesten aus aromatischen Polyamidfasern vorgeschrieben, um dadurch die bei der Ausübung dieser Sportart immer wieder auftretenden ernsthaften Verletzungen vermeiden zu können (High Performance Textiles, Band 8, Nr. 3, S. 14). Besonders im Körperschutz gegen Schuß- und Splitterverletzungen bei Militär-, Polizei- und Katastropheneinsätzen hat Schutzkleidung aus aromatischen Polyamidfasern eine sehr hohe Zuverlässigkeit beim Verhindern von Verletzungen ergeben.
  • Neben aromatischen Polyamidfasern finden in diesem Einsatzgebiet auch Polyolefinfasern, besonders Polyethylenfasern, die mit Hilfe des Gel-Spinnverfahrens hergestellt werden, Anwendung.
  • Aromatische Polyamidfasern zeigen bei deren Verwendung in Schutzkleidung einige Nachteile. So wirkt in vielen Einsatzgebieten die gelbe Eigenfarbe der aromatischen Polyamidfasern störend. Ein Färben dieser Fasern ist mit Einschränkungen zwar möglich, es hilft aber nicht in allen Fällen, die störende Eigenfarbe der aromatischen Polyamidfasern abzudecken.
  • In besonderem Maße macht sich die Eigenfarbe der aromatischen Polyamidfaser bei Artikeln, die in weiß hergestellt werden müssen, negativ bemerkbar, da bislang keine Möglichkeiten für ein Bleichen und optisches Aufhellen dieser Fasern bekannt sind. Deshalb wird üblicherweise Schutzkleidung aus aromatischen Polyamidfasern in der Weise hergestellt, daß das den Schutz bewirkende Gewebe aus aromatischen Polyamidfasern mit einem Oberstoff aus gut färb-, bedruck- oder optisch aufhellbaren Fasern abgedeckt wird, um so ein ästhetisches Aussehen der Kleidung zu erzielen. Beispielsweise wird bei Fechtwesten die Schutzlage aus aromatischen Polyamidfasern mit einem Oberstoff aus einem Gewebe, das aus Polyester-Baumwolle-Garnen hergestellt wurde, versehen (High Performance Textiles, Band 8, Nr. 3, S. 14).
  • Diese Abdecklage in Form eines Oberstoffes über den eigentlichen Schutzlagen erfüllt noch weitere Aufgaben, nämlich den Schutz der aromatischen Polyamidfaser gegen eine Schädigung durch Licht-Einstrahlung. Wie alle Polyamidfasern erleidet auch die aromatische Polyamidfaser bei einer intensiven Belichtung einen Festigkeitsabbau. Außerdem wird durch die Verwendung eines Oberstoffes aus beispielsweise Naturfasern der Tragekomfort von Schutzkleidung erhöht.
  • Die Herstellung von Schutzkleidung unter Verwendung von Decklagen bedeutet aber, daß mehrere verschiedene Gewebe für die Decklagen und die eigentlichen Schutzlagen auf Lager gehalten werden müssen und darüberhinaus auch noch innerhalb der Decklagen eine differenzierte Lagerhaltung nötig ist, da nicht dieselben Oberstoffe für beispielsweise Fechtwesten und geschoßhemmende Westen Verwendung finden können. Für Fechtwesten werden weiße Oberstoffe, für geschoßhemmende Westen Oberstoffe in gefärbter oder bedruckter Form verlangt.
  • Es bestand deshalb die Aufgabe, für die Produktion von Schutzbekleidung gegen Stich-, Schnitt-, Splitter- und Geschoßverletzungen bei der Herstellung der hierfür einzusetzenden textilen Flächengebilde und vor allem in der Konfektion günstigere Dispositionsvoraussetzungen zu schaffen und so die Herstellung dieser Bekleidung kostengünstiger zu gestalten.
  • Überraschend wurde nun gefunden, daß unter Verbesserung oder mindestens Beibehaltung der vorteilhaften Eigenschaften der bisher hergestellten Schutzkleidung eine erhebliche Vereinfachung bei der Herstellung dieser verschiedenen Arten von Schutzkleidung möglich ist, wenn ein umsponnenes Garn zum Einsatz kommt, das aus einem Kern aus aromatischem Polyamid oder einer anderen hierfür geeigneten Faser, wie beispielsweise gelgesponnener Polyethylenfaser und einem Mantel aus leicht färb-, bedruck- und optisch aufhellbaren Natur- oder Chemiefasern oder deren Mischungen besteht. Durch textile Flächengebilde aus diesen Garnen können die obengenannten Dispositionsprobleme in kostengünstiger Weise erheblich reduziert werden, da die Lagerhaltung auf eine Art von Flächengebilden für verschiedene Einsatzgebiete beschränkt werden kann.
  • Als weiterer Vorteil wird durch die Verwendung von umsponnenen Garnen für die Herstellung der erfindungsgemäßen textilen Flächengebilde gegenüber der bisherigen Arbeitsweise eine wesentlich schonendere Verarbeitung von Garnen aus aromatischen Polyamidfasern und damit ein geringerer Festigkeitsverlust möglich. Schließlich wird auch die Gebrauchstüchtigkeit der aus den erfindungsgemäßen textilen Flächengebilden angefertigten Schutzwesten wesentlich erhöht.
  • Die Herstellung von umsponnenen Garnen ist in der Spinnereitechnik allgemein bekannt. Besonders ist das von der Textilmaschinenfabrik Dr. Ernst Fehrer AG entwickelte DREF 3 - Verfahren hierfür geeignet. Seine Funktionsweise wurde in der textilen Fachliteratur bereits mehrfach beschrieben (z B. Fuchs, H., Herstellung von Mehrkomponentengarnen mit Hilfe des Friktionsspinnverfahrens, Melliand Textilberichte, Band 64, 1983, S. 618-622).
  • Die Herstellung von umsponnenen Garnen für die Weiterverarbeitung zu den erfindungsgemäßen textilen Flächengebilden soll aber nicht auf das DREF 3 - Verfahren beschränkt bleiben. Jedes andere Verfahren, mit dem Garne gleicher Eigenschaften erzielt werden können, ist zur Herstellung von Garnen für die Weiterverarbeitung zu den erfindungsgemäßen textilen Flächengebilden in gleicher Weise geeignet.
  • Ein anderes, ebenfalls von der Maschinenfabrik Dr. Ernst Fehrer AG entwickeltes Verfahren, ist das DREF 2 - Verfahren, das auch in der textilen Fachliteratur bereits mehrfach beschrieben wurde. Dieses Verfahren hat sich für die Herstellung von Garnen zur Weiterverarbeitung zu den erfindungsgemäßen textilen Flächengebilden als nicht optimal geeignet erwiesen. Im Interesse guter Trageeigenschaften und eines ansprechenden ästhetischen Aussehens der aus den erfindugsgemäßen textilen Flächengebilden herzustellenden Schutzwesten ist es notwendig, möglichst feine Garne einzusetzen. Das DREF 2 - Verfahren ist jedoch nur für die Herstellung gröberer Garne geeignet. Da die umsponnenen Garne zur Produktion der erfindungsgemäßen textilen Flächengebilde in einem Feinheitsbereich von 200 - 4000 dtex benötigt werden, bietet das DREF 2 - Verfahren nicht die gewünschten Möglichkeiten zur Erzeugung der hier benötigten Garne.
  • Ein weiterer Nachteil von Garnen, die nach dem DREF 2 - Verfahren hergestellt wurden, macht sich bei der Weiterverarbeitung zu den erfindungsgemäßen textilen Flächengebilden in einem gegenüber Garnen des DREF 3 - Verfahrens schlechteren Schichtaufbau bemerkbar. Die Kern- und Mantel-Schicht ist bei Garnen, die nach dem DREF 2 - Verfahren erzeugt worden sind, nicht so klar getrennt wie bei Garnen aus dem DREF 3 - Verfahren, das heißt, die Kern- und Mantel-Schicht verlaufen bei DREF 2 - Garnen mehr ineinander als bei DREF 3 - Garnen. Dieser Nachteil des DREF 2 - Verfahrens macht sich besonders bei Einsatzgebieten, bei denen ein sehr guter Schutz der Kernsubstanz gegen Licht-Einstrahlung erforderlich ist, negativ bemerkbar. Versuche haben gezeigt, daß für einen optimalen Schutz des Kerns gegen eine Licht-Einstrahlung eine gute Trennung der Kern- und Mantel-Schicht notwendig ist. Dies gilt in besonderem Maße dann, wenn ein Garn mit einem Doppelmantel erzeugt wird. Hier müssen, wenn ein guter Licht-Schutz gewährleistet sein soll, Kernschicht, erste Mantelschicht und zweite Mantelschicht gut voneinander getrennt liegen und dürfen nicht ineinander überlaufen.
  • Die Kernsubstanz der Garne, die für die Herstellung der erfindungsgemäßen textilen Flächengebilde eingesetzt werden, besteht bevorzugt aus aromatischen Polyamidfasern. Diese Fasern, häufig in der Kurzform auch als Aramidfasern bezeichnet, sind unter Markennamen wie beispielsweise Twaron in der Textilindustrie allgemein bekannt. Sie haben sich vor allem bei der Verwendung für Kleidung, die Schutz gegen Stich-, Schnitt-, Splitter- oder Geschoßverletzungen bieten soll, sehr gut bewährt.
  • Daneben können zur Bildung des Kerns auch Polyolefinfasern, besonders nach dem Gel-Spinnverfahren hergestellte Polyethylenfasern, zum Einsatz kommen. Ebenso können Mischungen dieser Fasern, zum Beispiel Mischungen von Aramid- und Polyethylenfasern, eingesetzt werden.
  • Die Fasern für die Kernsubstanz können sowohl als Filamentgarne wie auch als Spinnfasergarne Anwendung finden. Welche der beiden Formen gewählt wird, hängt von den gewünschten Garneigenschaften ab. Bei der Herstellung von Garnen für die Weiterverarbeitung zu Schutzkleidung werden Filamentgarne als Kernsubstanz bevorzugt, da mit Filamentgarnen im Vergleich zu Spinnfasergarnen höhere Festigkeitswerte erzielt werden können.
  • Bei den Filament- und Garntitern für das Kernmaterial bestehen keine Beschränkungen. Die Auswahl des Garntiters richtet sich nach dem herzustellenden Artikel. Feineren Titern wird gegenüber gröberen der Vorzug gegeben.
  • Die Filamentgarne im Kern können gedreht oder ungedreht zum Einsatz kommen. Ungedrehte Garne werden bevorzugt, da beim Umspinnen mit Hilfe des DREF 3 - Verfahrens ohnehin eine Drehung des Kerngarns erfolgt.
  • Zur Bildung der Mantelsubstanz kommen Spinnfasern zum Einsatz. Hierbei kann es sich um Natur- oder Chemiefasern oder deren Mischungen handeln.
  • Besonders gute Ergebnisse, vor allem im Hinblick auf den Tragekomfort sowie auf die gute Aufnahmefähigkeit für Farbstoffe verschiedener Echtheitsgrade und optische Aufheller, wurden mit Baumwolle erzielt. In gleicher Weise eignen sich aber Viscosespinnfasern für die Verwendung in diesem Einsatzgebiet, ebenso können Mischungen aus Baumwolle und Viscosespinnfasern eingesetzt werden.
  • Auch der Einsatz von Synthesefasern wie Polyester-, Polyamid- oder Polyacrylnitrilfasern ist möglich. Hier wird jedoch bevorzugt, im Interesse eines guten Tragekomforts, mit Mischungen aus Synthesefasern und Baumwolle oder Viscosespinnfasern zu arbeiten. Eine bekannte und in anderen Artikeln sehr häufig eingesetzte Mischung ist z.B. die Kombination von 50% Baumwolle und 50% Polyesterspinnfasern.
  • Schließlich kann auch Wolle, alleine oder in Mischung mit Viscose- oder Synthesespinnfasern, Verwendung finden.
  • Zur Bildung der Mantelsubstanz wird die hierfür zu verwendende Faser in Form eines Streckenbandes mit einem Bandgewicht von 2-3 g/m der Spinnapparatur vorgelegt. Dieses Streckenband wird mit Hilfe der in der Dreizylinderspinnerei üblichen Maschinen hergestellt. Bei Verwendung von Baumwolle ist es zweckmäßig, eine gekämmte Baumwolle einzusetzen. Fasermischungen können mit Hilfe der in der Spinnereitechnik üblichen Mischverfahren hergestellt werden. Zweckmäßig ist die sogenannte Flockemischung, aber auch die Streckenbandmischung ist möglich, wobei im Interesse einer homogenen Verteilung der Mischungspartner mehrere Streckpassagen gefahren werden müssen.
  • Für das Umspinnen nach dem DREF 3 - Verfahren sind besonders Fasern mit 30-60 mm Stapellänge geeignet. Derartige Fasern werden von Chemiefaserherstellern in vielfältiger Form angeboten. Beim Einsatz von Baumwolle ist auch die Verwendung von Fasern mit geringerer Stapellänge problemlos möglich.
  • Kommt für das Bilden des Mantels Wolle zum Einsatz, so erfolgt deren Aufbereitung auf den Maschinen der Dreizylinderspinnerei. Für Bänder aus Wolle, die auf diesem Maschinensortiment hergestellt werden, hat sich die Bezeichnung Woll-Kurzkammzüge eingebürgert. Kommt Wolle in Mischung mit einer Chemiespinnfaser zur Anwendung, so wird die Faserlänge des Mischungspartners in entsprechender Weise gewählt. Für dieses Gebiet haben sich Chemiespinnfasern mit 60 mm Stapellänge gut bewährt.
  • Wenn ein guter Schutz des Kernmaterials gegen die Einwirkung von Licht-Strahlen besonders angestrebt wird, ist es zweckmäßig, den Kern aus aromatischen Polyamidfasern mit einem Doppelmantel zu umspinnen. Besonders gut eignet sich hierfür ein Innenmantel aus Polyesterfasern und ein Außenmantel aus Baumwolle oder Viscosespinnfaser.
  • Diese doppelte Mantelsubstanz wird dadurch erzeugt, daß man zusammen mit dem für den Kern vorgesehenen Aramidgarn ein Streckenband aus beispielsweise Polyesterspinnfasern in das Spinnaggregat einlaufen läßt und den Außenmantel in der beim DREF 3 - Verfahren üblichen Weise mit Baumwolle oder Viscosespinnfaser bildet.
  • In Fig. 1 ist die Herstellung von umsponnenen Garnen mit einem Doppelmantel schematisch dargestellt. Von einer Spule 1 wird ein Aramid-Filamentgarn 2 abgezogen und der Spinnapparatur 6 zugeführt. Ein Streckenband 3, das zum Beispiel aus Polyester-Spinnfasern besteht, wird aus einer nicht dargestellten Kanne abgezogen, auf dem Streckwerk 4 gestreckt und vor den Klemmwalzen 5 mit dem Aramid-Filamentgarn 2 zusammengeführt. Das Garn durchläuft die Spinnapparatur 6, die aus den perforierten Trommeln 7 und 7a besteht. Beide Trommeln enthalten nicht dargestellte Saugeinsätze. Die Fasern des Streckenbandes 3 legen sich hier als Folge des im Zwickelbereich über den Saugtrommeln entstehenden Falschdralls um das Aramid-Filamentgarn 2 und bilden so den inneren Mantel. Aus nicht dargestellten Kannen werden die Streckenbänder 8a-8e, die zum Beispiel aus Baumwolle bestehen, den Öffnerwalzen 9 und 9a zugeführt und zu Einzelfasern aufgelöst. Die Zahl der den Öffnerwalzen zugeführten Bänder kann beliebig variiert werden. Die hier genannten 5 Bänder sind lediglich als Beispiel zu verstehen. Die aufgelösten Fasern werden von den perforierten Trommeln 7 und 7a angesaugt und legen sich hier als äußerer Mantel um das bereits mit den Fasern aus dem Streckenband 3 umsponnene Aramid-Filamentgarn 2. Das die Spinnapparatur verlaßende Garn 10 wird dem Abzugsaggregat 11 zugeführt. Der durch die hier erfolgende Klemmung ausgelöste Falschdrall führt zum Fixieren der Mantelfasern. Umgekehrt bewirken diese Fasern eine Fixierung des auf dem Kerngarn erzeugten Falschdralls. Auf diese Weise entsteht das mit einem Doppelmantel umsponnene Garn 12.
  • Fig. 2 zeigt den Querschnitt des auf der beschriebenen Apparatur entstandenen Garnes 12. Um den Kern 13 aus Aramid-Filamentgarn ist ein innerer Mantel 14, der in diesem Beispiel aus Polyester-Spinnfasern besteht und ein äußerer Mantel 15, in diesem Beispiel aus Baumwolle, gelegt.
  • Die Erfindung ist nicht auf die hier genannten Polyesterspinnfasern für den Innenmantel und auf Baumwolle für den Außenmantel beschränkt. Die Wahl des Fasermaterials für die beiden Mantelschichten wird durch die für das Garn gewünschten Eigenschaften bestimmt. Wird beispielsweise ein guter Licht-Schutz des Kerns aus Aramidgarn angestrebt, so ist es zweckmäßig, Polyesterspinnfasern für den Innenmantel zu verwenden, da diese eine gute Lichtabsorption aufweisen. Besonders geeignet sind Polyesterfasern mit entsprechenden Additiven. Als gut geeignet haben sich auch mattierte Polyesterspinnfasern erwiesen. Diese enthalten üblicherweise Titandioxid, das vor allem im UV-Bereich absorbierend wirkt. In gleicher Weise können aber andere Fasern mit ähnlichen Eigenschaften eingesetzt werden. Für die Wahl der Fasern zum Bilden des äußeren Mantels sind der Tragekomfort sowie das leichte Färben, Bedrucken oder Optischaufhellen die wesentlichen Kriterien. Hier ist der Einsatz von Baumwolle oder Viscosespinnfasern oder deren Mischungen sehr zweckmäßig, aber auch Mischungen von Baumwolle oder Viscosespinnfasern mit Synthesespinnfasern können hier zum Einsatz kommen. Auch bei Verwendung von Viscosespinnfasern werden matte Typen, die eingesponnenes Titandioxid enthalten bevorzugt.
  • Ein besonders guter Schutz des Kerns aus Aramidfasern gegen einen Festigkeitsabbau durch Licht-Einstrahlung wird dann erzielt, wenn die Mantelschicht aus einer in einem dunklen Farbton gefärbten Faser gebildet wird.
  • Die umsponnenen Garne mit einem Kern aus aromatischen Polyamidfasern oder anderen geeigneten Fasern bzw. aus Mischungen dieser Fasern mit Aramidfasern und einem einfachen oder doppelten Mantel aus leicht färb-, bedruck- oder optisch aufhellbaren Fasern werden zu textilen Flächengebilden weiter verarbeitet. Unter textilen Flächengebilden sind Gewebe, Gestricke, Gewirke, Nähwirkstoffe, Fadengelege etc. zu verstehen. Welches Verfahren zur Herstellung textiler Flächengebilde aus umsponnenen Garnen gewählt wird, hängt von einer Reihe verschiedener Gesichtspunkte ab, unter denen die gewünschten Eigenschaften der aus den textilen Flächengebilden herzustellenden Schutzwesten von besonderer Bedeutung sind. So hat es sich beispielsweise als zweckmäßig erwiesen, Maschenwaren wie Gestricke oder Gewirke an Stelle von Geweben vorzusehen, wenn eine besondere Elastizität der aus den textilen Flächengebilden herzustellenden Weste gefordert wird. Fadengelege haben sich wegen der niedrigen Herstellungskosten und der schonenden Verarbeitung von Garnen aus aromatischen Polyamidfasern als besonders günstig erwiesen. Dem letztgenannten Vorteil kann allerdings beim Einsatz von umsponnenen Garnen keine erhöhte Bedeutung beigemessen werden.
  • Bevorzugt wird für viele Einsatzgebiete die Weiterverarbeitung der umsponnenen Garne zu Geweben, wofür alle in der Webereipraxis bekannten Webmaschinen eingesetzt werden können. Als besonders günstig haben sich hierfür Greiferwebmachinen erwiesen. Ebenso wie bei den anderen textilen Flächengebilden ist es auch bei Geweben nicht erforderlich, daß diese vollständig aus Garnen der gleichen Art bestehen. So ist es bei Geweben beispielsweise möglich, daß in einer Fadenrichtung Garne mit einem Baumwolle-Mantel und in der anderen Fadenrichtung Garne mit einem Mantel aus Viscosespinnfasern eingesetzt werden. In gleicher Weise können auch verschiedene andere Garn-Kombinationen Verwendung finden.
  • Die zu wählende Fadenzahl ist einmal vom Titer des eingesetzten Garnes, zum anderen von der Art der herzustellenden Schutzkleidung abhängig. Die Garne kommen in einem Titerbereich von 200 - 4000 dtex zum Einsatz.
  • Bei Geweben, die zu geschoßhemmenden Westen weiterverarbeitet werden sollen, wird zum Beispiel bei einem Garntiter von ca. 850 dtex eine Fadenzahl von 9-12 Fäden/cm gewählt. Bei einem Titer von ca. 1300 dtex beträgt die Fadenzahl 7-10/cm und bei einem Titer von ca. 1700 dtex 6-9/cm. Diese Angaben beziehen sich auf Gewebe, die in Leinwandbindung hergestellt werden.
  • Bei Geweben, die zu Fechtwesten weiterverarbeitet werden sollen, sind höhere Fadenzahlen erforderlich.
  • An die Gewebebindung müssen keine besonderen Anforderungen gestellt werden. Die Leinwandbindung hat sich als zweckmäßig erwiesen, aber auch andere Bindungen, für die als Beispiele die Köper- und die Panamabindung genannt seien, können eingesetzt werden.
  • Bei der Herstellung von Geweben aus aromatischen Polyamidfasern ist ein erheblicher Festigkeitsverlust während des Webvorganges unvermeidbar. Dieser beträgt, selbst bei sehr vorsichtiger und schonender Arbeitsweise, ca. 20 %. Bei unsachgemäßem Arbeiten kann der Festigkeitsverlust bis auf ca. 50% ansteigen. In dieser Hinsicht zeigt sich ein besonderer Vorteil von Geweben aus umsponnenen Garnen. Durch den Einsatz eines umsponnenen Garnes mit einem Kern aus aromatischen Polyamidfasern und einem Mantel aus z.B. Baumwolle, wird der Festigkeitsverlust beim Weben sehr stark reduziert. Dieser liegt üblicherweise unter 5 %. Durch den mittels Umspinnens gebildeten Mantel wird die Kernsubstanz während des Webvorganges geschützt, so daß der Rückgang der Festigkeit in erträglichen Grenzen bleibt.
  • Auch für die anderen textilen Flächengebilde wie Gestricke, Gewirke, Nähwirkstoffe, Fadengelege etc. bestehen bezüglich des Maschinenparks für deren Herstellung keine Einschränkungen. Hier bewirkt die Mantellage des umsponnenen Garnes ebenfalls einen Schutz des Aramidkernes bei der Verarbeitung auf den Textilmaschinen und trägt damit wesentlich zum Erhalt der günstigen Festigkeitseigenschaften des Aramidgarnes bei dessen Weiterverabeitung bei.
  • Die erfindungsgemäßen textilen Flächengebilde können mit den in der Textilveredlung üblichen Verfahren gefärbt, bedruckt oder optisch aufgehellt werden. So ist bei Fechtwesten beispielsweise die Farbe weiß üblich. Hier müssen die für den Mantel eingesetzten Fasern gebleicht und optisch aufgehellt werden. Das Bleichen der Mantelfaser sollte zweckmäßigerweise vor dem Verspinnen in der Flocke erfolgen. Eine Stückbleiche ist zwar ebenfalls möglich, durch die für das Bleichen fast immer eingesetzten Oxidationsmittel muß jedoch eine Schädigung des Aramidkerns bei der Stückbleiche in Kauf genommen werden.
  • Ob ein Bleichen überhaupt nötig ist, hängt von der zur Bildung der Mantelsubstanz herangezogenen Faser ab. Bei Baumwolle und Wolle ist dies im Interesse eines guten Weißgrades notwendig, die bereits mit gutem Weißgrad hergestellten Chemiefasern erfordern den Bleichvorgang in vielen Fällen nicht. Die Produzenten von Chemiefasern bieten auch sogenannte hochweiße Typen an. Diese enthalten eingesponnenen oder in der Nachbehandlung aufgebrachten optischen Aufheller. Bei Einsatz von Chemiefasern oder deren Mischungen ist es zweckmäßig, auf solche Typen zurückzugreifen. Hier zeigt sich bei einem Garn mit einem Doppelmantel ein Vorteil der Viscosespinnfaser gegenüber der Baumwolle beim Einsatz zur Bildung des Außenmantels.
  • Eine Behandlung der erfindungsgemäßen textilen Flächengebilde mit optischen Aufhellern bereitet keine Probleme. Diese Behandlung kann, zum Beispiel nach dem Bleichen der Baumwolle, in der Flocke erfolgen, aber auch ein optisches Aufhellen der Stückware ist möglich. In der Textilveredlungsindustrie sind die hierfür in Frage kommenden Verfahren bekannt. Die Wahl eines geeigneten Produktes und die Behandlungsbedingungen hängen von den für die Mantelsubstanz gewählten Fasern oder Fasermischungen ab.
  • Kleidung für den Splitter-, Geschoß- oder Schnittschutz wird entweder gefärbt oder bedruckt. Letzteres ist vor allem bei militärischem Einsatz üblich. Auch für das Färben und Bedrucken der erfindungsgemäßen textilen Flächengebilde sind die anzuwendenen Verfahren in der Textilveredlungsindustrie gut bekannt. Die Auswahl der Farbstoffe sowie der Behandlungsverfahren hängt von der für den Mantel der umsponnenen Garne eingesetzten Faserart oder Fasermischung sowie von den gewünschten Echtheiten und eventuellen weiteren gewünschten Eigenschaften, wie z.B. Tarnfarben bei Schutzkleidung im militärischen Bereich, ab. Besonders günstig im Hinblick auf den Schutz des Aramid-Kerns gegen eine Schädigung durch Licht-Einstrahlung sind Färbungen in dunklen Farbtönen.
  • Ob das Färben auf die Mantelschicht beschränkt wird oder ob auch ein Färben des Aramid-Kern-Garnes vorgenommen wird, hängt von dem gewünschten Effekt und von der Garnkonstruktion ab. Aramidfasern haben eine gelbe Eigenfarbe. Wenn ein Garn mit einem einfachen Mantel zum Einsatz gelangt, so kann bei manchen Garnkonstruktionen die gelbe Farbe des Kernmaterials etwas durchscheinen. Bei einigen Einsatzgebieten kann dies störend wirken. In solchen Fällen ist es möglich, das Aramid-Kerngarn mit Dispersionsfarbstoffen zu färben. Hierfür eignet sich das Hochtemperaturverfahren, in der Textilveredlungsindustrie unter der Abkürzung HT-Verfahren bekannt, mit Färbetemperaturen bis 135 °C in gleicher Weise wie das Färbeverfahren mit Carriern. Beide Verfahren sind in der Färbereitechnik gut bekannt.
  • Bei der Herstellung von Fechtwesten kommen die erfindungsgemäßen textilen Flächengebilde einlagig oder mehrlagig zur Verarbeitung. Bei einlagiger Verarbeitung zeigt sich ein besonderer Vorteil der erfindungsgemäßen textilen Flächengebilde, da das Vernähen mit einem Ober- und eventuell einem Unterstoff entfallen kann, was sich neben einer einfacheren Disposition bei den an Lager zu haltenden Materialien zusätzlich noch beim Konfektioniervorgang sehr kostengünstig auswirkt. Auch im Tragekomfort zeigen Fechtwesten, die aus den erfindungsgemäßen textilen Flächengebilden hergestellt werden, erhebliche Vorteile gegenüber den bisher üblichen Fechtwesten, was besonders für die einlagige Verarbeitung der erfindungsgemäß hergestellten textilen Flächengebilde gilt. Eine ohne die Mitverwendung eines Ober- oder Unterstoffes angefertigte Fechtweste liegt am Körper des Sportlers gut an und bietet somit eine optimale Bewegungsfreiheit.
  • Während bei den herkömmlichen Fechtwesten zur Einstellung der geforderten Durchstoßkraft, die, um Verletzungen des Sportlers auszuschließen, über 800 N liegen muß, zwei oder drei Lagen von Aramidfasergeweben zum Einsatz kamen, hat sich gezeigt, daß bei Verwendung von erfindungsgemäßen Geweben bereits mit einer einlagigen Fechtweste die geforderten Werte der Durchstoßkraft erreichbar sind. Voraussetzung ist allerdings, daß eine dichte Gewebeeinstellung gewählt wird, daß also ein Gewebe mit einer hohen Fadenzahl in Kette und Schuß zum Einsatz kommt.
  • Die für die Durchstoßkraft in den Ausführungsbeispielen angegebenen Werte wurden nach der von Kleinhansl beschriebenen Methode ermittelt (Kleinhansl, E., Schutzkleidung gegen Stoß- und Stichwaffen - Allgemeines zu den Anforderungen, Prüfung bei Fechtkleidung, textil praxis international, 1992, S. 125 - 130).
  • Schutzwesten für den Geschoß- und Splitterschutz müssen mehrlagig aufgebaut werden. Die herkömmliche Arbeitsweise sieht vor, mehrere Lagen von Geweben aus aromatischen Polyamidfasern miteinander zu vernähen. Dieses Paket aus mehreren dieser Gewebe wird in eine Hülle aus beschichtetem Gewebe, beispielweise aus Baumwolle, eingebracht. Über das so gebildete umhüllte Paket wird ein Ober- und Unterstoff aus gefärbter oder bedruckter Baumwolle gelegt und die Weste so konfektioniert, daß eine Entnahme des Paketes zur Reinigung der Außenhülle möglich ist.
  • Bei Westen für den Geschoß- und Splitterschutz wird für die um die Gewebe aus aromatischen Polyamidfasern gelegte Hülle das erfindungsgemäße textile Flächengebilde eingesetzt. Dieses hat im Vergleich zu den bislang eingesetzten beschichteten Geweben den wesentlichen Vorteil, daß der durch die Beschichtung eintretende Verlust an antiballistischer Wirkung hier nicht stattfindet. Außerdem kann das erfindungsgemäße textile Flächengebilde auch für den Ober- und Unterstoff zum Einsatz kommen. Neben der einfacheren Dispositionsmöglichkeit bei den auf Lager zu haltenden Materialien bietet dies den Vorteil, daß im Vergleich zu dem bisher hierfür eingesetzten Baumwollgewebe mit dem erfindungsgemäßen textilen Flächengebilde eine höhere ballistische Schutzwirkung der Westen und darüberhinaus eine bessere Festigkeit erzielt werden kann.
  • In ähnlicher Weise wird bei Schutzkleidung für den Schnittschutz verfahren. Hier können neben den Gewebelagen aus aromatischen Polyamidfasern noch Lagen aus Metallgeweben in dem eigentlichen Schnittschutzpaket zum Einsatz kommen. Bezüglich der Hülle dieser Pakete und bezüglich der Ober- und Unterstoffe gilt das bei der Schutzkleidung für den Geschoß- und Splitterschutz bereits Gesagte. Auch hier können die eigentlichen Schnittschutzlagen aus den erfindungsgemäßen textilen Flächengebilden bestehen.
  • Die Verwendung der erfindungsgemäßen textilen Flächengebilde für Kleidung für den Stich-, Schnitt-, Geschoß- und Splitterschutz bietet somit im Hinblick auf eine einfachere Disposition bei den hierfür einzusetzenden Materialien erhebliche Vorteile, da die Lagerhaltung der benötigten Artikel deutlich reduziert werden kann. Darüberhinaus gelingt es, durch einen wesentlich geringeren Festigkeitsverlust bei der Herstellung der textilen Flächengebilde und durch den Ersatz von Baumwollgewebe mit geringerer Festigkeit durch die erfindungsgemäßen textilen Flächengebilde deutlich bessere Gebrauchseigenschaften der Schutzkleidung zu erzielen. Außerdem wird der Tragekomfort im Vergleich zur bisher eingesetzten Schutzkleidung erheblich verbessert.
  • Beispiel 1
  • Dieses Beispiel beschreibt die Verwendung der erfindungsgemäßen textilen Flächengebilde für die Herstellung von Fechtwesten.
  • Ein Filament-Garn aus aromatischen Polyamidfasern mit einem Titer von 840 dtex wurde auf einer DREF 3 - Spinnapparatur mit einem Doppelmantel umsponnen. Der innere Mantel wurde durch eine Polyesterfaser mit einem eingesponnenem optischen Aufheller gebildet. Die Polyesterfaser hatte einen Titer von 1.7 dtex und eine Faserlänge von 32 mm. Die Polyesterfaser kam als Streckenband zur Anwendung und wurde gemäß der Beschreibung zu Figur 1 der Spinnanlage zugeführt.
  • Der Außenmantel wurde aus Baumwolle gebildet. Die Baumwolle wurde zuvor in der Flocke mit Natriumchlorit gebleicht und optisch aufgehellt. Außerdem wurde die in der Flocke behandelte Baumwolle mit einer Avivage versehen, um die Bildung eines Streckenbandes und die Verarbeitung auf der DREF 3 - Spinnanlage zu erleichtern. Die hierfür einzusetzenden Produkte sind in der Textilveredlungsindustrie bekannt.
  • Durch die Umspinnung wurde ein Garn erhalten, das aus 40 % aromatischer Polyamidfaser, 30 % Polyesterfaser und 30 % Baumwolle bestand.
  • Das so erhaltene Garn wurde in Köper 1/3-Bindung zu einem Gewebe verarbeitet. Die Fadenzahl in der Kette betrug 13/cm, im Schuß 12/cm. Mit dieser Gewebeeinstellung wurde ein Flächengewicht von 510 g/m² erzielt.
  • Bei der Prüfung der Durchstoßkraft wurde ein Durchschnittswert von 840 N ermittelt.
  • Beispiel 2
  • Beispiel 1 wurde wiederholt, wobei an Stelle von Baumwolle zur Bildung des Außenmantels eine Viscosespinnfaser mit einem Titer von 1.7 dtex und einer Faserlänge von 40 mm zum Einsatz kam. Bei der Viscosespinnfaser handelte es sich um eine hochweiße Type, so daß das in Beispiel 1 beschriebene Bleichen und optischaufhellen in der Flocke nicht erforderlich war.
  • Die Herstellung des Gewebes erfolgte in der gleichen Weise wie in Beispiel 1. Bei der Prüfung der Durchstoßkraft wurde ein Durchschnittswert von 830 N ermittelt.
  • Beispiel 3a
  • Die Beispiele 3a und 3b zeigen den Einfluß der durch die Fadenzahlen in Kette und Schuß eingestellten Gewebedichte bzw. des damit im Zusammenhang stehenden Flächengewichtes auf die Durchstoßkraft von Geweben für Fechtwesten.
  • Aus dem in Beispiel 1 beschriebenen Garn wurde in Leinwandbindung mit einer Fadenzahl von 8/cm in der Kette und 7/cm im Schuß ein Gewebe hergestellt. Das Gewebe zeigte ein Gewicht von 320 g/m². Der Durchschnittswert der Durchstoßkraft lag bei 710 N.
  • Beispiel 3b
  • Aus dem in Beispiel 1 beschriebenen Garn wurde in Kreuzköper 2/2 - Bindung mit einer Fadenzahl von 9/cm in Kette und Schuß ein Gewebe hergestellt. Das Gewebe zeigte ein Gewicht von 380 g/m². Der Durchschnittswert der Durchstoßkraft lag bei 690 N.
  • Beispiel 4
  • Dieses Beispiel beschreibt die Verwendung der erfindungsgemäßen textilen Flächengebilde für die Herstellung von Splitterschutzwesten.
  • Ein Filament-Garn aus aromatischen Polyamidfasern mit einem Titer von 840 dtex wurde auf einer DREF 3 - Spinnapparatur mit einem Doppelmantel umsponnen. Der innere Mantel wurde durch eine Polyesterfaser gebildet. Diese hatte einen Titer von 1.7 dtex und eine Faserlänge von 32 mm. Die Polyesterfaser kam als Streckenband zur Anwendung und wurde gemäß der Beschreibung zu Figur 1 der Spinnanlage zugeführt.
  • Der Außenmantel wurde aus Baumwolle gebildet. Auch die Baumwolle kam als Streckenband zur Anwendung. Sie wurde gemäß der Beschreibung zu Figur 1 der DREF 3 - Spinnanlage zugeführt.
  • Durch die Umspinnung wurde ein Garn erhalten, das aus
    40 % aromatischer Polyamidfaser, 30 % Polyesterfaser und
    30 % Baumwolle bestand.
  • Das so erhaltene Garn wurde in Leinwandbindung zu einem Gewebe verarbeitet. Die Fadenzahl in Kette und Schuß betrug je 7/cm. Die Gewebeherstellung erfolgte auf einer Greiferwebmaschine.
  • Das erhaltene Gewebe wurde dunkelgrün gefärbt. Für den Baumwoll-Außenmantel kamen Küpenfarbstoffe, für den Polyester-Innenmantel Dispersionsfarbstoffe zum Einsatz. Durch Färben bei 135 °C erfolgte durch die verwendeten Dispersionsfarbstoffe auch ein Anfärben des Kerns aus aromatischem Polyamid, dessen Farbtiefe aber deutlich heller ausfiel als die des Polyester-Innenmantels.
  • Die so hergestellten Gewebe wurden zu einer Splitterschutzweste weiterverarbeitet, wobei diese Gewebe für die Außen- und Futterlagen an Stelle von herkömmlichen Baumwollgeweben zur Anwendung kamen. Es wurde eine Weste angefertigt, die aus 14 Lagen von herkömmlichen Aramidgeweben mit einem Gewicht von je 190 g/m² bestand. Eine zusätzliche Außen- bzw. Innenlage bildeten die erfindungsgemäß hergestellten Gewebe mit einem Gewicht von 283 g/m².
  • Diese Weste wurde einem Splitterbeschuß nach den Bedingungen von STANAG 2920 ausgesetzt. Das Beschichten erfolgte mit 1,1 g-Splittern. Hierbei wurde beim Beschuß des trockenen Paketes ein V50-Wert von 476 m/sec erzielt. Dieser Wert bedeutet, daß bei der genannten Geschwindigkeit eine Penetrationswahrscheinlichkeit von 50 % besteht.
  • Beim Beschuß der naßen Weste betrug der entsprechende Wert 456 m/sec. Bei diesem Test wird die Weste vor dem Beschießen eine Stunde in senkrechter Lage in Wasser gelagert und nach einer Abtropfzeit von 3 Minuten der Beschußprüfung unterzogen.
  • Das Vergleichsmaterial bestand aus einer Weste die ebenfalls aus 14 Lagen Aramidgewebe mit einem Gewicht von je 190 g/m² gebildet wurde. Der Ober- und Unterstoff bestand hier aus einem Baumwollgewebe mit einem Gewicht von 272 g/m². Bei dieser Weste betrug der V50-Wert 455 m/sec beim Beschießen in trockenem Zustand und 428 m/sec beim Beschießen in naßem Zustand.
  • Die angegebenen Zahlen zeigen eine deutliche Zunahme der antiballistischen Wirksamkeit bei Verwendung der erfindungsgemäß hergestellten Gewebe.
  • Beispiel 5
  • Das Gewebe aus Beispiel 4 wurde für die Herstellung einer geschoßhemmenden Weste eingesetzt. Hierzu wurden 20 Lagen Aramidgewebe mit einem Gewicht von 280 g/m² eingesetzt. Je zwei zusätzliche Lagen bildete sowohl auf der Außen- als auch auf der Innenseite das erfindungsgemäß hergestellte Gewebe. Diese Lagen dienten einmal als Hülle für die Aufnahme des sogenannten ballistischen Paketes, zum anderen als Ober- und Unterstoff. Diese Weste hatte also insgesamt 24 Lagen: Von außen nach innen bestand die Weste aus folgenden Lagen: 2 Lagen des erfindungsgemäßen Gewebe, 20 Lagen Aramidgewebe, 2 Lagen des erfindungsgemäßen Gewebes.
  • Die Beschußprüfung der versuchsweise hergestellten Weste erfolgte im Vergleich zu einer Weste, die aus 24 Lagen Aramidgewebe mit einem Gewicht von 280 g/m² bestand sowie über dem ballistischen Paket auf der Außen- und Innenseite je eine Lage eines beschichteten Polyestergewebes und als Ober- bzw. Unterstoff ein Baumwollgewebe aufwies. Diese Weste hatte also insgesamt 28 Lagen. Von außen nach innen bestand die Weste aus folgenden Lagen: Oberstoff aus Baumwollgewebe, beschichtetes Polyestergewebe, 24 Lagen Aramidgewebe, beschichtetes Polyestergewebe, Futterstoff aus Baumwollgewebe.
  • Die Beschußprüfung wurde nach dem NIJ-Standard vorgenommen. In beiden Fällen erfolgte kein Durchtritt des für das Beschießen eingesetzten Projektils durch die Schutzweste.
  • Dieser Vergleich zeigt, daß durch Einsatz der erfindungsgemäßen Gewebe leichtere Westen bei gleicher antiballistischer Wirkung hergestellt werden können.

Claims (19)

  1. Textiles Flächengebilde zur Herstellung von Schutzkleidung, insbesondere von Kleidung für den Stich-, Schnitt-, Splitter- und Geschoßschutz, dadurch gekennzeichnet, daß es in allen Fadenrichtungen aus umsponnenen Garnen mit einem Kern aus aromatischen Polyamidfasern und einem einfachen oder doppelten Mantel aus einer leicht färb-, bedruck- oder optisch aufhellbaren Natur- und/oder Chemiefaser besteht.
  2. Textiles Flächengebilde zur Herstellung von Schutzkleidung, insbesondere von Kleidung für den Stich-, Schnitt-, Splitter- und Geschoßschutz, dadurch gekennzeichnet, daß es in allen Fadenrichtungen aus umsponnenen Garnen mit einem Kern aus hochfesten Polyolefinfasern, insbesondere aus nach dem Gel-Spinnverfahren hergestellten Polyethylenfasern oder aus Mischungen dieser Fasern mit aromatischen Polyamidfasern und einem einfachen oder doppelten Mantel aus einer leicht färb-, bedruck- oder optisch aufhellbaren Natur- und/oder Chemiefaser besteht.
  3. Textiles Flächengebilde nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kern des umsponnenen Garnes aus einem Filamentgarn besteht.
  4. Textiles Flächengebilde nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kern des umsponnenen Garnes aus einem Spinnfasergarn besteht.
  5. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-4, dadurch gekennzeichnet, daß der einfache oder doppelte Mantel des umsponnenen Garnes aus Baumwolle, Wolle, Viscosespinnfasern, Polyesterspinnfasern, Polyamidspinnfasern oder Polyacrylnitrilspinnfasern oder aus Mischungen von zwei oder mehr dieser Fasern besteht.
  6. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-5, dadurch gekennzeichnet, daß das umsponnene Garn einen Doppelmantel aus einem inneren und einem äußeren Mantel aufweist und daß die beiden Mantelschichten aus zwei unterschiedlichen Fasern gebildet werden.
  7. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-5, dadurch gekennzeichnet, daß das umsponnene Garn einen Doppelmantel aus einem inneren und einem äußeren Mantel aufweist und daß die beiden Mantelschichten aus der gleichen Faserart gebildet werden.
  8. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-6, dadurch gekennzeichnet, daß das umsponnene Garn einen Kern aus Aramid-Filamentgarnen, einen inneren Mantel aus Polyesterspinnfasern und einen äußeren Mantel aus Baumwolle und/oder Viscosespinnfasern aufweist.
  9. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-8 für die Herstellung von Stichschutzschutzkleidung.
  10. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-8 für die Herstellung von Fechtwesten.
  11. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-8 für die Herstellung von Schnittschutzkleidung.
  12. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-8 für die Herstellung von Splitterschutzkleidung.
  13. Textiles Flächengebilde nach mindestens einem der Ansprüche 1-8 für die Herstellung von geschoßhemmender Kleidung.
  14. Verwendung des textilen Flächengebildes nach mindestens einem der Ansprüche 1-8 für die Herstellung von Kleidung für den Schutz gegen Stich-, Schnitt-, Splitter- oder Geschoßverletzungen.
  15. Fechtweste, hergestellt aus dem textilen Flächengebilde nach mindestens einem der Ansprüche 1-8.
  16. Stichschutzkleidung, hergestellt aus dem textilen Flächengebilde nach mindestens einem der Ansprüche 1-8.
  17. Schnittschutzkleidung, hergestellt aus dem textilen Flächengebilde nach mindestens einem der Ansprüche 1-8.
  18. Splitterschutzkleidung, hergestellt aus dem textilen Flächengebilde nach mindestens einem der Ansprüche 1-8.
  19. Geschoßhemmende Kleidung, hergestellt aus dem textilen Flächengebilde nach mindestens einem der Ansprüche 1-8.
EP19920110000 1991-06-21 1992-06-13 Textile Flächengebilde für Schutzkleidung Expired - Lifetime EP0519359B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4120454 1991-06-21
DE4120454 1991-06-21
DE4216657 1992-05-20
DE4216657 1992-05-20

Publications (2)

Publication Number Publication Date
EP0519359A1 true EP0519359A1 (de) 1992-12-23
EP0519359B1 EP0519359B1 (de) 1996-02-21

Family

ID=25904737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920110000 Expired - Lifetime EP0519359B1 (de) 1991-06-21 1992-06-13 Textile Flächengebilde für Schutzkleidung

Country Status (3)

Country Link
US (1) US5514457A (de)
EP (1) EP0519359B1 (de)
DE (1) DE59205376D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510072A (en) * 1993-06-21 1996-04-23 Shell Oil Company Process for the manufacture of elastic articles from poly(monovinylaromatic/conjugated diene) block copolymers and elastic articles obtainable therewith
WO1996032621A2 (en) * 1995-04-12 1996-10-17 E.I. Du Pont De Nemours And Company Penetration-resistant aramid article
WO1997049849A2 (en) * 1996-06-24 1997-12-31 E.I. Du Pont De Nemours And Company Penetration-resistant aramid article
WO2002018687A2 (en) * 2000-08-30 2002-03-07 Warwick Mills, Inc. Woven fabric constructions having high cover factors and fill yarns with a weight per unit length less than the weight per unit length of warp yarns of the fabric
EP1820889A2 (de) * 2006-02-17 2007-08-22 Cordis Corporation Fasern und Garne zur Herstellung von Transplantationsmaterialien

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423194A1 (de) * 1994-07-01 1996-01-04 Triumph International Ag Verfahren zur Herstellung von Ausformungen in Flächengebilden aus aromatischen Polyamiden
IL114627A (en) * 1994-07-28 1999-03-12 Akzo Nobel Nv Protective clothing against stab and projectile wounds
US5802607A (en) * 1995-10-20 1998-09-08 Triplette; Walter W. Fencing jackets made from electrically conductive threads
US5776838A (en) * 1996-01-29 1998-07-07 Hoechst Celanese Corporation Ballistic fabric
US5694645A (en) * 1996-04-02 1997-12-09 Triplette; Walter W. Fencing garments made from stretchable, electrically conductive fabric
US6693052B2 (en) * 1996-10-15 2004-02-17 Warwick Mills, Inc. Garment including protective fabric
JP3459185B2 (ja) * 1998-12-24 2003-10-20 株式会社東海理化電機製作所 ウエビングの織り構造
US6423393B1 (en) 1999-08-20 2002-07-23 Tietex International, Ltd. Abraded stitchbonded fabric and process for making same
US6589891B1 (en) 1999-11-26 2003-07-08 Rastar Corporation Abrasion resistant conformal beaded-matrix for use in safety garments
WO2002018126A2 (en) * 2000-08-30 2002-03-07 Warwick Mills, Inc. Multi-layer and laminate fabric systems
US6701703B2 (en) 2001-10-23 2004-03-09 Gilbert Patrick High performance yarns and method of manufacture
DE10258014A1 (de) * 2002-12-12 2004-06-24 Texplorer Gmbh Wärmetarnplane
DE10307174B4 (de) * 2003-02-20 2017-05-24 Reifenhäuser GmbH & Co. KG Maschinenfabrik Mehrschicht-Monofilament
GB2426255B (en) * 2005-05-16 2009-09-23 Univ Manchester Operative devices
US7389718B1 (en) 2005-09-23 2008-06-24 Carter Gerald D Ballistic blanket
WO2007070079A1 (en) 2005-12-16 2007-06-21 Southern Mills, Inc. Protective garments that provide thermal protection
US20080153372A1 (en) * 2006-04-20 2008-06-26 Southern Mills Insect-Repellant Fabrics and Methods for Making Them
US7811952B2 (en) * 2006-04-20 2010-10-12 Southern Mills, Inc. Ultraviolet-resistant fabrics and methods for making them
WO2008127463A2 (en) * 2006-12-08 2008-10-23 Southern Mills, Inc. Methods for providing chemical and biological protection in protective garments
DE102006059086A1 (de) * 2006-12-12 2008-06-26 Profas Gmbh & Co. Kg Schnittschutzhandschuhe
US20090255022A1 (en) * 2008-04-14 2009-10-15 Smith Barry L Molded Torso-conforming body armor including method of producing same
US8001999B2 (en) 2008-09-05 2011-08-23 Olive Tree Financial Group, L.L.C. Energy weapon protection fabric
TWI384099B (zh) * 2009-05-04 2013-02-01 Ruentex Ind Ltd 複合多層式紗線結構及其製法
US20110126335A1 (en) 2009-12-01 2011-06-02 Gregory Russell Schultz Staple Fiber Conductive Fabric
US20150284886A1 (en) * 2012-10-17 2015-10-08 Gifu University Reinforcing fiber/resin fiber composite for production of continuous-fiber-reinforced thermoplastic resin composite material and process for manufacturing same
CN106323091A (zh) * 2015-07-10 2017-01-11 山东滨州亚光毛巾有限公司 高强纤维防护间隔织物及其制成的服装
BE1023672B1 (nl) 2016-05-19 2017-06-12 Seyntex N.V. Flexibele, licht-gewicht antiballistische bescherming
EP3474693A4 (de) 2016-06-23 2020-01-15 Southern Mills, Inc. Flammfeste stoffe mit fasern mit energieabsorbierenden und/oder reflektierenden zusätzen
US11421351B2 (en) * 2018-01-04 2022-08-23 Honeywell International Inc. Cut-resistant composite yarn structure
WO2019157309A1 (en) 2018-02-08 2019-08-15 Southern Mills, Inc. Flame resistant fabrics for protection against molten metal splash
EP3674456A1 (de) 2018-12-18 2020-07-01 Honeywell International Inc. Schnittfeste garnstruktur
WO2020198668A1 (en) 2019-03-28 2020-10-01 Southern Mills, Inc. Flame resistant fabrics
PE20240721A1 (es) 2021-08-10 2024-04-15 Southern Mills Inc Tejidos resistentes a la flama

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310201A2 (de) * 1987-10-02 1989-04-05 Dsm N.V. Kombinationen von Filamenten oder Garnen mit niedrigem Reibungskoeffizienten und von Filamenten oder Garnen mit hohem Reibungskoeffizienten
FR2628759A1 (fr) * 1988-03-15 1989-09-22 Thuasne & Cie Fil comportant une ame monofilament, et tissu elastique comportant une trame en ce fil
US5087499A (en) * 1990-05-09 1992-02-11 Sullivan Thomas M Puncture-resistant and medicinal treatment garments and method of manufacture thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1292055A (en) * 1969-03-11 1972-10-11 Courtaulds Ltd Novelty textile yarns
US3983282A (en) * 1972-05-15 1976-09-28 Seemann Iii William H Fabric constructions useful as building bases in forming compound-curved structures
US4559262A (en) * 1981-01-21 1985-12-17 Imperial Chemical Industries, Plc Fibre reinforced compositions and methods for producing such compositions
US4479984A (en) * 1982-12-27 1984-10-30 At&T Bell Laboratories Radiation curable multifilament composite
FR2599762B1 (fr) * 1986-06-04 1988-12-02 Gosse Filature Fil textile resistant au feu et utilisation de ce fil
US5119512A (en) * 1986-06-12 1992-06-09 Allied-Signal Inc. Cut resistant yarn, fabric and gloves
NL8603023A (nl) * 1986-11-27 1988-06-16 Wisselink S Textielfabrieken B Hittesterk garen en daaruit te vervaardigen produkt.
US4861621A (en) * 1987-04-27 1989-08-29 Toyo Boseki Kabushiki Kaisha Pultrusion with cure by ultraviolet radiation
FR2616122B1 (fr) * 1987-06-04 1990-11-30 Aerospatiale Bras de liaison torsible et flexible avec amortissement de flexion integre, en particulier pour la liaison d'une pale de rotor a son moyeu, et rotor et moyeu equipes de tels bras
DE3820091A1 (de) * 1988-06-13 1989-12-14 Nukleare Sicherheits Prod Verwendung eines garns fuer schutzkleidungsstuecke
US5050406A (en) * 1988-11-15 1991-09-24 Miller Harness Company, Inc. Fabric for recreational clothing
US5119644A (en) * 1988-11-15 1992-06-09 Miller Harness Company, Inc. Fabric for recreational clothing
US4958485A (en) * 1988-12-22 1990-09-25 Springs Industries, Inc. Corespun yarn for fire resistant safety apparel
US4921756A (en) * 1989-03-03 1990-05-01 Springs Industries, Inc. Fire resistant balanced fine corespun yarn and fabric formed thereof
US4927698A (en) * 1989-03-15 1990-05-22 Springs Industries, Inc. Pucker and shrink resistant flame retardant fabric formed of corespun yarns
DE3929376C1 (de) * 1989-09-05 1991-04-18 E.I. Du Pont De Nemours And Co., Wilmington, Del., Us
US5233821A (en) * 1991-02-25 1993-08-10 The Dow Chemical Company Protective garment containing polybenzazole

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310201A2 (de) * 1987-10-02 1989-04-05 Dsm N.V. Kombinationen von Filamenten oder Garnen mit niedrigem Reibungskoeffizienten und von Filamenten oder Garnen mit hohem Reibungskoeffizienten
FR2628759A1 (fr) * 1988-03-15 1989-09-22 Thuasne & Cie Fil comportant une ame monofilament, et tissu elastique comportant une trame en ce fil
US5087499A (en) * 1990-05-09 1992-02-11 Sullivan Thomas M Puncture-resistant and medicinal treatment garments and method of manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MELLIAND TEXTILBERICHTE Bd. 64, Nr. 9, 1983, HEIDELBERG DE Seiten 618 - 622 D. HELMUT FUCHS 'Herstellung von Multikomponentengarnen mit dem Friktionsspinnverfahren' *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510072A (en) * 1993-06-21 1996-04-23 Shell Oil Company Process for the manufacture of elastic articles from poly(monovinylaromatic/conjugated diene) block copolymers and elastic articles obtainable therewith
WO1996032621A2 (en) * 1995-04-12 1996-10-17 E.I. Du Pont De Nemours And Company Penetration-resistant aramid article
WO1996032621A3 (en) * 1995-04-12 1996-11-21 Du Pont Penetration-resistant aramid article
CN1046769C (zh) * 1995-04-12 1999-11-24 纳幕尔杜邦公司 抗穿透的芳族聚酰胺制品
WO1997049849A2 (en) * 1996-06-24 1997-12-31 E.I. Du Pont De Nemours And Company Penetration-resistant aramid article
WO1997049849A3 (en) * 1996-06-24 1998-02-05 Du Pont Penetration-resistant aramid article
CN1063240C (zh) * 1996-06-24 2001-03-14 纳幕尔杜邦公司 抗穿透性芳族聚酰胺制品
WO2002018687A2 (en) * 2000-08-30 2002-03-07 Warwick Mills, Inc. Woven fabric constructions having high cover factors and fill yarns with a weight per unit length less than the weight per unit length of warp yarns of the fabric
WO2002018687A3 (en) * 2000-08-30 2004-08-19 Warwick Mills Inc Woven fabric constructions having high cover factors and fill yarns with a weight per unit length less than the weight per unit length of warp yarns of the fabric
EP1820889A2 (de) * 2006-02-17 2007-08-22 Cordis Corporation Fasern und Garne zur Herstellung von Transplantationsmaterialien
EP1820889A3 (de) * 2006-02-17 2007-08-29 Cordis Corporation Fasern und Garne zur Herstellung von Transplantationsmaterialien

Also Published As

Publication number Publication date
DE59205376D1 (de) 1996-03-28
US5514457A (en) 1996-05-07
EP0519359B1 (de) 1996-02-21

Similar Documents

Publication Publication Date Title
EP0519359B1 (de) Textile Flächengebilde für Schutzkleidung
DE602004009455T2 (de) Leichte schutzbekleidung
DE602004007816T2 (de) Textil auf der basis einer mischung von abreibfesten technischen fasern
DE2555741C2 (de) Wildlederartiges Textilprodukt
DE60307435T2 (de) Stichgeschütztes und antiballistisches material und verfahren zu dessen herstellung
CH574768A (de)
DE2232281A1 (de) Vorrichtung zum erzeugen eines zusammengesetzten garns
EP0411656A1 (de) Vollsynthetische heissiegelfähige Hemdeinlage
DE3915945A1 (de) Potentiell voluminoese vereinigte polyesterfadenbuendel fuer web- und wirkwaren, verfahren zur deren herstellung und verfahren zur herstellung von polyestergewebe
DE3035862C2 (de) Filamentgarne aus Mehrkomponentenfasern und deren Einsatz in textilen Flächengebilden
DE4241973A1 (de) Textile Flächenbebilde für Antivandalismus-Sitzbezüge
EP0477525B1 (de) Temporär unelastische Kombinations-Stickgarne, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0419527B1 (de) Garn und verfahren zu dessen herstellung sowie verwendung desselben
EP0820576B1 (de) Antiballistischer schutzhelm
DE3205188A1 (de) Falschdrahttextuiertes garn und verfahren zu seiner herstellung
DE3820091A1 (de) Verwendung eines garns fuer schutzkleidungsstuecke
DE19720107C2 (de) Segel und Segeltuch, das ein gewebtes Tuch aus natürlichen Fasern simuliert
CH503817A (de) Verfahren zur Herstellung eines in Schussrichtung elastischen Gewebes
DE2023527B2 (de) Fasern und faeden aus mit 2,2dimethylpropandiol-1,3 modifiziertem polyaethylenterephthalat
WO2000047804A1 (de) Verfahren und vorrichtung sowie verwendung der vorrichtung zur herstellung eines mischgarnes bzw. kombinierten garnes
DE1075028B (de) trf Fran cesco Malaguzzi, Mailand (Italien) j Mischgarn
DE1635121A1 (de) Verfahren zum Herstellen von Hochbauschgarnen
AT275709B (de) Verfahren zur Herstellung von Textilstoffen
DE19756106A1 (de) Verfahren zur Herstellung eines Gewebes und nach diesem hergestelltes Gewebe
CH439157A (de) Textilware

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19930323

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AKZO NOBEL N.V.

17Q First examination report despatched

Effective date: 19940511

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960221

Ref country code: FR

Effective date: 19960221

Ref country code: GB

Effective date: 19960221

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960221

Ref country code: BE

Effective date: 19960221

REF Corresponds to:

Ref document number: 59205376

Country of ref document: DE

Date of ref document: 19960328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960630

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050629

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103