EP0490893A1 - Verfahren zum trennen von sich überlagernden elementen aus metallelektrolytlösungen von edelmetallen - Google Patents

Verfahren zum trennen von sich überlagernden elementen aus metallelektrolytlösungen von edelmetallen

Info

Publication number
EP0490893A1
EP0490893A1 EP89912423A EP89912423A EP0490893A1 EP 0490893 A1 EP0490893 A1 EP 0490893A1 EP 89912423 A EP89912423 A EP 89912423A EP 89912423 A EP89912423 A EP 89912423A EP 0490893 A1 EP0490893 A1 EP 0490893A1
Authority
EP
European Patent Office
Prior art keywords
water
arsenic
iron
extraction
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP89912423A
Other languages
English (en)
French (fr)
Inventor
Ralf Kehl
Werner Schwab
Robert Brantley Sudderth
Gary Alan Kordosky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0490893A1 publication Critical patent/EP0490893A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/003Preparations involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • C01G28/001Preparation involving a solvent-solvent extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/001Preparation involving a solvent-solvent extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0009Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/28Amines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • C22B3/322Oxalic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/386Polyphosphoric oxyacids, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to an improved method for the separation of interfering elements, selected from arsenic, antimony, bismuth and / or iron, from valuable metal electrolyte solutions by extraction from the liquid phase and subsequent extraction of the interfering elements for recycling.
  • valuable metals are understood to mean those metallic elements which are obtained from their natural sources, in particular from their ores, by industrial processes and are used in metallic form, optionally in alloy with other metals Find.
  • hydrometallurgical processes also play an important role in the extraction of valuable metals.
  • the metals or metal salts contained in the ores are digested or leached with aqueous systems and the valuable metal is obtained from such metal salt solutions by electrolysis.
  • the efficiency of the electrolysis of such aqueous solutions is severely impaired by the fact that most valuable metals in ores are "associated" with other metals.
  • the electrolyte solutions for the recovery of valuable metal therefore almost always contain more or less large amounts of interfering elements which impair the electrolytic recovery of the valuable metal or are deposited together with the valuable metal as disruptive impurities.
  • To the purity of the electroly To increase valuable metals deposited on the table, it is therefore desirable to remove as many interfering elements as possible from valuable metal electrolyte solutions.
  • the metals copper, zinc, cobalt or nickel can be obtained electrolytically.
  • aqueous solutions from the leaching of ores containing these metals usually contain more or less large amounts of interfering elements. Satisfactory processes for the separation and, if necessary, also recovery of such interference elements are sought not only because the quality and quantity of the deposited valuable metals can be improved, but also because the extraction and recycling of the interference elements is economically and ecologically sensible.
  • the extraction of high-purity copper by pyrometallurgical refining is characterized, for example, by two separate process steps.
  • the melting metallurgical refining relatively impure raw copper originating from the smelting of copper ores is separated from the melt ("anode furnace"). Copper "(up to 99.99% Cu) is deposited on the cathode.
  • the cathode blocks made of high-purity copper can then be further processed by plastic deformation (rolling, drawing, pressing, etc.).
  • DE-OS 26 03 874 describes a process for removing arsenic from the copper refining electrolytes in which the aqueous electrolyte solution is brought into contact with an organic phase containing tributyl phosphate and the arsenic contained in the solution is thereby extracted into the organic phase .
  • an organic solution containing tributyl phosphate in admixture with quaternary ammonium compounds is also used as the extractant.
  • Tributyl phosphate and organic esters of phosphonic acid, phosphonous acid, phosphinic acid and phosphinous acid are used in processes according to DE-OS 26 14 341 and 26 15 638 together with organic solvents as extractants in order to separate arsenic or antimony from copper electrolyte solutions.
  • Arsenic is also separated from copper refining electrolytes in a process according to EP-A-0 106 118 using organophosphorus compounds, for example trioctylphosphine oxide (TOPO), in organic solvents such as kerosene.
  • TOPO trioctylphosphine oxide
  • DE-OS 34 23 713 discloses a further process for removing arsenic from sulfuric copper electrolytes, in which aliphatic alcohols having 6 to 13 carbon atoms, preferably 2-ethyl-1-hexanol, are used in the organic phase as extractants become. Most, if not all, of the arsenic can be removed from the electrolyte solution over six extraction cycles.
  • organophosphorus extractants in particular TBP
  • TBP organophosphorus extractants
  • a so-called modifier usually iscdecanol, must be added to the extractant in all of the processes mentioned to improve the separation of the organic from the inorganic phase, which, under certain circumstances, can still accelerate the decomposition of the extractant.
  • German patent application P 37 25 611.4 This relates to a process for the joint separation of arsenic, antimony, bismuth and iron side by side from valuable metal electrolyte solutions by means of solvent extraction and subsequent recovery of the said interfering elements, which is characterized in that aqueous, mineral acidic valuable metal electrolyte solutions with a slightly water-soluble added organic solvent, which contains one or more hydroxamic acid (s), mixes the two phases intensively, the interfering elements arsenic, antimony and bismuth precipitate out of the organic phase by sulfide precipitation, the sulfides are separated off and the iron still remaining in the organ phase is subsequently removed with a water-soluble complexing agent for iron re-extracted into an aqueous phase and recovered.
  • aqueous, mineral acidic valuable metal electrolyte solutions with a slightly water-soluble added organic solvent, which contains one or more hydroxamic acid (s) mixes the two phases intensively, the interfering elements arsenic, antimony and
  • the interference elements are re-extracted by sulfide precipitation from the loaded organophase, the interference metals being obtained as sulfide filter cakes.
  • This filter cake usually consists of the components arsenic sulfide, antimony sulfide and bismuth sulfide As is known, it must first be laboriously separated and worked up for further economic use.
  • the object of the present invention is, in view of the described prior art, to provide a method for the removal of interfering elements from valuable metal electrolyte solutions and the subsequent extraction of these interfering elements for further use, which involves the separation of the four interfering elements arsenic (As), antimony (Sb ), Bismuth (Bi) and / or iron (Fe), but in particular enables the main constituent arsenic to be separated off, using smaller amounts of the precipitant hydrogen sulfide.
  • the process measures according to the invention can be used to selectively separate out some of the interfering element ions, and in the case of the arsenic ion even selectively generate As (III) ions or As (V) ions.
  • this selective interference element separation allows the interference element ions to precipitate out in an easily processable form.
  • R can represent alkyl, cycloalkyl or aryl radicals having 7 to 44 carbon atoms, preferably so-called “neo-alkyl radicals” which contain a quaternary carbon atom adjacent to the carbonyl group.
  • "J. Chem. Research” (S) 1982, 90 ff also describes the solvent extraction of transition metals with so-called versato-hydroxamic acids of the general formula (B), in which the radicals R are branched and contain 10 to 15 carbon atoms Are alkyl residues.
  • the invention relates to a process for the separation of elements selected from arsenic, antimony, bismuth and / or iron, from valuable metal electrolyte solutions by means of solvent extraction and subsequent recovery of said interfering elements, in which aqueous, mineral acid, valuable metal electrolyte solutions with a sparingly water-soluble one or more hydroxamic acids of the general formula (I)
  • R represents a straight-chain or branched, saturated or unsaturated alkyl radical having 6 to 22 carbon atoms, cycloalkyl radical or aryl radical having up to 19 carbon atoms, and containing organic solvents,
  • a sulfidating agent is added to the organic phase
  • organophase is worked up and / or re-sharpened and recycled in a manner known per se
  • the interfering metal re-extracted into the water phase may be reductive in a manner known per se and worked up as a by-product.
  • the method according to the invention falls under the generic term of the so-called "solvent extractions”. This usually means processes in which two liquid, more or less immiscible or mutually insoluble phases are brought into intimate contact with one another and a transition of one or more components from one phase to the other takes place, usually an equilibrium depending on various external parameters is established. Such parameters are described below for the individual process steps.
  • Interfering elements in the description and also in the patent claims are understood to mean the elements arsenic, antimony, bismuth and iron, which - depending on the raw materials used and the smelting methods used - are more or less large, but in any case disturbing Concentrations in the electrolyte solutions which can be freed from the elements mentioned according to the invention, in particular in the electrolyte solutions of copper refining electrolysis. This can be one or more of the elements mentioned in different oxidation states.
  • the interfering element arsenic can be present in the oxidation stage (III) or the oxidation stage (V) in such aqueous solutions.
  • the above-mentioned interfering elements are preferably separated from aqueous solutions which originate from processes of copper refining electrolysis in which the element arsenic is generally the main constituent of this interfering element mixture.
  • the method according to the invention is not limited to the separation of the interfering elements from such solutions. It is also possible to separate one or more of the above-mentioned interfering elements or all four from aqueous solutions containing copper, zinc, nickel or other valuable metals which originate from other sources or are obtained in other processes.
  • the first step of the process according to the invention consists in adding aqueous, mineral acid, valuable metal electrolyte solutions to add a slightly water-soluble organic solvent or extracting agent which contains one or more hydroxamic acids of the general formula (I),
  • R represents a straight-chain or branched, saturated or unsaturated alkyl radical having 6 to 22 carbon atoms or a cycloalkyl radical or aryl radical having up to 19 carbon atoms.
  • inert organic solvents which are poorly miscible or soluble in water are, for example the following compounds in question: aliphatic, cycloaliphatic or aromatic hydrocarbons or their mixtures with a high boiling point, chlorinated hydrocarbons, ketones or ethers with a high boiling point or also mixtures of such compounds.
  • hydrophobic character of the organic solvents also largely determines the nature of the extractant contained in this solvent or extractant.
  • a hyroxamic acid of the general formula (I) or a mixture of several such hyroxamic acids of the general formula (I) functions as such.
  • the radical R in the abovementioned general formula can be straight-chain alkyl radicals from the group consisting of hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, uneicosyl or docosyl .
  • R in the abovementioned general formula (I) to represent the branched chain isomers of the straight-chain alkyl radicals mentioned.
  • saturated alkyl radicals there can also be unsaturated alkyl radicals, which can also be straight-chain or branched.
  • Hydroxamic acids of the general formula (I) are preferably used as extractants, in which R represents branched, saturated alkyl radicals having 6 to 22 carbon atoms, preferably branched, saturated alkyl radicals having 7 to 19 carbon atoms.
  • hydroxamic acid (s) used as extractant (s) must dissolve as well as possible in the organic solvent and that it has the required stability in this solvent, one or more hydroxamic acids are particularly advantageous of the general formula (I) used, in which R represents neo-alkyl radicals of the general formula (II)
  • radicals R 1 , R 2 and R 3 in which the sum of the C atoms of the radicals R 1 , R 2 and R 3 is in the range from 6 to 18.
  • R 1 , R 2 and R 3 can be the numerous different isomeric residues from the group neo-heptyl, neo-octyl, neo-nonyl, neo-decyl, neo-undecyl, neo-dodecyl, neo-tridecyl, neo-tetradecyl, neo-pentadecyl, neo-hexadecyl, neo-heptadecyl, neo-octadecyl and neo-nonadecyl.
  • the individual meanings of the radicals R 1 , R 2 and R 3 are of secondary importance in this context
  • the hydroxamic acids of the general formula (I) which can be used in the process according to the invention can be prepared by processes which are generally known from the prior art.
  • the corresponding Carboxylic acid is converted into the corresponding acid chloride by reaction with an excess of SOCl 2 and then reacted with hydroxylamine to give the hydroxamic acid of the general formula (I).
  • it is also possible cf. J. Chem. Research (S) 1982, 90) to react the carboxylic acid and subsequently react it with hydroxylamine to give the corresponding hydroxamic acid of the general formula (I).
  • other methods known from the prior art for producing such compounds (I) can also be used.
  • Such hydroxamic acids (I) are prepared by the processes mentioned above from the products available from Shell Chemical Corporation under the trade name Versatic acid R. In one case they contain a neo-alkyl radical of the general formula (II) in the molecule of the general formula (I) at the position denoted by R, in which the sum of the C atoms of the radicals R 1 , R 2 and R 3 is 8 , and in the other case those compounds (I) in which the radical R represents neo-alkyl radicals of the general formula (II) in which the sum of the C atoms of the radicals R 1 , R 2 and R 3 is in the range from 7 to 17. Products of this type represent a technical mixture of hydroxamic acids of different chain lengths.
  • hydroxamic acids are extremely stable in the pH ranges customary in such valuable metal electrolyte solutions and do not extract any free mineral acid either at room temperature or in the elevated temperature range, in particular no sulfuric acid from copper electrolyte solutions.
  • organic phases containing hydroxamic acids have a viscosity in such a range that an optimal phase separation is ensured after the mixing process discussed below. Problems in separating the organic from the aqueous phase are avoided in this way.
  • the second step of the process according to the invention consists in intensively mixing the aqueous and the organic phase with one another over a sufficient contact time.
  • the contacting time of the two phases is one of the parameters on which the extracted amount of interfering elements, in particular the extracted amount of arsenic, depends.
  • the majority of the interfering elements antimony, bismuth and iron are extracted.
  • the relative amount of arsenic taken up in the organic phase is significantly lower.
  • the aqueous and the organic phase are preferably mixed intensively with one another over a period of 1 to 60 min, particularly preferably over a period of 10 to 20 min. During this time, a large part of the arsenic contained in the copper electrolyte solutions has also passed into the organic phase.
  • Another important parameter for the extracted amount of interfering elements lies in the concentration of hydroxamic acids of the general formula (I) or their mixtures.
  • the amount of extractant in the organic phase is limited by the fact that at high concentrations of the hydroxamic acids (I) in the organic phase the viscosity increases so much during loading with the interfering elements that, in a continuous procedure, efficient mixing of the two phases no longer occurs can be guaranteed.
  • the separation of the organic from the aqueous phase becomes significantly more difficult with increasing viscosity.
  • organic solvents such as kerosene or mixtures thereof in the process according to the invention which contain one or more hydroxamic acids of the general formula (I) in a concentration of 0.1 to 2.0 mol / l organic phase, preferably in a concentration of 0.5 to 1.0 mol / l organic phase.
  • the temperature at which the two phases are brought into contact with one another is usually in the range from 20 to 70 ° C., preferably in the range from 30 to 60 ° C. Electrolyte solutions drawn off from the process have temperatures in the range of 50 to 70 ° C due to the process. With a continuous procedure, separate heating of the mixtures in the mixer is no longer necessary. At a tem temperature in the range mentioned, both phases are mixed intensively. This can be done, for example, by feeding them to a so-called "mixer-settler" in a continuous process, mixing them together at the specified temperature for the specified time and allowing the phases in the settler to be separated.
  • the organic phase which contains one or more hydroxamic acids of the general formula (I) and the extracted interfering elements arsenic, antimony, bismuth and iron, is drawn off from the aqueous phase.
  • the organic, interfering element-laden phase is re-extracted with water over a sufficient contacting time. Even if this process step is carried out once, the arsenic interfering element is re-extracted into the water phase.
  • the process parameters depend on the type (oxidation level) and amount of arsenic present in the organophase. For example, As (III) ions are re-extracted into the water phase comparatively faster than As (V) ions. This is explained in the following by examples.
  • the contacting time influences the distribution of the interfering metals between the organic and the aqueous phase.
  • the time in the present invention has a time of 1 to 20 minutes, preferably 10 to
  • the temperature at which the two phases should be kept in contact with one another is usually in the range from 20 to 80 ° C., preferably 50 to 70 ° C.
  • the volume ratio of organic phase to added water phase should, if possible, be set so that the organic phase contacts with such an amount of water becomes that a phase separation after the re-extraction is still possible in principle in order to obtain an aqueous phase with the highest possible interfering metal content, which can be worked up without concentrating the water phase.
  • a metal ion mixture is obtained during the re-extraction in the aqueous phase, which contains, in addition to the main component arsenic, a minor component antimony.
  • the interfering metal re-extracted into the water phase is optionally reductively precipitated and worked up as a by-product.
  • a reducing agent for example sulfur dioxide or sulfur Hydrogen.
  • the pure precipitate of arsenic trioxide or arsenic trisulfide obtained in this way can be processed further in a manner known per se.
  • arsenic and antimony are of particular interest for certain technical applications, for example for the electronics industry.
  • the sixth step of the process according to the invention is to add a sulfidating agent to the organic phase.
  • This process step is in the inventive method of importance insofar as the extraction takes place of the impurity elements from valuable-metal electrolyte solutions at very high concentrations of mineral acid (eg 150 to 250 g H 2 SO 4/1).
  • An increase in the acid concentration that is usually possible for the re-extraction of interfering elements is practically ruled out for the separation of the interfering elements from such acidic solutions.
  • re-extraction of the interfering elements by treatment of the organic phase with alkaline solutions cannot take place, since the hydroxamic acids of the general formula (I), especially in the more alkaline range, are not sufficiently stable.
  • the sulfide precipitation of the interfering elements which can be carried out directly on the loaded organic phase in accordance with the method according to the invention circumvents in a simple and surprising manner the need for re-extraction of the interfering elements from the organic phase by treatment with strongly acidic or strongly alkaline aqueous readings.
  • Suitable sulfidating agents in the process according to the invention are hydrogen sulfide (H 2 S) gas and / or anhydrous Sodium sulfide or sodium hydrogen sulfide. Hydrogen sulfide is preferably used. This is particularly well suited for the precipitation step, since it performs two functions simultaneously: on the one hand, H 2 S acts as a reagent for the precipitation of arsenic, antimony and bismuth from the organic phase, and on the other hand it regenerates (due to its "acid” Properties) the extraction reagent (the hydroxamic acid (s)) of the general formula (I).
  • H 2 S acts as a reagent for the precipitation of arsenic, antimony and bismuth from the organic phase, and on the other hand it regenerates (due to its "acid” Properties) the extraction reagent (the hydroxamic acid (s)) of the general formula (I).
  • the important control process parameters are the hydrogen sulfide pressure, the temperature during the precipitation process and the reaction time.
  • the parameters mentioned can be varied over a wide range.
  • To precipitate the sulfides of the interfering elements the addition of a stoichiometric or slightly above-stoichiometric amount of gaseous hydrogen sulfide is sufficient. This is brought about by introducing H 2 S in the amount pre-calculated on the basis of the amounts of the interfering elements in the electrolyte and by applying an inert gas, for example N 2 , to the reaction system.
  • an inert gas for example N 2
  • the HS pressure in the course of the precipitation process is also possible to set to a value from 0.1 to 50 bar, preferably to a value in the range from 0.5 to 1 bar.
  • a H 2 S overpressure favors the precipitation of the arsenic sulfides in particular.
  • the precipitation reaction can be carried out in a suitable glass vessel; the use of complex metal autoclaves is therefore not necessary.
  • the use of an autoclave is generally required.
  • the use of highly corrosion-resistant and therefore expensive autoclave materials eg Hasteloy steels
  • autoclaves made from conventional steels for example V4A steels
  • the completeness of the precipitation is also influenced by a further process parameter, namely the temperature.
  • the temperature which are preferably in the range between 40 and 90 ° C., particularly preferably between 60 and 80 ° C., the sulfides of the interfering elements arsenic, antimony and bismuth are completely precipitated in the organic phase.
  • the third process parameter, the reaction time is also important for the completeness of the precipitation and corresponds essentially to the residence time of the organic phase in the reaction vessel during the introduction of H 2 S.
  • the reaction time must be set depending on the other parameters mentioned and is in preferred embodiments of the method according to the invention at 1 to
  • the mutually influencing parameters of the sulfidation reaction can be coordinated by a few simple experiments.
  • a reaction at 0.5 bar H 2 S pressure, a reaction time of 15 min and a temperature of the loaded organophase when the hydrogen sulfide was introduced at 80 ° C. have proven particularly useful.
  • the interfering elements antimony and bismuth are precipitated 100% and arsenic to a large extent (80% and higher).
  • a complete increase in pressure beyond this particularly preferred range or a correspondingly longer reaction time may be required for complete arsenic precipitation.
  • the disruptive elements arsenic, antimony and bismuth are precipitated as sulfides and, after precipitation has ended, can be carried out in ways known per se are separated from the organophase in the seventh process step. This is usually done by filtering or centrifuging the organophase through a filter of a suitable size. However, it is also possible to allow the sulfide precipitates of arsenic, antimony and bismuth to settle in the reaction medium and to decant the supernatant organophase. Which method of separation is chosen depends on the consistency of the sulfide precipitates formed and on further process parameters and has no critical influence on the completeness of the recovery of the interfering elements.
  • the filter cake with an acid, preferably a mineral acid, such as sulfuric acid, after filtering off the precipitated sulfides and before washing with an organic solvent as described above.
  • the organophase obtained after the sulfide precipitation is preferably flushed exhaustively with an inert gas by blowing out. This will remove dissolved or excess residues completely expelled from H 2 S.
  • the treatment can also be carried out by contacting the filter cake with the mineral acid in a separate closed vessel with intensive mixing. This washing step can be carried out continuously, the mineral acid used then being circulated and made available for the cleaning step of subsequent batches.
  • the iron transferred from the valuable metal electrolyte solution into the organophase by one or more hydroxamic acids (I) is not precipitated under the conditions defined in more detail above.
  • a re-extraction of the iron by treating the organophase with basic aqueous solutions is not possible due to the low stability of the extractants (hydroxamic acids) without losing a large part.
  • the organophase after the removal of the other interfering elements as sulfides and a removal of excess hydrogen sulfide with a water-soluble complexing agent for iron directly or with an aqueous solution of one such complexing agent.
  • Preferred water-soluble complexing agents for iron are compounds from the group consisting of hydrogen chloride, oxalic acid or P-organic acids, in particular hydroxyethane diphosphonic acid (HEDP), that is to say those complexing agents which are known to have a high affinity for iron. Of these, oxalic acid or hydrogen chloride are particularly preferred.
  • the separation of iron as an inorganic chloro complex or oxalate or phosphonate is, like the other steps, from the concentration of the complexing agent in the organophase or with the addition of aqueous solutions of the complexing agent - in the aqueous phase, the treatment time of the organophase with the complexing agent or its aqueous solution and the reaction temperature;
  • the process parameters mentioned are also interdependent. It has been shown in practice that the concentration of water-soluble complexing agent for iron in the organophase or the aqueous phase is advantageously at values of 0.1 to 2 mol of the complexing agent per liter, preferably at a concentration of 0.5 to 1 mol of the complexing agent per liter.
  • contact times of 1 to 20 minutes, preferably more than 5 to 15 minutes, are required at such complexing agent concentrations. These treatment times apply to the execution of the complexing step at room temperature and can be reduced accordingly if the temperature is raised. It is particularly preferred to treat the organophase with 1 mol of oxalic acid or HEDP per liter of organophase or aqueous phase over a contact time of 15 min in a mixer-settler.
  • the iron content can be reduced to 0.07 g / l, ie by almost a power of ten, from the organophase which had passed the sulfide precipitation stage and which then still contained 0.6 g of iron / l.
  • the iron complex formed in the manner described above is re-extracted with water from the organophase in a ninth process step in a manner known per se.
  • the organophase is brought into intimate contact with a sufficient amount of water, and due to the good water solubility of the iron complex, a complete transition into the aqueous one Phase is observed.
  • aqueous complexing agent solutions are added, after intimate mixing with and subsequent separation from the organophase, they contain almost all of the iron extracted from the electrolysis solutions. If desired, the iron can be recovered from this aqueous phase by methods known per se.
  • the iron contained in the organophase is completely converted into an inorganic chloro complex.
  • the organophase In order to enable the organic phase and the hydroxamic acids contained therein to be recycled and thus made available for a new extraction cycle, the organophase must be largely, if not completely, freed from hydrogen chloride or free chloride ions.
  • the organophase is extracted again with a secondary amine as the liquid ion exchanger, for example with the ion exchanger available under the trade name "Amberlite R LA2". The iron extracted in this way can then be re-extracted with water.
  • the organophase is then washed free of chloride with water in order to make it and the hydroxamic acids contained therein usable for reuse in the extraction cycle.
  • One to two stages of washing with water bring the chloride content in the organophase down to less than 50 ppm, and with controlled use of the hydrogen chloride introduced, even less than 30 ppm.
  • a reduction in the chloride content in the organophase to a few ppm is preferred.
  • the resulting organophase containing the hydroxamic acid (s) can then immediately be used again for the extraction of the interfering elements.
  • the iron can also be precipitated by treating the organophase with aqueous hydrochloric acid (hydrochloric acid), in practice using 1 to 12 molar HCl, preferably 3 to 8 molar HCl, has proven.
  • aqueous hydrochloric acid hydrochloric acid
  • concentration of hydrogen chloride it must be ensured that the amount of the chloride ions to be regarded as water-soluble complexing agents is in the range given above, ie 0.1 to 2 mol of the complexing agent per liter of organic phase. This ensures that all of the iron is converted into the form of an inorganic chloro complex. This is then separated from the organophase after the addition of water with the aqueous, inorganic phase and contains all of the iron previously extracted with the organophase.
  • hydroxamic acids of the general formula (I) do not extract any noteworthy amounts of free hydrochloric acid (similarly as indicated above for H 2 SO 4 ).
  • the re-extraction of iron in the form of a chloro complex does not form chloride salts which are difficult to dissolve in water and which would then not be removable by treating the organophase with water.
  • the process step of complexing the iron can also be included in the step of precipitating the interfering elements arsenic, antimony and bismuth as sulfides from the loaded organic phase.
  • the corresponding re-extraction agents must then be placed together with the organophase in the precipitation vessel, which can also be an autoclave at high pressure of the hydrogen sulfide to be introduced.
  • the precipitation reaction of the elements arsenic, antimony and bismuth then proceeds exactly as described above for the separate separation.
  • the elements arsenic, antimony and bismuth are considered heavy soluble sulfides precipitated, and in this case iron is simultaneously transferred into the re-extraction medium used (aqueous complexing agent phase).
  • hydrogen chloride as the re-extraction medium, however, the use of corrosion-resistant autoclave materials is required in comparison to the separate processing of the iron complexes described above, since hydrogen chloride attacks the less corrosion-resistant steels.
  • the process step of iron re-extraction can precede sulfide precipitation.
  • aqueous HCl is used as a complexing agent for iron
  • the re-extracted iron phase additionally contains antimony and also small amounts of arsenic. This means that the iron is not readily obtained from the aqueous chloride phase obtained, i.e. can be re-extracted without separation of antimony and arsenic.
  • the procedure described first ie the sequence of sulfide precipitation - separation of the sulfides - subsequent or joint iron extraction and / or iron re-extraction, is preferred.
  • the aqueous phase remaining after the removal of the said interfering elements is worked up in ways known per se.
  • this can consist, for example, in that, depending on the ores used for smelting the copper, further interfering elements, for example nickel, are removed.
  • the organophase obtained essentially consists only of the solvents or extracting agents used and the extractants, ie one or more of the above-mentioned hydroxamic acids of the general formula (I).
  • Such an organophase is then immediate bar suitable for reuse in the extraction cycle.
  • the aforementioned procedure can be carried out continuously by continuously withdrawing a certain amount of the copper refining electrolyte solution from the electrolysis device and subjecting it to the partial process steps described above.
  • the extraction of the interfering elements from a practice electrolyte solution can be carried out continuously in a mixer-settler.
  • a practice electrolyte solution in g / l: 12.0 As, 0.030 Bi, 0.52 Sb, 0.30 Fe, 45 Cu, 10 Ni and 160 H 2 SO 4
  • the relevant parameters described in the partial process steps only require a one-step extraction.
  • the kerosene from Esso which is commercially available under the name "Escaid R 100", was used as the organic solvent or extractant.
  • the hydroxamic acid used was from a mixture of carboxylic acids of the formula
  • the organic phase had the following interfering metal concentration (in g / l): 6.5 As, 0.52 Sb, 0.03Bi and 0.30 Fe.
  • Example 1 A practical electrolyte solution according to Example 1 was first extracted with 0.5 molar hydroxamic acid from Versatic R 1019 in Escaid R as described above. Thereupon, organic: aqueous became by re-extraction with water at 80 ° C and a respective dwell time of 15 min with different volume ratios
  • the extractant concentration was 0.5 mol / l
  • the organophase resulting after the re-extraction with water was placed in a closed container. Nitrogen was used as the inert gas.
  • the reaction conditions were: Temperature 60 oC, H 2 S pressure 0.5 bar, reaction time 5 min, vigorous mixing during the introduction. The mixture was then flushed with nitrogen for about 30 min in order to remove H 2 S which was still dissolved.
  • a 0.5 molar solution of the hydroxamic acid as described in Example 1 was used as the extractant.
  • a synthetic H 3 AsO 4 solution dissolved in sulfuric acid (150 g / l H 2 SO 4 ), served as the aqueous electrolyte solution.
  • the As (V) content corresponded to a concentration of 10 g / l. After loading (O / A ratio 1: 1, 60 min at room temperature), an organophase with 6.8 g / l As (V) resulted.
  • a solution of As 2 O 3 in H 2 SO 4 (150 g / l) served as the aqueous electrolyte solution.
  • the As (III) content again corresponded to a concentration of 10 g / l.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

Verfahren zur Abtrennung von Störelementen aus Wertmetall- Elektrolytlösungen
Die Erfindung betrifft ein verbessertes Verfahren zur Abtrennung von Störelementen, ausgewählt aus Arsen, Antimon, Bismut und/oder Eisen, aus Wertmetall-Elektrolytlösungen durch Extraktion aus flüssiger Phase und nachfolgende Gewinnung der Störelemente zur Wiederverwertung.
Unter "Wertmetallen" werden hier wie in der nachfolgenden Beschreibung und in den Patentansprüchen diejenigen metallischen Elemente verstanden, die aus ihren natürlichen Quellen, insbesondere aus ihren Erzen, im Wege industrieller Verfahren gewonnen werden und in metallischer Form, gegebenenfalls in Legierung mit anderen Metallen, Verwendung finden. In der Gewinnung der Wertmetalle spielen neben pyrometallurgischen auch hydrometallurgische Verfahren eine große Rolle. Häufig werden die in den Erzen enthaltenen Metalle oder Metallsalze mit wäßrigen Systemen aufgeschlossen oder ausgelaugt und aus derartigen Metallsalzlösungen das Wertmetall durch Elektrolyse gewonnen. Die Elektrolyse derartiger wäßriger Lösungen wird jedoch in ihrer Effizienz dadurch stark beeinträchtigt, daß die meisten Wertmetalle in Erzen mit anderen Metallen "vergesellschaftet" sind. Die Elektrolytlösungen zur Wertmetallgewinnung enthalten daher fast immer mehr oder weniger große Mengen an Störelementen, die die elektrolytische Gewinnung des Wertmetalls beeinträchtigen oder als störende Verunreinigungen zusammen mit dem Wertmetall abgeschieden werden. Um die Reinheit der elektroly tisch abgeschiedenen Wertmetalle zu erhöhen, ist deswegen eine Abtrennung möglichst aller Störelemente aus Wertmetall-Elektrolytlösungen erwünscht.
Beispielsweise ist die Gewinnung der Metalle Kupfer, Zink, Kobalt oder Nickel auf elektrolytischem Wege möglich. Wäßrige Lösungen aus der Laugung von Erzen, die diese Metalle enthalten, enthalten jedoch üblicherweise mehr oder weniger große Mengen an Störelementen. Befriedigende Verfahren zur Abtrennung und gegebenenfalls auch Wiedergewinnung derartiger Störelemente werden nicht nur deswegen angestrebt, weil sich damit die Qualität und Quantität der abgeschiedenen Wertmetalle verbessern läßt, sondern auch deswegen, weil die Gewinnung und das Recycling der Störelercente ökonomisch und ökologisch sinnvoll ist.
Die Gewinnung von Reinstkupfer im Wege pyrometallurgischer Raffination ist beispielsweise durch zwei getrennt voneinander ablaufende Verfahrensschritte gekennzeichnet. Im ersten Schritt, der schmelzmetallurgischen Raffination, wird aus der Verhüttung von Kupfererzen stammendes, relativ unreines Rohkupfer aus der Schmelze abgeschieden ("Anodenofen''). In der nachfolgenden Raffinationselektrolyse werden Störelemente abgetrennt und teilweise im Anodenschlamm abgeschieden, während hoch leitfähiges sogenanntes "Elektrolyt-Kupfer" (bis 99,99 % Cu) an der Kathode abgeschieden wird. Die so hergestellten Kathodenblöcke aus Reinstkupfer können anschließend im Wege einer plastischen Verformung (Walzen, Ziehen, Pressen u.a.) weiterverarbeitet werden.
Unter den zahlreichen Störfaktoren der Kupfer-Raffinationselektrolyse fallen vor allem während des Verfahrensablaufs ansteigende Mengen an Arsen, Antimon, Bismut und Eisen in den Elektrolytlösungen ins Gewicht. Die genannten Störelemente reichern sich insbesondere dann zunehmend schnell in den stark schwefelsauren Elektrolyselösungen an, wenn - wie es in steigendem Umfang geschieht - an derartigen Störelementen reichere Roherze verhüttet und in den nachfolgenden Raffinationsverfahren verarbeitet werden. In der Folge muß auch mit größeren Konzentrationen der Störelemente Arsen, Antimon, Bismut und Eisen in den Kupfer-Raffinations-Elektrolytlösungen gerechnet werden. Eine Anreicherung der Störelemente verschlechtert nicht nur die Qualität des kathodisch abgeschiedenen Kupfers, das zunehmende
Mengen an Arsen-, Antimon- und Bismut-Verunreinigungen enthält, sondern vermindert auch (durch den Potentialsprung Fe2+
Fe3+) die Stromausbeute und erhöht dadurch die Energiekosten des Verfahrens.
Aus dem Stand der Technik sind zahlreiche Verfahren bekannt, in denen Arsen, in wenigen Fällen auch Antimon, aus den Abscheidungslösungen beseitigt werden können. Gemeinsam ist allen diesen Verfahren, daß bei Erreichen kritischer Konzentrationen der Störelemente in den Elektrolytlösungen, insbesondere bei Erreichen eines Grenzwertes von 10 g/l Arsen, ein Teilstrom der Elektrolytlösung aus den Raffinationsbehältern abgezogen und danach einer sogenannten "Kupfer-Gewinnungs-Elektrolyse" unterzogen wird. Dabei wird nicht nur das restliche Kupfer aus den Lösungen elektrolytisch abgeschieden, sondern (in "Liberatorzellen") auch die oben genannten Störelemente entfernt. Das hierdurch erhaltene, relativ unreine Kupfer muß vor Weiterverwendung nochmals umgeschmolzen und dadurch auf die gewünschte Reinheit gebracht werden. Nach der Abscheidung der genannten Elemente verbleiben in der stark schwefelsauren Lösung nur noch relativ hohe Nickelmengen, die nach Eindampfen als Nickelrohsulfat abgeschieden und zur Entfernung von Eisen-, Arsen- und gegebenenfalls auch Antimon-Verunreinigungen einer weiteren Reinigung unterworfen werden. Die resultierende kon- zentrierte Abfall-Schwefelsäure wird größtenteils in das Verfahren recyclisiert.
Zur Abtrennung von Arsen aus den Kupfer-Raffinationselektrolyten wird in der DE-OS 26 03 874 ein Verfahren beschrieben, in dem man die wäßrige Elektrolytlösung mit einer Tributylphosphat enthaltenden organischen Phase in Kontakt bringt und dadurch das in der Lösung enthaltene Arsen in die organische Phase extrahiert. In einem Verfahren gemäß der US-PS 4 115 512 wird ebenfalls eine organische, Tributylphosphat in Abmischung mit quartären Ammoniumverbindungen enthaltende Lösung als Extraktand verwendet. Tributylphosphat sowie organische Ester der Phcsphonsäure, phosphonigen Säure, Phosphinsäure und phosphinigen Säure werden in Verfahren gemäß den DE-OSen 26 14 341 und 26 15 638 zusammen mit organischen Lösungsmitteln als Extraktanden eingesetzt, um Arsen oder Antimon aus Kupfer-Elektrolyt- lcsungen abzutrennen. Ebenfalls mit phosphororganischen Verbindungen, beispielsweise mit Trioctylphosphinoxid (TOPO), in organischen Lösungsmitteln wie Kerosin, wird Arsen in einem Verfahren gemäß der EP-A-0 106 118 aus Elektrolyten der Kupferraffination abgetrennt.
In der DE-OS 34 23 713 wird ein weiteres Verfahren zum Entfernen von Arsen aus schwefelsauren Kupfer-Elektrolyten offenbart, in dem als Extraktanden aliphatische Alkohole mit 6 bis 13 C-Atomen, bevorzugt 2-Ethyl-1-hexanol, in organischer Phase verwendet werden. Ein Großteil, wenn auch nicht das gesamte Arsen, läßt sich im Verlauf von sechs Extraktionszyklen aus der Elektrolytlösung entfernen.
Alle genannten Verfahren weisen jedoch folgende Nachteile auf: Um eine effiziente Extraktion der Störelemente aus den Elektrolytlösungen zu erreichen, müssen die Reagenzien in konzentrierter Form eingesetzt werden. Dies geht expressis verbis bei spielsweise aus der DE-OS 26 15 638 (Anspruch 4 in Verbindung mit Seite 4, vorletzter Absatz, der Beschreibung) hervor. Zudem erfordern die meisten Verfahren eine hohe Konzentration an Säure in den Extraktionslösungen, die praktisch dadurch erreicht wird, daß durch Einengen die H2SO4-Konzentration im Elektrolyten von 100 bis 250 g/l auf ca. 500 g/l erhöht wird. Bei derart hohen Schwefelsäurekonzentrationen extrahieren die phosphororganischen Verbindungen nicht nur die Störelemente aus den Lösungen, sondern es v/erden auch erhebliche Mengen an Schwefelsäure in die organische Phase überführt. Dies erfordert den Einbau mehrerer Waschstufen, in denen die extrahierte Schwefelsäure zurückgewonnen und in das Verfahren recyclisiert werden muß. Zudem sind die phosphororganischen Extraktanden (insbesondere TBP) bei derart hohen Säurestärken nicht hinreichend stabil und damit in ihrer Wirksamkeit beeinträchtigt. Ergänzend muß in allen genannten Verfahren zur Verbesserung der Trennung der organischen von der anorganischen Phase ein sogenannter Modifier, meist Iscdecanol, zum Extraktionsmittel zugesetzt werden, der unter Umständen die Zersetzung des Extraktanden noch beschleunigen kann.
Zudem weisen alle Verfahren Nachteile bei der sich an den eigentlichen Extraktionsvorgang anschließenden Reextration der Störelemente aus der organischen Phase auf. So wird gemäß den DE-OSen 26 14 341 und 26 15 638 das Arsen mit wäßrigen Alkalilösungen aus der organischen Phase abgetrennt. Dabei wird Arsen jedoch in den Oxidationsstufen (III) und (V) erhalten. Um As2O3 wie gewünscht als Endprodukt gewinnen zu können, muß das fünfweirtige Arsen vor oder während der Reextraktion noch zusätzlich reduziert werden, üblicherweise unter Einsatz von SO2. Dies erfordert einen weiteren Verfahrensschritt mit zusätzlichen Anlagen und Chemikalien. Entsprechend der EP-A-0 106 118 werden Salzsäure und andere wäßrige Mineralsäuren zur Reextraktion des Arsens verwendet. Nur durch strenge Kontrolle des Chloridgehal tes bei der Reextraktion läßt sich verhindern, daß Cl- in den Raffinationselektrolyten gelangt und dies die Kupferraffination in unerwünschter Form beeinträchtigt. Dazu sind in der Praxis aufwendige, mehrstufige Kreislaufsysteme erforderlich.
Die am Beispiel der Abtrennung von Störelementen aus KupferElektrolytlösungen aufgezeigten Schwierigkeiten gelten entsprechend auch für Verunreinigungen durch Störelemente in wäßrigen Elektrolytlösungen anderer Wertmetalle, wie z.B. Zink oder Nickel. Im Einzelfall kann die Abtrennung eines bestimmten Störelements oder einer Gruppe derartiger Elemente im Vordergrund stehen.
Ein erster Schritt in diese Richtung ist in der deutschen Patentanmeldung P 37 25 611.4 beschrieben. Diese betrifft ein Verfahren zur gemeinsamen Abtrennung von Arsen, Antimon, Bismut und Eisen nebeneinander aus Wertmetall-Elektrolytlösungen im Wege der Solvent-Extraktion und nachfolgenden Wiedergewinnung der genannten Störelemente, das dadurch gekennzeichnet ist, daß man wäßrige, mineralsaure Wertmetall-Elektrolytlösungen mit einem wenig wasserlöslichen organischen Lösungsmittel versetzt, das eine oder mehrere Hydroxamsäure(n) enthält, die beiden Phasen intensiv miteinander mischt, aus der organischen Phase durch Sulfidfällung die Störelemente Arsen, Antimon und Bismut ausfällt, die Sulfide abtrennt und das noch in der Organphase verbleibende Eisen anschließend mit einem wasserlöslichen Komplexbildner für Eisen in eine wäßrige Phase reextrahiert und zurückgewinnt.
Bei diesem Verfahren des Standes der Technik erfolgt die Reextraktion der Störelemente durch Sulfidfällung aus der beladenen Organophase, wobei die Störmetalle als Sulfidfilterkuchen anfallen. Dieser Filterkuchen besteht in der Regel aus den Bestandteilen Arsensulfid, Antimonsulfid und Bismutsulfid, die bekanntermaßen für eine wirtschaftliche Weiterverwendung erst mühsam getrennt und aufgearbeitet werden müssen.
Aufgabe der vorliegenden Erfindung ist es nun, in Anbetracht des beschriebenen Standes der Technik, ein Verfahren zur Abtrennung von Störelementen aus Wertmetall-Elektrolytlösungen und die nachfolgende Gewinnung dieser Störelemente zur Weiterverwertung bereitzustellen, das die Abtrennung der vier Störelemente Arsen (As), Antimon (Sb), Bismut (Bi) und/oder Eisen (Fe), insbesondere aber eine Abtrennung des Hauptbestandteils Arsen ermöglicht, bei der geringere Kengen des Fällungsmittels Schwefelwasserstoff verwendet werden. Darüberhinaus kann man mittels der erfindungsgemäßen Verfahrensmaßnahmen einzelne der Störelement-Ionen selektiv abtrennen, im Falle des Arsenions sogar selektiv As(III)ionen oder As(V) ionen erzeugen. Schließlich kann man durch diese selektive Störelement-Abtrennung die Störelement-Ionen in leicht weiterverarbeitbarer Form ausfällen.
Es wurde überraschend gefunden, daß eine selektive Reextraktion der Störelemente Arsen und/oder Antimon aus der Organophase unter Verwendung von Wasser erreicht werden kann, wenn bestimmte Verfahrensparameter, wie Temperatur, Verweilzeit, Volumenverhältnis organische/wäßrige Phase und pH-Wert genau eingehalten werden.
Verfahren zur selektiven Extraktion von Metallionen aus wäßrigen Lösungen mit Hilfe einer in einem organischen Lösungsmittel gelösten Hydroxamsäure sind aus dem Stand der Technik bekannt. In der DE-PS 22 10 106 werden mit einer Hydroxamsäure der allgemeinen Formel (A) (A) in der die Reste R für Alkylreste stehen, Ubergangsmetalle aus zum Teil radioaktiven wäßrigen Lösungen von Aufarbeitungsanlagen extrahiert. Gemäß der US-PS 3 464 784 wird aus wäßrigen, vierwertiges Vanadium enthaltenden Lösungen das Vanadium mit Hilfe organo-löslicher Hydroxamsäuren der allgemeinen Formel (B) extrahiert
(B)
in der R für Alkyl-, Cycloalkyl- oder Arylreste mit 7 bis 44 C-Atomen, bevorzugt für sogenannte "neo-Alkylreste" stehen kann, die ein zur Carbonylgruppe benachbartes quartäres C-Atom enthalten. In "J. Chem. Research" (S) 1982, 90 ff wird außerdem die Solvent-Extraktion von Ubergangsmetallen mit sogenannten Versato-Hydroxamsäuren der allgemeinen Formel (B) beschrieben, in der die Reste R verzweigte, 10 bis 15 C-Atome enthaltende Alkylreste sind. Die Solvent-Extraktion verschiedener MetallIsotope aus wäßrigen Lösungen von Aufarbeitungsanlagen radioaktiver Rückstände mit Trialkylacethydroxamsäure wird in "Reprints of the ISEC '86, 11.-16.09.1986, Munich, S . 355-362" beschrieben .
Die Erfindung betrifft ein Verfahren zur Abtrennung von Elementen, ausgewählt aus Arsen, Antimon, Bismut und/oder Eisen, aus Wertmetall-Elektrolytlösungen im Wege der Solvent-Extraktion und nachfolgende Wiedergewinnung der genannten Störelemente, bei dem man - wäßrige, mineralsaure Wertmetall-Elektrolytlösungen mit einem wenig wasserlöslichen, eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I)
(I)
in der R für einen geradkettigen oder verzweigten, gesättigten oder ungesättigten Alkylrest mit 6 bis 22 C-Atomen, Cycloalkylrest oder Arylrest mit bis zu 19 C-Atomen steht, enthaltenden organischen Lösungsmittel versetzt,
- die wäßrige und organische Phase über eine ausreichende Kontaktierungszeit intensiv miteinander mischt,
- nach Phasentrennung die organische Phase abtrennt,
- die organische Phase mit einem Sulfidierungsmittel versetzt,
- die Sulfidfällungen des Arsens, Antimons und Wismuts auf an sich bekannten Wegen von der Organophase abtrennt,
- diese anschließend gegebenenfalls mit einem wasserlöslichen Komplexbildner für Eisen oder einer wäßrigen Lösung eines solchen Komplexbildners versetzt,
- den gebildeten Eisenkomplex mit Wasser reextrahiert,
- und die verbleibende Organophase auf an sich bekannte Weise aufarbeitet und/oder nachschärft und recyclisiert,
das dadurch gekennzeichnet ist, daß man nach Abtrennung der Organophase, also vor der Sulfidfällung
- die mit Störelementen beladene organische Phase mit Wasser über eine ausreichende Kontaktierungszeit reextrahiert,
- das in die Wasserphase reextrahierte Störmetall gegebenenfalls in an sich bekannter Weise reduktiv ausfällt und als Nebenprodukt aufarbeitet.
Das erfindungsgemäße Verfahren fällt unter den Oberbegriff der sogenannten "Solvent-Extraktionen". Darunter werden üblicherweise solche Verfahren verstanden, in denen zwei flüssige, mehr oder weniger nicht miteinander mischbare oder nicht ineinander lösliche Phasen miteinander in innigen Kontakt gebracht werden und dabei ein Übergang einer oder mehrerer Komponenten der einen in die andere Phase stattfindet, üblicherweise stellt sich dabei ein von verschiedenen äußeren Parametern abhängiges Gleichgewicht ein. Derartige Parameter werden für die einzelnen Verfahrensschritte nachfolgend beschrieben.
Unter "Störelementen" werden nachfolgend in der Beschreibung sowie auch in den Patentansprüchen die Elemente Arsen, Antimon, Bismut- und Eisen verstanden, die - in Abhängigkeit von den eingesetzten Rohstoffen und den angewendeten Verhüttungsverfahren - in mehr oder weniger großen, aber auf jeden Fall störenden Konzentrationen in den Elektrolyt-Lösungen, die erfindungsgemäß von den genannten Elementen befreit werden können, insbesondere in den Elektrolyt-Lösungen der Kupfer-Raffinationselektrolyse, gelöst sind. Dabei kann es sich um eines oder mehrere der genannten Elemente in unterschiedlichen Oxidationsstufen handeln. So kann beispielsweise das Störelement Arsen in der Oxidationsstufe (III) oder der Oxidationsstufe (V) in derartigen wäßrigen Lösungen vorliegen.
Bevorzugt werden erfindungsgemäß die oben genannten Störelemente aus wäßrigen Lösungen abgetrennt, die aus Verfahren der Kupfer-Raffinationselektrolyse stammen, bei der das Element Arsen im allgemeinen Hauptbestandteil dieser Störelementmischung ist. Das erfindungsgemäße Verfahren ist jedoch nicht auf die Abtrennung der Störelemente aus solchen Lösungen beschränkt. Es ist auch möglich, eines oder mehrere der genannten Störelemente oder alle vier aus wäßrigen, Kupfer, Zink, Nickel oder andere Wertmetalle enthaltenden Lösungen abzutrennen, die aus anderen Quellen stammen bzw. in anderen Verfahren anfallen.
Der erste Schritt des erfindungsgemäßen Verfahrens besteht darin, wäßrige, mineralsaure Wertmetall-Elektrolytlösungen mit einem wenig wasserlöslichen organischen Lösungsmittel oder Extraktionsmittel zu versetzen, das eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I) enthält,
(I)
in der R für einen geradkettigen oder verzweigten, gesättigten oder ungesättigten Alkylrest mit 6 bis 22 C-Atomen oder einen Cycloalkylrest oder Arylrest mit bis zu 19 C-Atomen steht. Als inerte organische Lösungsmittel, die wenig mit Wasser mischbar oder darin löslich sind, kommen z.B. folgende Verbindungen in Frage: aliphatische, cycloaliphatische oder aromatische Kohlenwasserstoffe oder deren Mischungen mit hohem Siedepunkt, chlorierte Kohlenwasserstoffe, Ketone oder Ether mit hohem Siedepunkt oder auch Mischungen derartiger Verbindungen. Bevorzugt werden, wie aus dem Stand der Technik bekannt, als wenig wasserlösliche oder wenig mit Wasser mischbare organische Lösungsmittel Kerosine oder deren Mischungen verwendet.
Der hydrophobe Charakter der organischen Lösungsmittel bestimmt auch in weitem Umfang die Natur des in diesem Lösungsmittel bzw. Extraktionsmittel enthaltenen Extraktanden. Als solcher fungiert eine Hyroxamsäure der allgemeinen Formel (I) oder eine Mischung mehrerer derartiger Hyroxamsäuren der allgemeinen Formel (I). Der Rest R in der oben genannten allgemeinen Formel kann für geradkettige Alkylreste aus der Gruppe Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, Nonadecyl, Eicosyl, Uneicosyl oder Docosyl stehen. Es ist jedoch auch möglich, daß R in der oben genannten allgemeinen Formel (I) für die verzweigtkettigen Isomere der genannten geradkettigen Alkylreste steht. Entsprechend können anstelle der gesättigten Alkylreste auch ungesättigte Alkylreste stehen, die ebenfalls geradkettig oder verzweigt sein können. Bevorzugt werden als Extraktanden Hydroxamsäuren der allgemeinen Formel (I) verwendet, in der R für verzweigte, gesättigte Alkylreste mit 6 bis 22 C-Atomen, bevorzugt für verzweigte, gesättigte Alkylreste mit 7 bis 19 C-Atomen steht.
Aufgrund der oben angesprochenen Forderung, daß sich der bzw. die als Extraktand (en) eingesetzte (n) Hydroxamsäure (n) möglichst gut in dem organischen Lösungsmittel lösen muß und in diesem Lösungsmittel die erforderliche Stabilität aufweist, werden mit besonderem Vorteil eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I) verwendet, in der R für neo-Alkylreste der allgemeinen Formel (II) steht
(II)
in der die Summe der C-Atome der Reste R1, R2 und R3 im Bereich von 6 bis 18 liegt. Dies können die zahlreichen verschiedenen isomeren Reste aus der Gruppe neo-Heptyl, neo-Octyl, neo-Nonyl, neo-Decyl, neo-Undecyl, neo-Dodecyl, neo-Tridecyl, neo-Tetradecyl, neo-Pentadecyl, neo-Hexadecyl, neo-Heptadecyl, neo-Octadecyl und neo-Nonadecyl sein. Die Einzelbedeutungen der Reste R1, R2 und R3 ist in. diesem Zusammenhang von untergeordneter
Bedeutung, solange jeder der genannten Reste mindestens 1 C- Atöm hat. Derartige neo-Alkylreste garantieren eine optimale Löslichkeit und Stabilität der als Extraktand verwendeten Hydroxamsäuren der allgemeinen Formel (I) in dem organischen Lösungsmittel.
Die in dem erfindungsgemäßen Verfahren einsetzbaren Hydroxamsäuren der allgemeinen Formel (I) können nach allgemein aus dem Stand der Technik bekannten Verfahren hergestellt werden. So kann beispielsweise nach der DE-PS 22 10 106 die entsprechende Carbonsäure durch Umsetzung mit einem Überschuß an SOCl2 in das entsprechende Säurechlorid überführt und dann mit Hydroxylamin zur Hydroxamsäure der allgemeinen Formel (I) umgesetzt werden. Entsprechend ist auch (vgl. J. Chem. Research (S) 1982, 90) die Umsetzung der Carbonsäure und deren nachfolgende Umsetzung mit Hydroxylamin zur entsprechenden Hydroxamsäure der allgemeinen Formel (I) möglich. Es können jedoch auch andere, aus dem Stand der Technik bekannte Verfahren zur Herstellung derartiger Verbindungen (I) angewendet werden.
In dem erfindungsgemäßen Verfahren zur Abtrennung von Arsen, Antimon, Bismut und Eisen aus Wertmetall-Elektrolytlösungen haben sich insbesondere solche Hydroxamsäuren der allgemeinen Formel (I) bewährt, in der R für solche neo-Alkylreste der allgemeinen Formel (II) steht, deren Summen an C-Atomen der Reste R1, R2 und R3 bei 8 bzw. im Bereich von 7 bis 17 liegen.
Solche Hydroxamsäuren (I) werden nach den oben genannten Verfahren aus den unter dem Handelsnamen Versatic-SäureR von der Firma Shell Chemical Corporation erhältlichen Produkten hergestellt. Sie enthalten im einen Fall im Molekül der allgemeinen Formel (I) an der mit R bezeichneten Stelle einen neo-Alkylrest der allgemeinen Formel (II), in der die Summe der C-Atome der Reste R1, R2 und R3 8 ist, und im anderen Fall solche Verbindungen (I), in der der Rest R für neo-Alkylreste der allgemeinen Formel (II) steht, in der die Summe der C-Atome der Reste R1, R2 und R3 im Bereich von 7 bis 17 liegt. Solche Produkte stellen ein technisches Gemisch von Hydroxamsäuren unterschiedlicher Kettenlänge dar. Sie ermöglichen den Einsatz als Extraktionsreagens, welches für die gewünschten Anwendungen optimale Eigenschaften besitzt, also nicht nur in der organischen Phase sehr gut löslich und stabil ist, sondern sich auch optimal mit den oben genannten Störelementen reversibel beladen läßt. Außerdem sind derartige Hydroxamsäuren in den in derartigen Wertmetall-Elektrolytlösungen üblichen pH-Wert-Bereichen äußerst stabil und extrahieren sowohl bei Raumtemperatur als auch im erhöhten Temperaturbereich keine freie Mineralsäure, insbesondere aus Kupfer-Elektrolytlösungen keine Schwefelsäure. Außerdem weisen derartige Hydroxamsäuren enthaltende organische Phasen eine Viskosität in einem solchen Bereich auf, daß nach dem nachfolgend besprochenen Durchmischungsvorgang eine optimale Phasentrennung gewährleistet ist. Probleme bei der Abtrennung der organischen von der wäßrigen Phase werden so vermieden.
Der zweite Schritt des erfindungsgemäßen Verfahrens besteht darin, die wäßrige und die organische Phase über eine ausreichende Kontaktierungszeit hinweg intensiv miteinander zu vermischen. Die Kontaktierungszeit der beiden Phasen ist einer der Parameter, von dem die extrahierte Menge der Störelemente, insbesondere die extrahierte Menge an Arsen, abhängig ist. Bei festgelegter Reagenzkonzentration, die nachfolgend im Detail angegeben wird, wird nach kurzer Kontaktierungszeit (3 bis 5 min) praktisch die Hauptmenge der Störelemente Antimon, Bismut und Eisen extrahiert. Die relative Menge an in die organische Phase aufgenommenem Arsen ist jedoch deutlich geringer. Dieser Sachverhalt erklärt sich aus der Tatsache, daß in typischen Elektrolytlösungen, insbesondere solchen des KupferRaffinationsganges, deren Zusammensetzung je nach Qualität und Herstellung der Kupfer-Rohanoden schwanken, nur relativ geringe Mengen an Antimon, Bismut und Eisen (ca. 0,1 bis 0,6 g/l) enthalten sind, die Arsenmengen jedoch deutlich höher liegen (ca. 8 bis oberhalb von 20 g/l). Soll möglichst viel Arsen extrahiert werden, was angestrebt ist, so muß die Kontaktierungszeit entsprechend verlängert und/oder die Konzentration an Extraktand in der organischen Phase entsprechend erhöht werden. Zur Ausnutzung der maximalen Beladbarkeit der Hydroxamsäuren der allgemeinen Formel (I) werden die wäßrige und die organische Phase bevorzugt über eine Zeit von 1 bis 60 min, besonders bevorzugt über eine Zeit von 10 bis 20 min, intensiv miteinander gemischt. In dieser Zeit ist auch ein Großteil des in den Kupfer-Elektrolytlösungen enthaltenen Arsens in die organische Phase übergegangen.
Ein weiterer wichtiger Parameter für die extrahierte Menge der Störelemente liegt in der Konzentration an Hydroxamsäuren der allgemeinen Formel (I) oder deren Gemischen. Die Menge an Extraktand in der organischen Phase wird dadurch begrenzt, daß bei hohen Konzentrationen der Hydroxamsäuren (I) in der organischen Phase die Viskosität während der Beladung mit den Störelementen so stark ansteigt, daß bei einer kontinuierlichen Verfahrensweise eine effiziente Vermischung der beiden Phasen nicht mehr gewährleistet werden kann. Außerdem wird, wie oben beschrieben, die Trennung der organischen von der wäßrigen Phase mit steigender Viskosität wesentlich erschwert. Daher ist es erfindungsgemäß bevorzugt, in dem erfindungsgemäßen Verfahren organische Lösungsmittel wie Kerosine oder deren Mischungen zu verwenden, die eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I) in einer Konzentration von 0,1 bis 2,0 mol/l organische Phase, bevorzugt in einer Konzentration von 0,5 bis 1,0 mol/l organischer Phase, enthalten.
Die Temperatur, bei der die beiden Phasen miteinander in Kontakt gebracht werden, liegt üblicherweise im Bereich von 20 bis 70 ºC, bevorzugt im Bereich von 30 bis 60 ºC. Aus dem Verfahrensgang abgezogene Elektrolyt-Lösungen weisen verfahrensbedingt Temperaturen im Bereich von 50 bis 70 °C auf. Bei kontinuierlicher Verfahrensweise ist also ein gesondertes Erwärmen der Mischungen im Mixer nicht mehr erforderlich. Bei einer Tem peratur im genannten Bereich werden beide Phasen intensiv miteinander gemischt. Dies kann beispielsweise dadurch geschehen, daß man sie in kontinuierlicher Verfahrensweise einem sogenannten "Mixer-Settler" zuführt, sie in diesem bei der angegebenen Temperatur über die angegebene Zeit miteinander vermischt und die Phasen im Settier abtrennen läßt.
Man zieht in einem nachfolgenden dritten Verfahrensschritt die organische Phase, die eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I) und die extrahierten Störelemente Arsen, Antimon, Bismut und Eisen enthält, von der wäßrigen Phase ab.
Im vierten Verfahrensschritt wird die organische, Störelementbeladene Phase mit Wasser über eine ausreichende Kontaktierungs zeit reextrahiert. Schon bei einmaliger Durchführung dieses Verfahrensschritts kommt es zu einer Reextraktion des Störelements Arsen in die Wasserphase. Hierbei hängen die Verfahrensparameter von Art (Oxidationsstufe) und Menge des in der Organophase vorhandenen Arsens ab. Beispielsweise werden As (III) ionen vergleichsweise rascher als As (V) ionen in die Wasserphase reextrahiert. Dies ist im folgenden durch Beispiele erläutert.
Die Kontaktierungszeit beeinflußt die Verteilung der Störmetalle zwischen der organischen und der wäßrigen Phase. Unter einer ausreichenden Kontaktierungszeit hat sich bei der vorliegenden Erfindung eine Zeit von 1 bis 20 min, vorzugsweise 10 bis
15 min als zweckmäßig erwiesen, während der die beiden Phasen miteinander vermischt werden. Die Temperatur, bei der die beiden Phasen miteinander in Kontakt gehalten werden sollten, liegt üblicherweise im Bereich von 20 bis 80 °C, vorzugsweise 50 bis 70 °C. Das VolumenVerhältnis organische Phase zu zugefügter Wasserphase sollte möglichst so eingestellt werden, daß die organische Phase mit einer solchen Menge Wasser kontaktiert wird, daß eine Phasentrennung nach der Reextraktion grundsätzlich noch möglich ist, um so eine wäßrige Phase mit möglichst hohem Störmetallgehalt zu erhalten, die ohne Aufkonzentrieren der Wasserphase aufgearbeitet werden kann.
Vorzugsweise setzt man so zu 100 Volumen-Teilen der organischen Phase 5 bis 2 000 Volumen-Teile Wasserphase hinzu.
Durch die Einstellung des pH-Wert-Bereichs auf schwachsauer bzw. starksauer ist es schließlich möglich, einen Teil des Hauptbestandteils an Störmetall Arsen, entweder spezifisch oder einen Teil des Hauptbestandteils Arsen in Kombination mit Antimon in die Wasserphase zu überführen.
Bei einem pH-Wert von 0 bis 6, vorzugsweise 1,5 bis 4, erhält man bei der Reextraktion eine nahezu ausschließlich Arsenionen enthaltende wäßrige Lösung. Im Falle von As (III) ionen kann eine direkte Ausfällung als Arsentrioxid, gegebenenfalls nach Aufkonzentrieren, erfolgen. Wird dagegen As (V) ion in die Wasserphase reextrahiert, so ist vor der Fällung eine Reduktion notwendig.
Bei einem pH-Wert von 3 bis 6, vorzugsweise 4 bis 6, erhält man bei der Reextraktion in der wäßrigen Phase eine Metallionenmischung, die neben dem Hauptbestandteil Arsen als Nebenbestandteil Antimon enthält .
In dem fünften Verfahrensschritt wird das in die Wasserphase reextrahierte Störmetall gegebenenfalls in an sich bekannter Weise reduktiv ausgefällt und als Nebenprodukt aufgearbeitet. Dies geschieht bei starksauren wäßrigen Lösungen, die wie vorstehend beschrieben Arsen (V) ionen enthalten, durch Zugabe eines Reduktionsmittels, beispielsweise Schwefeldioxid oder Schweeel Wasserstoff. Das hierbei erhaltene reine Prezipitat aus Arsentrioxid oder Arsentrisulfid kann in an sich bekannter Weise weiterverarbeitet werden.
Bei den sauren wäßrigen Lösungen, die neben dem Hauptbestandteil Arsen als Nebenbestandteil Antimon enthalten, müssen die Komponenten zunächst in an sich bekannter Weise aufgetrennt und daraufhin zu Arsen bzw. Antimonverbindungen weiterverarbeitet werden. Die Elemente Arsen und Antimon sind für bestimmte technische Anwendungen, beispielsweise für die Elektronikindustrie, von besonderem Interesse.
Der sechste Schritt des erfindungsgemäßen Verfahrens besteht darin, die organische Phase mit einem Sulfidierungsmittel zu versetzen. Dieser Verfahrensschritt ist in dem erfindungsgemäßen Verfahren insofern von Bedeutung, als die Extraktion der Störelemente aus Wertmetall-Elektrolytlösungen bei sehr hohen Mineralsäurekonzentrationen (z.B. 150 bis 250 g H2SO4/1) erfolgt. Eine üblicherweise für die Reextraktion von Störelementen mögliche Erhöhung der Säurekonzentration scheidet für die Abtrennung der Störelemente aus derart sauren Lösungen praktisch aus. Außerdem kann auch eine Reextraktion der Störelemente durch Behandlung der organischen Phase mit alkalischen Lösungen nicht erfolgen, da die Hydroxamsäuren der allgemeinen Formel (I), insbesondere im stärker alkalischen Bereich, nicht genügend stabil sind. Die entsprechend dem erfindungsgemäßen Verfahren direkt an der beladenen organischen Phase durchführbare Sulfidfällung der Störelemente umgeht in einfacher und überraschender Weise die Notwendigkeit einer Reextraktion der Störelemente aus der organischen Phase durch Behandlung mit stark sauren oder stark alkalischen wäßrigen Lesungen.
Als Sulfidierungsmittel eignen sich in dem erfindungsgemäßen Verfahren Schwefelwasserstoff-(H2S-) Gas und/oder wasserfreies Natriumsulfid oder Natriumhydrogensulfid. Vorzugsweise wird Schwefelwasserstoff verwendet. Dieser ist für den Fällungs- schritt besonders gut geeignet, da er zwei Funktionen gleichzeitig ausübt: Zum einen wirkt H2S als Reagens für die Fällung von Arsen, Antimon und Bismut aus der organischen Phase, zum anderen regeneriert er (aufgrund seiner "sauren" Eigenschaften) das Extraktionsreagens (die Hydroxamsäure (n)) der allgemeinen Formel (I).
Bei der Anwendung der direkten Sulfidfällung aus der organischen Phase unter Einsatz von Schwefelwasserstoff sind als wichtige kontrollierende Verfahrensparameter der Schwefelwasserstoffdruck, die Temperatur während des Fällungsvorganges sowie die Reaktionszeit zu nennen. Die genannten Parameter können in großer Bandbreite variiert werden. Zur Fällung der Sulfide der Störelemente ist die Zugabe einer stöchiometrischen oder geringfügig überstöchiometrischen Menge gasförmigen Schwefelwasserstof fs ausreichend . Diese wird dadurch bewirkt , daß H2S in der anhand der Mengen der Störelemente im Elektrolyten vorberechneten Menge eingeleitet und das Reaktionssystem mit einem Inertgas, z.B. N2, beaufschlagt wird. Es ist jedoch auch möglich, den H-S-Druck im Verlaufe des Fällungsvorganges auf einen Wert von 0,1 bis 50 bar, bevorzugt auf einen Wert im Bereich von 0,5 bis 1 bar, einzustellen. Ein H2S-Überdruck begünstigt insbesondere die Fällung der Arsensulfide. Bei Anwendung eines geringen Überdrucks (1 bis 3 bar) kann die Fällungsreaktion in einem geeigneten Glasgefäß durchgeführt werden; der Einsatz aufwendiger Metall-Autoklaven ist also nicht erforderlich. Möchte man dagegen höhere Drücke (4 bar und höher) anwenden, so ist im allgemeinen die Verwendung eines Autoklaven erforderlich. Vorteilhaft ist jedoch, daß der Einsatz hoch-korrosionsbeständiger und damit teurer Autoklaven- Materialien (z.B. Hasteloy-Stähle) nicht notwendig ist; es können Autoklaven aus üblichen Stählen (beipsielsweise V4A- Stählen) verwendet werden. Die Vollständigkeit der Fällung wird auch durch einen weiteren Verfahrensparameter, nämlich die Temperatur, beeinflußt. Bei höheren Reaktionstemperaturen, die bevorzugt im Bereich zwischen 40 und 90 °C, besonders bevorzugt zwischen 60 und 80 °C, liegen, wird eine vollständige Fällung der Sulfide der Störelemente Arsen, Antimon und Bismut in der organischen Phase erreicht.
Der dritte Verfahrensparameter, die Reaktionszeit, ist ebenfalls von Bedeutung für die Vollständigkeit der Fällung und entspricht im wesentlichen der Verweilzeit der organischen Phase im Reaktionsgefäß während der Einleitung von H2S. Die Reaktionszeit muß in Abhängigkeit von den anderen genannten Parametern eingestellt werden und liegt in bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens bei 1 bis
60 min, bevorzugt bei 5 bis 20 min.
Eine Abstimmung der sich gegenseitig beeinflussenden Parameter der Sulfidierungsreaktion kann durch wenige einfache Versuche erfolgen. Besonders haben sich bei der Durchführung des erfindungsgemäßen Verfahrens eine Reaktionsführung bei 0,5 bar H2S- Druck, eine Reaktionszeit von 15 min und eine Temperatur der beladenen Organophase beim Einleiten des Schwefelwassserstoffes von 80 °C bewährt. Bei diesen Reaktionsbedingungen werden die Störelemente Antimon und Bismut zu 100 % und .Arsen zu einem großen Teil (80 % und höher) gefällt. Für eine komplette Ausfällung des Arsens ist gegebenenfalls eine weitere Druckerhöhung über diesen besonders bevorzugten Bereich hinaus oder eine entsprechend längere Reaktionszeit erforderlich.
Durch Einleiten vcn H2S in die Organophase werden die Störeϊemente Arsen, Antimon und Bismut als Sulfide gefällt und können nach abgeschlossener Fällung auf an sich bekannten Wegen im siebten Verfahrensschritt von der Organophase abgetrennt werden. Dies geschieht üblicherweise dadurch, daß die Organophase über ein Filter geeigneter Größe filtriert oder auch zentrifugiert wird. Es ist jedoch auch möglich, die gebildeten Sulfid-Fällungen des Arsens, Antimons und Bismuts im Reaktionsmedium sich absetzen zu lassen und die überstehende Organophase zu dekantieren. Welcher Weg der Abtrennung im einzelnen gewählt wird, hängt von der Konsistenz der gebildeten Sulfid-Fällungen und von weiteren Verfahrensparametern ab und ist ohne kritischen Einfluß auf die Vollständigkeit der Wiedergewinnung der Störelemente. Um die gefällten Sulfide von Rückständen organischer Komponenten zu befreien ist es möglich, sie mit jedem beliebigen organischen Lösungsmittel, beispielsweise mit Kohlenwasserstoffen der oben angegebenen Art oder auch mit anderen, für derartige Waschzwecke geeigneten Lösungsmitteln, wie Aceton, flüchtigen Estern o.ä., zu waschen. Dadurch läßt sich eine vollständige Abtrennung organischer Komponenten vom Filterkuchen erreichen.
In diesem Zusammenhang ist es für den Fachmann klar, daß die Verfahrensschritte Reextraktion mit Wasser und Sulfidfällung auch ausgetauscht werden kennen.
Außerdem ist es erwünscht, für die nachfolgende Abtrennung des Eisens aus der Organophase möglichst das gesamte darin gelöste H2S zu entfernen. Es wird deswegen als vorteilhaft angesehen, nach der Abfiltration der ausgefällten Sulfide und vor dem oben beschriebenen Schritt des Waschens mit einem organischen Lösungsmittel den Filterkuchen gegebenenfalls mit einer Säure, vorzugsweise einer Mineralsäure, wie Schwefelsäure, zu behandeln. Vorzugsweise wird die nach der Sulfidfällung erhaltene Organophase mit einem Inertgas erschöpfend durch Ausblasen gespült. Dadurch werden gelöste oder überschüssige Restmengen von H2S vollständig ausgetrieben. Die Behandlung kann auch durch Kontaktierung des Filterkuchens mit der Mineralsäure in einem separaten geschlossenen Gefäß unter intensiver Vermischung erfolgen. Eine kontinuierliche Ausbildung dieses WaschSchrittes ist möglich, wobei die verwendete Mineralsäure dann im Kreislauf geführt und für den Reinigungsschritt nachfolgender Chargen zur Verfügung gestellt werden kann.
Wie bereits oben erwähnt, wird das durch eine oder mehrere Hydroxamsäuren (I) aus der Wertmetall-Elektrolytösung in die Organophase überführte Eisen unter den oben näher definierten Bedingungen nicht gefällt. Eine Reextraktion des Eisens durch Behandlung der Organophase mit basischen wäßrigen Lösungen ist aufgrund der geringen Stabilität der Extraktanden (Hydroxamsäuren) nicht möglich, ohne einen Großteil zu verlieren.
Wenn eine Abtrennung des Eisens aus der Organophase erwünscht ist, wird dies erfindungsgemäß im achten Verfahrensschritt dadurch bewirkt, daß man die Organophase nach der Abtrennung der anderen Störelemente als Sulfide und einer Entfernung überschüssigen Schwefelwasserstoffs mit einem wasserlöslichen Komplexbildner für Eisen unmittelbar oder mit einer wäßrigen Lösung eines derartigen Komplexbildners versetzt. Als wasserlösliche Komplexbildner für Eisen werden Verbindungen aus der Gruppe Chlorwasserstoff, Oxalsäure oder P-organische Säuren, insbesondere Hydroxyethandiphosphonsäure (HEDP) bevorzugt, also solche Komplexbildner, von denen eine hohe Affinität zum Eisen bekannt ist. Von diesen sind Oxalsäure oder Chlorwasserstoff besonders bevorzugt.
Die Abtrennung des Eisens als anorganischer Chloro-Komplex oder Oxalat bzw. Phosphonat ist, wie auch die anderen Schritte, von der Konzentration des Komplexbildners in der Organophase oder - bei Zugabe wäßriger Lösungen des Komplexbildners - in der wäßrigen Phase, der Behandlungszeit der Organophase mit dem Komplexbildner oder seiner wäßrigen Lösung sowie der Reakticnstemperatur abhängig; wie oben schon angegeben, stehen die genannten Verfahrensparameter auch in einer wechselseitigen Abhängigkeit. Es hat sich in der Praxis gezeigt, daß die Konzentration an wasserlöslichem Komplexbildner für Eisen in der Organophase oder der wäßrigen Phase mit Vorteil bei Werten von 0,1 bis 2 mol des Komplexbildners pro Liter, bevorzugt bei einer Konzentration von 0,5 bis 1 mol des Komplexbildners pro Liter, liegen kann. Bei kontinuierlicher Betriebsweise des Eisen-Komplexierungs-Schrittes, die bevorzugt in einem Mixer- Settler durchgeführt wird, sind bei solchen Komplexbildnerkonzentrationen Kontaktierungszeiten von 1 bis 20 min, bevorzugt von über 5 bis 15 min, erforderlich. Diese Behandlungszeiten gelten für eine Durchführung des Komplexierungsschrittes bei Raumtemperatur und können entsprechend reduziert werden, wenn die Temperatur angehoben wird. Besonders bevorzugt ist es, die Organophase mit 1 mol Oxalsäure oder HEDP pro Liter Organophase oder wäßrige Phase über eine Kontaktierungszeit von 15 nin in einem Mixer-Settler zu behandeln. Bei einer solchen Behandlungsweise kann aus der Organophase, die die Sulfid-Fällungsstufe durchlaufen hatte und die danach noch 0,6 g Eisen/1 enthielt, der Eisengehalt bis auf 0,07 g/l, d.h. um nahezu eine Zehnerpotenz, reduziert werden.
Wenn der Komplexbildner unmittelbar der Organophase zugesetzt wird, wird der auf dem oben beschriebenen Wege gebildete Eisenkomplex auf an sich bekanntem Wege in einem neunten Verfahrensschritt mit Wasser aus der Organophase reextrahiert. Dazu wird die Organophase mit einer ausreichenden Menge Wasser in innigen Kontakt gebracht, wobei aufgrund der guten Wasserlöslichkeit des Eisenkomplexes ein vollständiger Übergang in die wäßrige Phase beobachtet wird. Bei Zugabe wäßriger Komplexbildner-Lösungen enthalten diese nach inniger Vermischung mit und anschließender Separierung von der Organophase nahezu das gesamte aus den Elektrolyse-Lösungen extrahierte Eisen. Aus dieser wäßrigen Phase kann nach an sich bekannten Methoden das Eisen, sofern erwünscht, wiedergewonnen werden.
Bei der Verwendung von Chlorwasserstoff als wasserlöslichem Komplexbildner für Eisen wird das in der Organophase enthaltene Eisen vollständig in einen anorganischen Chlorokomplex überführt. Um eine Recyclisierung der organischen Phase und der darin enthaltenen Hydroxamsäuren und damit Bereitstellung für einen neuen Extraktionscycius zu ermöglichen, muß die Organophase weitgehend, wenn nicht vollständig, von Chlorwasserstoff bzw. freien Chloridionen befreit werden. Dazu wird nach Überführung des in der Organophase gelösten Eisens in die anionische Komplexform durch Zusatz einer ausreichenden Menge Chlorwasserstoff die Organophase mit einem sekundären Amin als flüssigem Ionenaustauscher, beispielsweise mit dem unter dem Handelsnamen "AmberliteR LA2" erhältlichen Ionenaustauscher, erneut extrahiert. Das auf diese Weise extrahierte Eisen kann mit Wasser anschließend wieder reextrahiert werden. Die Organophase wird anschließend mit Wasser chloridfrei gewaschen, um sie und die darin enthaltenen Hydroxamsäuren für eine erneute Verwendung im Extraktionskreislauf brauchbar zu machen. Eine bis zwei Stufen des Waschens mit Wasser bewirken eine Absenkung des Chloridgehaltes in der Organophase unter 50 ppm, bei kontrollierter Verwendung des eingeleiteten Chlorwasserstoffes sogar unter 30 ppm. Bevorzugt wird eine Absenkung des Chloridgehalts in der Organophase auf wenige ppm. Die resultierende, die Hydroxamsäure (n) enthaltende Organophase kann anschließend unmittelbar wieder zur Extraktion der Störelemente eingesetzt werden. Die Fällung des Eisens kann außer durch Zusatz gasförmigen Chlorwasserstoffs auch dadurch erfolgen, daß man die Organophase mit wäßriger Chlorwasserstoffsäure (Salzsäure) behandelt, wobei sich in der Praxis der Einsatz von 1 bis 12-molarer HCl, vorzugsweise von 3 bis 8-molarer HCl, bewährt hat. Insgesamt ist hinsichtlich der Konzentration an Chlorwasserstoff sicherzustellen, daß die Menge der als wasserlösliche Komplexbildner anzusehenden Chloridionen im oben angegebenen Bereich, also bei 0,1 bis 2 mol des Komplexbildners pro Liter organischer Phase, liegt. Dabei wird sichergestellt, daß das gesamte Eisen in die Form eines anorganischen Chloro-Komplexes überführt wird. Dieser wird dann nach Zusatz von Wasser mit der wäßrigen, anorganischen Phase von der Organophase abgetrennt und enthält das gesamte, vorher mit der Organophase extrahierte Eisen.
Auch in diesem Fall erweist es sich als sehr vorteilhaft, daß die Hydroxamsäuren der allgemeinen Formel (I) keine nennenswerten Mengen freier Salzsäure (ähnlich wie oben für H2SO4 angegeben) extrahieren. Außerdem werden durch die Reextraktion des Eisens in Form eines Chlorokomplexes keine schwer wasserlöslichen Chloridsalze gebildet, die dann durch Behandlung der Organophase mit Wasser nicht entfernbar wären.
Prinzipiell läßt sich der Verfahrensschritt der Komplexierung des Eisens auch mit in den Schritt der Fällung der Störelemente Arsen, Antimon und Bismut als Sulfide aus der beladenen organischen Phase einbeziehen. Es müssen dann die entsprechenden Reextraktionsmittel zusammen mit der Organophase im Fällungsgefäß, das bei hohem Druck des einzuleitenden Schwefelwasserstoffs auch ein Autoklav sein kann, vorgelegt werden. Die Fällungsreaktion der Elemente Arsen, Antimon und Bismut läuft dann genauso ab, wie dies oben für die separate Trennung beschrieben wurde. Die Elemente Arsen, Antimon und Bismut werden als schwer lösliche Sulfide gefällt, und Eisen wird in diesem Fall gleichzeitig in das jeweils verwendete Reextraktionsmedium (wäßrige Komplexbildnerphase) überführt. Bei Anwendung von Chlorwasserstoff als Reextraktionsmedium ist allerdings dann im Vergleich zur vorher beschriebenen getrennten Aufarbeitung der Eisenkomplexe der Einsatz von korrosionsbeständigen Autoklavenmaterialien erforderlich, da Chlorwasserstoff die weniger korrosionsbeständigen Stähle angreift.
In ähnlicher Weise kann auch der Verfahrensschritt der Eisen- Reextraktion der Sulfidfällung vorgeschaltet werden. Wird z.B. wäßrige HCl als Komplexbildner für Eisen verwendet, so enthält dann die reextrahierte Eisenphase zusätzlich noch Antimon und auch noch geringe Mengen an Arsen. Dies bedeutet, daß man aus der gewonnenen wäßrigen chloridischen Phase das Eisen nicht ohne weiteres, d.h. ohne eine Abtrennung von Antimon und Arsen, reextrahieren kann. Aus diesen Gründen ist die zuerst beschriebene Verfahrensweise, also die Reihenfolge Sulfidfällung - Abtrennung der Sulfide - nachfolgende oder gemeinsame Eisenextraktion und/oder Eisen-Reextraktion, bevorzugt .
Im letzten Schritt des erfindungsgemäßen Verfahrens wird die nach der Abtrennung der genannten Störelemente verbleibende wäßrige Phase auf an sich bekannten Wegen aufgearbeitet. Dies kann im Falle der Aufarbeitung von Kupfer-Elektrolytlösungen z.B. darin bestehen, daß - in Abhängigkeit von den für die Verhüttung des Kupfers eingesetzten Erzen - noch weitere Störelemente, beispielsweise Nickel, entfernt werden. Außerdem ist an dieser Stelle streng darauf zu achten, daß die erhaltene Organophase im wesentlichen nur aus den verwendeten Lösungsmitteln bzw. Extraktionsmitteln und den Extraktanden, d.h. einer oder mehrerer der oben genannten Hydroxamsäuren der allgemeinen Formel (I), besteht. Eine solche Organophase ist dann unmittel bar für den Wiedereinsatz im Extraktionskreislauf geeignet. Gegebenenfalls kann sie mit den erforderlichen Mengen an Extraktand, d.h. an einer oder mehreren der oben genannten Hydroxamsäuren der allgemeinen Formel (I) nachgeschärft werden und wird dann anschließend unmittelbar in den Extraktionsgang recyclisiert. Die genannte Verfahrensweise kann kontinuierlich dadurch erfolgen, daß permanent eine bestimmte Menge der Kupfer-Raffinations-Elektrolytlösung aus der Elektrolysevorrichtung abgezogen und den oben beschriebenen Verfahrensteilschritten unterzogen wird. Es ist jedoch auch möglich, diskontinuierlich zu arbeiten und die Mengen der Kupfer-Raffinations-Elektrolytlösung in kleinen Teilmengen abzuziehen und die mit den Störelementen beladene organische Phase in einem Tank zu sammeln. Die gesammelten Mengen der beladenen Organophase werden dann gemeinsam den oben beschriebenen Fällungs- und Reextraktionsschritten unterworfen.
Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert.
Beispiel 1
Mit dem erfindungsgemäßen Verfahren kann die Extraktion der Störelemente aus einer Praxis-Elektrolytlösung (entnommen einer Kupferraffinationselektrolyse) in kontinuierlicher Weise ineinem Mixer-Settler durchgeführt werden. In Abhängigkeit von der Zusammensetzung der eingesetzten Elektrolyt-Lösung (in g/l: 12,0 As, 0,030 Bi, 0,52 Sb, 0,30 Fe, 45 Cu, 10 Ni und 160 H2SO4) und den oben bei den Verfahrensteilschritten beschriebenen relevanten Parametern ist nur eine einstufige Extraktion erforderlich. Als organisches Lösungsmittel bzw. Extraktionsmittel wurde das im Handel unter dem Namen "EscaidR 100" erhältliche Kerosin der Firma Esso verwendet.
Die eingesetzte Hydroxamsäure war aus einem Gemisch von Carbonsäuren der Formel
herσestellt worden, in der die Summe der Zahl der C-Atome der
Substituenten R1, R2 und R3 im Bereich zwischen 7 und 17 lag
(Handelsprodukt VersaticR 1019 der Firma Shell). Die Konzentration an Extraktand in der organischen Phase lag bei 0,5 mol/l.
Die organische Phase wies folgende Störmetallkonzentrationan auf (in g/l): 6,5 As, 0,52 Sb, 0,03Bi und 0,30 Fe.
In einem, einstufigen Schüttelversuch (O/A-Verhältnis 1 : 1) wurde bei verschiedenen in Tabelle 1 angegebenen Temperaturen, Verweilzeiten und pH-Werten eine Reextraktion der vier Störelemente As, Sb, Bi und Fe durchgeführt.
Die zwei erstgenannten Elemente wurden nach Trennung der organischen von der wäßrigen Elektrolytphase durch Reextraktion der Organophase mit einer Wasserphase teilweise in die Wasserphase überführt, wobei man in starksaurem Milieu (pH 1,9 - 4,0) bis zu 45 Gew.-% des Hauptstörelements Arsen und in mit Base eingestelltem schwachsaurem Milieu (pH 4 - 6) neben einem Teil des Hauptstörelements Arsen bis zu 37 Gew.-% Antimon reextrahiert. Die Ergebnisse der einstufigen Schütteltests in Abhängigkeit von der Temperatur der Verweilzeit und dem pH-Wert sind in nachstehender Tabelle 1 dokumentiert. Beispiel 2
Eine Praxis-Elektrolytlösung gemäß Beispiel 1 mit den Störelementen Arsen, Antimon, Bismut und Eisen wurde zunächst mit
0,5-molarer Hydroxamsäure aus VersaticR 1019 in EscaidR 100 wie vorstehend beschrieben extrahiert. Daraufhin wurde die nach der Extraktion erhaltene Organophase mit einer gleichen Volumenmenge an frischem Wasser bei einer Temperatur von 80 °C einer mehrstufigen Reextraktion von jeweils 15 min ausgesetzt, wobei die in Tabelle 2 dokumentierten Ergebnisse erhalten wurden.
Beispiel 3
Eine Praxis-Elektrolytlösung gemäß Beispiel 1 wurde zunächst mit 0,5-molarer Hydroxamsäure aus VersaticR 1019 in EscaidR wie oben beschrieben extrahiert. Daraufhin wurde durch Reextraktion mit Wasser bei 80°C und einer jeweiligen Verweilzeit von 15 min bei unterschiedlichen Volumenverhältnissen organische : wäßrige
Phase die Reextraktionsisotherme ermittelt. Die Ergebnisse sind in nachstehender Tabelle 3 dokumentiert.
Beispiel 4
Eine mit Störelementen belädene Organophase gemäß Beispiel 1 wurde mit Wasser reextrahiert und anschließend einer Sulfid- Fällung mittels H2S unterworfen. a) Belädene Organophase
Die Konzentration an Extraktand lag bei 0,5 mol/l
Sb: 0,3 g/l
Bi: 0,1 g/l
As: 7,3 g/l b) Reextraktion mit Wasser
1100 ml dieser oben genannten beladenen Organophase wurden mit 1100 ml destilliertem Wasser 15 min bei 60 °C gerührt (O/A-Verhältnis 1 : 1, einstufige Verfahrensweise). Nach Phasentrennung wurden die beiden Phasen analysiert.
Organische Phase Wäßrige Phase
Sb: 0,3 g/l
Bi: 0,1 g/l
As: 5,0 g/l As: 2,3 g/l
Der pH-Wert der wäßrigen Phase betrug 1,9. c) Sulfid-Fällung mit H2S
Die nach der Reextraktion mit Wasser resultierende Organophase wurde in einem geschlossenen Behälter vorgelegt. Als Inertgas wurde Stickstoff verwendet. Die Reaktionsbedingungen waren: Temperatur 60 ºC, H2S-Druck 0,5 bar, Reaktionszeit 5 min, kräftige Durchmischung während des Einleitens. Anschließend wurde zur Entfernung von noch gelöstem H2S etwa 30 min mit Stickstoff gespült.
Gehalte nach Sulfidfällung in der Organophase:
Sb: 0,04 g/l
Bi: <0,1 g/l
As: 4,5 g/l
Bei längerer Reaktionszeit (15 min) oder gleicher Reaktionszeit, aber höherer Temperatur (80 °C) konnte Arsen bis auf 1,5 g/l in der Organophase entfernt werden. Diese Restmenge kann gegebenenfalls bei Anwendung eines erhöhten Druckes , wie in der DE-P 37 25 611 .4 beschrieben , komplett gefällt werden.
Beispiel 5
Nachfolgende Versuche verdeutlichen die bevorzugte As (III)-Reextraktion im Vergleich zur As (V)-Reextraktion mit Wasser.
Als Extraktand wurde eine 0,5 molare Lösung der Hydroxamsäure, wie in Beispiel 1 beschrieben, verwendet. Als wäßrige Elektrolytlösung diente eine synthetische H3AsO4 -Lösung, gelöst in Schwefelsäure (150 g/l H2SO4). Der As (V)-Gehalt entsprach einer Konzentration von 10 g/l. Nach Beladung (O/A-Verhältnis 1 : 1, 60 min bei Raumtemperatur) resultierte eine Organophase mit 6,8 g/l As(V).
Die folgenden Reextraktionsversuche wurden im O/A-Verhältnis 1 : 1 bei 60 °C unter Rühren durchgeführt (einstufig). Ergebnisse
Vergleichend hierzu wurde das Verhalten bei der Reextraktion von As (III) mit Wasser untersucht.
Belädene Organophase (Extraktand wie vorher genannt)
6,4 g/l As(III).
Als wäßrige Elektrolytlosung diente eine Lösung von As2O3 in H2SO4 (150 g/l). Der As (III)-Gehalt entsprach wiederum einer Konzentration von 10 g/l.
Die Reextraktionsversuche wurden unter den gleichen Bedingungen wie vorher genannt durchgeführt.
Ergebnisse
Die Versuche zeigen, daß As (III) bereits nach 10 min zu einem hohen Prozentsatz reextrahiert werden kann. As(V) wird zwar ebenfalls reextrahiert, doch sind hierzu längere Kontaktzeiten erforderlich.
Dieses Verhalten wird ebenfalls deutlich durch die beiden Reextraktionsisothermen von mit As (III) bzw. As (V) beladener Organophase , wie in den Beispielen 6 und 7 beschrieben .
Beispiel 6
Reextraktionsisotherme von As (III)
Versuchsbedingungen: Wie in den vorherigen Versuchen beschrieben
Belädene Organophase: 6,4 g/l As (III) aus synthetischer Lösung Reextraktionsbedingungen: 10 min, 60 °C, destilliertes Wasser, unterschiedliche O/A-Verhältnisse.
Ergebnisse
Beispiel 7
Reextraktionsisotherme von As (V)
Versuchsbedingungen: wie vorher genannt.
Belädene Organophase: 6,8 g/l As (V) aus synthetischer Lösung Reextraktionsbedingungen: siehe vorher
Ergebnisse

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Abtrennung von Elementen, ausgewählt aus Arsen, Antimon , Bismut und/oder Eisen aus Wertmetall-Elektrolytlösungen im Wege der Solvent-Extraktion und nachfolgende Wiedergewinnung der genannten Störelemente, bei dem man
- wäßrige, mineralsaure Wertmetall-Elektrolytlösungen mit
einem wenig wasserlöslichen, eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I)
(I)
in der R für einen geradkettigen oder verzweigten, gesättigten oder ungesättigten Alkylrest mit 6 bis 22 C-Atomen, Cycloalkylrest oder Arylrest mit bis zu 19 C-Atomen steht, enthaltenden organischen Lösungsmittel versetzt,
- die wäßrige und organische Phase über eine ausreichende Kontaktierungszeit intensiv miteinander mischt ,
- nach Phasentrennung die organische Phase abtrennt,
- mit einem Sulfidierungsmittel versetzt,
- die Sulfidfällungen des Arsens, Antimons und Wismuts auf an sich bekannte Weise von der Organo-Phase abtrennt,
- diese anschließend gegebenenfalls mit einem wasserlöslichen Komplexbildner für Eisen oder einer wäßrigen Lösung eines solchen Komplexbildners versetzt,
- den gebildeten Eisenkomplex mit Wasser reextrahiert
- und die verbleibende Organophase auf an sich bekannte Weise aufarbeitet und/oder nachschärft und recyclisiert,
dadurch gekennnzeichnet, daß man nach Abtrennung der Organophase, also vor der Sulfidfällung,
- die mit Störelementen belädene organische Phase mit Wasser über eine ausreichende Kontaktierungszeit reextrahiert, - das in die Wasserphase reextrahierte Störmetall gegebenenfalls in an sich bekannter Weise reduktiv ausfällt und als Nebenprodukt aufarbeitet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Elemente Arsen, Antimon, Bismut und/oder Eisen aus wäßrigen, mineralsauren Kupfer-Elektrolytlösungen abtrennt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die Elemente Arsen, Antimon, Bismut und/oder Eisen aus wäßrigen, schwefelsauren Kupfer-Raffinationselektrolyt-Lösungen abtrennt.
4. Verfahren nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man als inerte organische Lösungsmittel Kohlenwasserstoffe oder deren Mischungen, chlorierte Kohlenwasserstoffe, Ketone oder Ether, bevorzugt Kerosine oder deren Mischungen, verwendet.
5. Verfahren nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man Kerosine oder deren Mischungen verwendet, die eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I), in der R die oben angegebenen Bedeutungen hat, enthalten.
6. Verfahren nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man Kerosine oder deren Mischungen verwendet, die eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I) enthalten, in der R für verzweigte, gesättigte Alkylreste mit 6 bis 22 C-Atomen, bevorzugt mit 7 bis 19 C-Atomen, steht.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man Kerosine oder deren Mischungen verwendet, die eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I) enthalten, in der R für neo-Alkylreste der allgemeinen Formel (II) steht. ( II )
in der die Summe der Zahl der C-Atome der Reste R1, R2 und R3 im Bereich von 6 bis 18 liegt.
8. Verfahren nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man Kerosine oder deren Mischungen verwendet, die eine oder mehrere Hydroxamsäuren der allgemeinen Formel (I) in einer Konzentration von 0,1 bis 2,0 mol/l organische Phase, bevorzugt in einer Konzentration von 0,5 bis 1,0 mol/1 organische Phase, enthalten.
9. Verfahren nach Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man die wäßrige und die organische, die Hydroxamsäure (n) enthaltende Phase über eine Zeit von 1 bis 60 min, bevorzugt über eine Zeit von 10 bis 20 min, intensiv miteinander mischt.
10. Verfahren nach Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man die wäßrige und die organische, die Hydroxamsäure (n) enthaltende Phase bei einer Temperatur von 20 bis 70 °C, bevorzugt bei einer Temperatur von 30 bis 60 °C, intensiv miteinander mischt.
11. Verfahren nach Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man die wäßrige und die organische, die Hydroxamsäure (n) enthaltende Phase in einem Mixer-Settler intensiv miteinander mischt.
12. Verfahren nach Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß man die Reextraktion der organischen Phase mit Wasser in Abhängigkeit von Art und Menge des vorhandenen Arsens so durchführt, daß man As (III) ionen vergleichsweise rascher als As (V) ionen durch einfache oder mehrfache Reextraktion in die Wasserphase reextrahiert, die gegebenenfalls reextrahierten As (V) ionen reduziert und das Gesamt-Arsen als As (III) ionen fällt.
13. Verfahren nach Ansprüchen 1 oder 12, dadurch gekennzeichnet, daß man die Reextraktion der organischen Phase mit Wasser über eine Zeit von 1 bis 20 min, vorzugsweise über eine Zeit von 10 bis 15 min durch intensives Miteinandervermischen durchführt.
14. Verfahren nach Ansprüchen 1 oder 12, dadurch gekennzeichnet, daß man die Reextraktion der organischen Phase mit Wasser bei einer Temperatur von 20 bis 80 °C, bevorzugt bei einer Temperatur von 50 bis 70 °C durch intensives Miteinandervermischen durchführt.
15. Verfahren nach Ansprüchen 1 oder 12, dadurch gekennzeichnet, daß man die Reextraktion der organischen Phase mit Wasser in der Art durchführt, daß man zu 100 Volumen-Teilen organische Phase 5 bis 2 000 Volumen-Teile Wasser hinzugibt.
16. Verfahren nach Ansprüchen 1 oder 12, dadurch gekennzeichnet, daß man die Reextraktion der organischen Phase mit Wasser in einem pH-Wert-Bereich von 0 bis 6, vorzugsweise 1,5 bis 4 durchführt und auf diese Weise selektiv einen Teil des Arsens in die Wasserphase überführt, wobei sich im Falle von As (III)- ionen Arsenige Säure bzw. Arsentrioxid bildet.
17. Verfahren nach Ansprüchen 1 und 12, dadurch gekennzeichnet, daß man die Reextraktion der organischen Phase mit Wasser in einem pH-Wert-Eereich von 3 bis 6,0, vorzugsweise 4 bis 6 durchführt und auf diese Weise neben dem Hauptbestandteil Arsen den Nebenbestandteil Antimon in die wäßrige Phase überführt.
18. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Sulfidierungsmittel H2S, wasserfreies Na2S oder NaHS, bevorzugt H2S, verwendet.
19. Verfahren nach Ansprüchen 1 und 18, dadurch gekennzeichnet, daß man H2S in stöchiometrischer oder geringfügig überstöchiometrischer Menge in das Reaktionssystem einleitet und dieses dann mit einem Inertgas beaufschlagt.
20. Verfahren nach Ansprüchen 1 und 18, dadurch gekennzeichnet, daß man die Sulfidierung bei einem H2S-Druck von 0,1 bis 50 bar, bevorzugt bei einem Druck von 0,5 bis 1 bar, durchführt.
21. Verfahren nach Ansprüchen 1 und 18, dadurch gekennzeichnet, daß man die Sulfidierung bei einer Temperatur von 40 bis 90 °C, vorzugsweise von 60 bis 80 °C, durchführt.
22. Verfahren nach Ansprüchen 1 und 18, dadurch gekennzeichnet, daß man die Sulfidierung über eine Reaktionszeit von 1 bis 60 min, bevorzugt von 5 bis 20 min, durchführt.
23. Verfahren nach Ansprüchen 1 und 18 bis 22, dadurch gekennzeichnet, daß man die nach der Sulfidfällung erhaltene Organophase durch Ausblasen oder Spülen mit einem Inertgas von überschüssigem und/oder gelöstem Schwefelwasserstoff vollständig befreit.
24. Verfahren nach Ansprüchen 1 und 18 bis 22, dadurch gekennzeichnet, daß man die ausgefällten Sulfide von der Organophase abfiltriert und den Filterkuchen gegebenenfalls mit einer Mineralsäure und danach mit einem organischen Lösungsmittel wäscht.
25. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als wasserlöslichen Komplexbildner für Eisen eine Verbindung aus der Gruppe HCl, Oxalsäure und Hydroxyethandiphosphonsäure verwendet.
26. Verfahren nach Ansprüchen 1 und 25, dadurch gekennzeichnet, daß man einen wasserlöslichen Komplexbildner für Eisen in einer Konzentration von 0,1 bis 2 mol/1, bevorzugt in einer Konzentration von 0,5 bis 1 mol/1 einsetzt.
27. Verfahren nach Ansprüchen 1 und 25, dadurch gekennzeichnet, daß man die Umsetzung mit einem wasserlöslichen Komplexbildner für Eisen über eine Zeit von 1 bis 20 min, bevorzugt über eine Zeit von 5 bis 15 min, durchführt.
28. Verfahren nach Ansprüchen 1 und 25, dadurch gekennzeichnet, daß man die Umsetzung mit einem wasserlöslichen Komplexbildner für Eisen in einem Mixer-Settler durchführt.
29. Verfahren nach Ansprüchen 1 und 25 bis 28, dadurch gekennzeichnet, daß man bei Verwendung von Chlorwasserstoff oder wäßriger Salzsäure als wasserlöslichem Komplexbildner für Eisen die eisenhaltige Phase nach der Chlorwasserstoff- oder Salzsäurezugabe mit einem flüssigen Ionenaustauscher in Form einss sekundären Amins versetzt und das so extrahierte Eisen anschließend mit Wasser reextrahiert.
30. Verfahren nach Ansprüchen 1 bis 29, dadurch gekennzeichnet, daß man zusätzlich zur Weiterverwertung der abgetrennten Störelemente diese aus den Sulfidniederschlägen bwz. Reextraktionslösungen über schmelzmetallurgische oder hydrometallurgische Verfahren zurückgewinnt.
EP89912423A 1988-10-28 1989-10-19 Verfahren zum trennen von sich überlagernden elementen aus metallelektrolytlösungen von edelmetallen Pending EP0490893A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3836731A DE3836731A1 (de) 1988-10-28 1988-10-28 Verfahren zur abtrennung von stoerelementen aus wertmetall-elektrolytloesungen
DE3836731 1988-10-28

Publications (1)

Publication Number Publication Date
EP0490893A1 true EP0490893A1 (de) 1992-06-24

Family

ID=6366095

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89119428A Expired - Lifetime EP0370233B1 (de) 1988-10-28 1989-10-19 Verfahren zur Abtrennung von Störelementen aus Wertmetall-Elektrolytlösungen
EP89912423A Pending EP0490893A1 (de) 1988-10-28 1989-10-19 Verfahren zum trennen von sich überlagernden elementen aus metallelektrolytlösungen von edelmetallen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP89119428A Expired - Lifetime EP0370233B1 (de) 1988-10-28 1989-10-19 Verfahren zur Abtrennung von Störelementen aus Wertmetall-Elektrolytlösungen

Country Status (18)

Country Link
US (1) US5039496A (de)
EP (2) EP0370233B1 (de)
JP (1) JPH04501584A (de)
KR (1) KR900702060A (de)
AU (1) AU621163B2 (de)
CA (1) CA2001564A1 (de)
DE (2) DE3836731A1 (de)
ES (1) ES2059673T3 (de)
FI (1) FI93972C (de)
IL (1) IL92137A0 (de)
MX (1) MX172722B (de)
PT (1) PT92127B (de)
TR (1) TR24036A (de)
WO (1) WO1990004654A1 (de)
YU (1) YU207889A (de)
ZA (1) ZA898202B (de)
ZM (1) ZM3689A1 (de)
ZW (1) ZW13489A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228903A (en) * 1990-04-18 1993-07-20 The Curators Of The University Of Missouri Of Columbia Method for stripping metals in solvent extraction
FR2669348A1 (fr) * 1990-11-16 1992-05-22 Centre Nat Rech Scient Compositions contenant des derives hydroxydiphosphoniques pour l'extraction de cations metalliques.
AT395951B (de) * 1991-02-19 1993-04-26 Union Ind Compr Gase Gmbh Reinigung von werkstuecken mit organischen rueckstaenden
DE4204994A1 (de) * 1992-02-19 1993-08-26 Henkel Kgaa Verfahren zur abtrennung von stoerelementen aus wertmetall-loesungen
US5434331A (en) * 1992-11-17 1995-07-18 The Catholic University Of America Removal of radioactive or heavy metal contaminants by means of non-persistent complexing agents
US5366715A (en) * 1993-10-19 1994-11-22 The University Of British Columbia Method for selectively removing antimony and bismuth from sulphuric acid solutions
US5573739A (en) * 1994-10-28 1996-11-12 Noranda, Inc. Selective bismuth and antimony removal from copper electrolyte
DE19714579A1 (de) * 1997-04-09 1998-10-15 Bayer Ag Mehrphasen-Extraktor mit Waschkammer
US6277753B1 (en) 1998-09-28 2001-08-21 Supercritical Systems Inc. Removal of CMP residue from semiconductors using supercritical carbon dioxide process
US6748960B1 (en) 1999-11-02 2004-06-15 Tokyo Electron Limited Apparatus for supercritical processing of multiple workpieces
ES2159263B1 (es) * 1999-12-17 2002-04-16 Tecn Reunidas S A Proceso para la produccion electrolitica de zinc o de compuestos de zinc de alta pureza a partir de materias primas primarias y secundarias de zinc.
FI109922B (fi) * 1999-12-21 2002-10-31 Outokumpu Oy Menetelmä arseenin poistamiseksi rikkihappoisesta liuoksesta
ES2186490B1 (es) * 2000-10-09 2004-06-16 Universidad De Barcelona Procedimiento de eliminacion de arsenico, selenio y teluro de concentrados minerales, preferentemente de cobre.
JP3883929B2 (ja) 2001-09-25 2007-02-21 大日本スクリーン製造株式会社 薄膜形成装置および薄膜形成方法
US7789971B2 (en) 2005-05-13 2010-09-07 Tokyo Electron Limited Treatment of substrate using functionalizing agent in supercritical carbon dioxide
CN102433435B (zh) * 2011-12-27 2014-06-25 北京矿冶研究总院 一种萃取锗镓的萃取剂及其萃取方法
EA201691798A1 (ru) 2014-03-07 2017-04-28 Басф Се Способы и системы для контроля концентрации металлических примесей во время металлургических процессов
US10208389B2 (en) 2015-08-26 2019-02-19 Basf Se Methods and systems for reducing impurity metal from a refinery electrolyte solution
CN108796220B (zh) * 2018-07-04 2020-03-24 湖南工业大学 一种铋铁混合溶液中萃取-硫化转相分离铋和铁的方法
CN110550786B (zh) * 2019-10-18 2021-10-26 广西森合高新科技股份有限公司 废液处理工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3464784A (en) * 1967-06-01 1969-09-02 Gen Mills Inc Extraction of tetravalent vanadium values from their aqueous solutions using hydroxamic acids
FR2128426B1 (de) * 1971-03-02 1980-03-07 Cnen
US3821351A (en) * 1971-06-03 1974-06-28 Kerr Mc Gee Corp Solvent extraction of metal ions using n-substituted hydroxamic acids
CA1069316A (en) * 1975-04-01 1980-01-08 Metallurgie Hoboken-Overpelt Treatment of ores or metallurgical by-products containing arsenic and antimony
LU72319A1 (de) * 1975-04-18 1977-02-10
US4115512A (en) * 1976-12-03 1978-09-19 Noranda Mines Limited Method for removing arsenic from copper and/or nickel bearing aqueous acidic solutions by solvent extraction
ZA80466B (en) * 1979-02-07 1981-02-25 G Thorsen Precipitation of metal values from organic media
DE3364074D1 (en) * 1982-10-19 1986-07-17 Austria Metall Process for removing arsenic from a copper-bearing electrolyte
IT1194304B (it) * 1983-07-07 1988-09-14 Samim Soc Azionaria Minero Met Procedimento per la separazione dell'arsenico da soluzioni acide che lo contengono
DE3725611A1 (de) * 1987-08-01 1989-02-09 Henkel Kgaa Verfahren zur gemeinsamen abtrennung von stoerelementen aus wertmetall-elektrolytloesungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9004654A1 *

Also Published As

Publication number Publication date
FI93972C (fi) 1995-06-26
JPH04501584A (ja) 1992-03-19
FI93972B (fi) 1995-03-15
ZM3689A1 (en) 1990-05-28
ZA898202B (en) 1990-07-25
US5039496A (en) 1991-08-13
PT92127B (pt) 1995-06-30
DE58906257D1 (de) 1994-01-05
ZW13489A1 (en) 1990-09-05
DE3836731A1 (de) 1990-05-03
EP0370233A1 (de) 1990-05-30
PT92127A (pt) 1990-04-30
IL92137A0 (en) 1990-07-12
AU621163B2 (en) 1992-03-05
MX172722B (es) 1994-01-10
AU4507789A (en) 1990-05-14
TR24036A (tr) 1991-02-06
WO1990004654A1 (de) 1990-05-03
FI911998A0 (fi) 1991-04-25
CA2001564A1 (en) 1990-04-28
KR900702060A (ko) 1990-12-05
ES2059673T3 (es) 1994-11-16
EP0370233B1 (de) 1993-11-24
YU207889A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
EP0370233B1 (de) Verfahren zur Abtrennung von Störelementen aus Wertmetall-Elektrolytlösungen
EP0302345B1 (de) Verfahren zur gemeinsamen Abtrennung von Störelementen aus Wertmetall-Elektrolytlösungen
DE60003530T2 (de) Gewinnung von nickel und kobalt aus erzmaterialien
EP0627013B1 (de) Verfahren zur abtrennung von störelementen aus wertmetall-lösungen
DE69307367T2 (de) Verfahren zur Reextraktion von Metallen aus organischen Phasen
DE2617348A1 (de) Hydrometallurgisches verfahren zur behandlung schwefelhaltiger mineralien
DE3227240C2 (de)
DE60220705T2 (de) Verfahren zum aufarbeiten kupfer enthaltender molybdänkonzentrate
DE1592264B2 (de) Verfahren zur trennung von kobalt und nickel aus einer kobalt- und nickelhaltigen waessrigen loesung
DE60004406T2 (de) Verfahren zur elektrolytischen herstellung von hochreinem zink oder zinkverbindungen aus primärem oder sekundärem zinkrohmaterial
EP0471715B1 (de) Verfahren zur zweiphasen-extraktion von metallionen aus feste metalloxide enthaltenden phasen
DE1142443B (de) Gewinnung von Kupfer aus kupferhaltigen waessrigen Loesungen
DE69032650T2 (de) Verfahren zur wiedergewinnung von batteriesäure aus bleisäurebatterien
EP0280144B1 (de) Verwendung von Citronensäure-Partialestern und deren Mischungen zur Eisenextraktion
EP0032184A1 (de) Verfahren zur Gewinnung von Uran bzw. Uranverbindungen aus Phosphorsäure
EP0138801A1 (de) Elektrolytisches Silberraffinationsverfahren
DE2320880A1 (de) Verfahren zur trennung von nickel-, kobalt- und manganionen aus waessrigen loesungen
EP0399521B1 (de) Verbessertes Verfahren zum Entfernen von Cadmium-Ionen aus Nassverfahrensphosphorsäure
DE2603874B2 (de) Verfahren zur entfernung von arsen aus einer arsen zusammen mit kupfer enthaltenden loesung
DE2621144B2 (de) Verfahren zur Aufarbeitung von Buntmetallhydroxidschlamm-Abf allen
EP0031460A2 (de) Verfahren zur Gewinnung von Uran bzw. Uranverbindungen aus Phosphorsäure
DE3801430A1 (de) Verfahren zur entfernung von eisen(iii) aus sauren zinksalzloesungen durch solventextraktion
DE3104578A1 (de) Verfahren zum entfernen von metallen aus metallsalzloesungen
DE2601534C3 (de) Hydrometallurgisches Verfahren zur Behandlung von Nickelsteinen
DE1592264C3 (de) Verfahren zur Trennung von Kobalt und Nickel aus einer kobalt- und nickelhaltigen wässrigen Lösung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 19910419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB NL SE

XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 89119428.4/0370233 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 04.08.92.