EP0488450B1 - Röntgenröhrenanode mit Oxidbeschichtung - Google Patents

Röntgenröhrenanode mit Oxidbeschichtung Download PDF

Info

Publication number
EP0488450B1
EP0488450B1 EP91203023A EP91203023A EP0488450B1 EP 0488450 B1 EP0488450 B1 EP 0488450B1 EP 91203023 A EP91203023 A EP 91203023A EP 91203023 A EP91203023 A EP 91203023A EP 0488450 B1 EP0488450 B1 EP 0488450B1
Authority
EP
European Patent Office
Prior art keywords
layer
anode
ray
intermediate layer
oxidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91203023A
Other languages
English (en)
French (fr)
Other versions
EP0488450A1 (de
Inventor
Wolfgang Hohenauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE, Metallwerk Plansee GmbH filed Critical Plansee SE
Publication of EP0488450A1 publication Critical patent/EP0488450A1/de
Application granted granted Critical
Publication of EP0488450B1 publication Critical patent/EP0488450B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures

Definitions

  • the invention relates to an X-ray anode, in particular a rotating anode, with high heat emissivity, with a carbon-containing base body made of a high-melting material and a focal spot or focal path region made of a high-melting metal or its alloys, which has an oxidic covering layer with a coating on at least parts of the surface outside the focal path homogeneous melted phase.
  • EP-A-0 172 491 describes an X-ray anode made of a molybdenum alloy, such as TZM, with an oxide coating from a mixture of 40-70% titanium oxide, the rest being stabilized oxides from the group ZrO2, HfO, MgO, CeO2, La2O3 and SrO.
  • TZM molybdenum alloy
  • HfO, MgO, CeO2, La2O3 and SrO oxide coating from the group ZrO2, HfO, MgO, CeO2, La2O3 and SrO.
  • melting the oxide coating improves the thermal emission coefficient and improves the adhesion of the oxide layer to the base body.
  • the disadvantage of such an X-ray anode is that the carbon contained in the base body of the rotating anode causes the oxidic cover layer to age rapidly, which leads to a premature deterioration in the thermal heat emission coefficient.
  • AT-A-376 064 describes an X-ray tube rotating anode with a base body made of a carbon-containing molybdenum alloy, e.g. B. TZM, which is provided outside the focal path with a coating of one or more oxides or a mixture of one or more metals with one or more oxides to improve the heat emissivity.
  • a 10 - 200 »m thick intermediate layer made of molybdenum and / or tungsten between the base body and the oxidic coating in order to prevent the rapid aging of the rotating anode and thus the premature reduction of the thermal emission coefficient.
  • a disadvantage of such a rotating anode is that melted oxide cover layers are practically impossible to produce. It has been found that, depending on the type of application of the molybdenum and / or tungsten intermediate layer, the oxidic top layer cannot be melted at all or runs off from the surface to be coated during melting.
  • the object of the present invention is therefore to provide an X-ray tube anode consisting of a carbon-containing base body and a melted oxide cover layer to increase the to create thermal emission coefficients which have a noticeably improved aging resistance with respect to the thermal emission coefficient compared to the prior art and in which the melting of the oxide cover layer into a homogeneous phase is possible without problems.
  • a two-layer intermediate layer is arranged with a layer of molybdenum and / or tungsten and a layer of Al2O3 with 1 - 30 wt.
  • the X-ray anodes according to the invention have an oxidic cover layer that adheres well to the base body and has good melting properties.
  • the thermal emission coefficient is over 80% for suitable oxidic cover layers and deteriorates only insignificantly in the long-term operation of the X-ray anode.
  • oxide cover layers can now be melted without problems and do not run off the surface during melting, cannot be explained ad hoc from the theoretical background .
  • thermal coating processes such as. B. plasma spraying, for use.
  • PVD and CVD processes in particular plasma CVD processes and sputtering processes, have also proven themselves.
  • the oxide layer of the intermediate layer consists of Al2O3 with 5-20% by weight of TiO2 and the total layer thickness of the intermediate layer is between 10 and 100 »m.
  • the molybdenum alloy TZM with typical 0.5% Ti, 0.7% Zr and 0 - 0.05% C has proven itself as the material for the base body.
  • An X-ray rotating anode consisting of the molybdenum alloy TZM, has an approx. 2 mm thick W-Re layer in the focal path area.
  • the anode surface is first provided with an intermediate layer according to the invention and then with an oxidic cover layer.
  • a completely sintered and mechanically shaped X-ray anode on the back of the anode to be coated is cleaned and roughened by means of sandblasting and, if possible, immediately provided with a 20 »m thick molybdenum layer using plasma spraying under the usual process conditions.
  • annealing takes place under a hydrogen atmosphere at about 1350 ° C. for about 2 hours.
  • the oxide powder has the following composition: 68% by weight of ZrO2, 7.5% by weight of CaO, 19% by weight of TiO2 and 5.5% by weight of SiO2
  • the rotating anode coated in this way must be subjected to an annealing treatment in order to make it useful for use in X-ray tubes.
  • the rotating anode both the base material and the layer material, is largely freed of gas inclusions and of contaminants which are volatile at higher temperatures, in order to prevent electrical flashovers as a result of the release of gas inclusions when the rotating anode is later used in the high-vacuum X-ray tube.
  • the degassing annealing takes place within a narrow temperature and time range, matched to the anode base material, in order to avoid undesired structural changes in the base material.
  • the applied layer must also be treated within a very specific temperature and time range in order to achieve melting in the desired homogeneous phase and with a slightly nubbed surface structure (orange peel layer).
  • the annealing is carried out at 1620 ° C. for 65 minutes.
  • the melted layer has the desired degree of blackening and the desired surface structure (orange peel).
  • There is no uncontrolled flow of the melting oxide layer especially not in the transition area between coated and uncoated parts of the rotating anode surface.
  • gaseous oxides evaporate from the layer surface during the annealing process, these are struck not as a disruptive layer in the originally uncoated focal path area of the rotating anode.
  • the rotating anode was then tested in an X-ray tube arrangement under practical conditions. It ran there for several days without any problems within the required limit load.
  • An X-ray rotating anode consisting of a TZM base body and a 2 mm thick W-Re layer in the focal path area is produced like the rotating anode according to Example 1, with the exception that the oxidic cover layer has the following changed composition: 68% by weight ZrO2, 7.5% by weight CaO, 19% by weight TiO2 and 5.5% by weight Al2O3
  • rotating anodes according to Examples 1 and 2 with rotating anodes which have the same oxidic cover layer but no intermediate layer according to the invention, are used with regard to their thermal emission factor as a function of temperature and time compared with each other.
  • curve 1 shows the course of the thermal emission factor ⁇ of a rotating anode produced according to Example 1 as a function of the temperature.
  • Curve 2 shows the corresponding course of a rotary anode produced in accordance with Example 1, but without an intermediate layer according to the invention. It can be seen that the course of these two curves is approximately the same.
  • Curve 3 shows the course of the thermal emission factor ⁇ of a rotating anode produced according to Example 1 after thermal aging of the rotating anode. The aging takes place by annealing the rotating anode for ten hours at a temperature which is higher than the maximum temperature that later occurs during operation.
  • Curve 4 shows the corresponding course of a thermally aged rotating anode produced in accordance with Example 1, but without an intermediate layer according to the invention. It can be clearly seen that the thermal emission coefficient shows only a slight deterioration even under long-term exposure due to the intermediate layer according to the invention, while the thermal emission coefficient of the rotating anode without the intermediate layer according to the invention drops significantly.
  • FIG. 2 shows, analogously to FIG. 1, the corresponding curves of a rotating anode produced according to Example 2 with and without an intermediate layer before and after ten hours of aging, curve 1 of the rotating anode with an intermediate layer before aging, curve 2 of the rotating anode without Intermediate layer before aging, curve 3 of the rotating anode with intermediate layer after aging and curve 4 of the rotating anode without intermediate layer after aging. It can also be seen here that the intermediate layer according to the invention achieves a significantly improved aging resistance of the thermal emission factor.

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

  • Die Erfindung betrifft eine Röntgenanode, insbesondere Drehanode, hoher Wärmeemissivität, mit einem Kohlenstoff enthaltenden Grundkörper aus einem hochschmelzenden Material sowie einem Brennfleck- bzw. Brennbahnbereich aus einem hochschmelzenden Metall oder dessen Legierungen, die zumindest auf Teilen der Oberfläche außerhalb der Brennbahn eine oxidische Deckschicht mit einer homogenen aufgeschmolzenen Phase aufweist.
  • Bei Röntgenröhrenanoden wird die zugeführte elektrische Energie nur zu einem Bruchteil in Röntgenstrahlungs-Energie umgesetzt. Der Großteil der Energie wird in unerwünschte Wärme umgesetzt, was zu einer starken Temperatur-Belastung der Anoden führt. Es hat daher in der Vergangenheit nicht an Versuchen gefehlt, die in Röntgenanoden erzeugte Wärmeenergie so rasch wie möglich, vorwiegend durch Vergrößerung der oberflächlichen Wärmeemissivität, abzuführen. Eine bekannte Maßnahme, die Wärmeemissivität der Röntgenanoden zu vergrößern, ist die Aufbringung oxidischer überzüge, die einen bestimmten Anteil an Titandioxid erhalten, wodurch sich ein Schwärzungseffekt ergibt. Diese oxidischen Deckschichten werden nach dem Schichtauftrag vielfach noch durch eine thermische Behandlung aufgeschmolzen, wodurch der Wärmeemissionsfaktor noch weiter verbessert wird und eine verbesserte Haftung der überzugsschicht am Substratmaterial erreicht wird.
  • Die EP-A-0 172 491 beschreibt eine Röntgenanode aus einer Molybdänlegierung, wie TZM, mit einem Oxidüberzug aus einer Mischung von 40 - 70 % Titanoxid, der Rest stabilisierte Oxide aus der Gruppe ZrO₂, HfO, MgO, CeO₂, La₂O₃ und SrO. In dieser Vorveröffentlichung wird beschrieben, daß durch eine Aufschmelzung des oxidischen Überzuges eine Verbesserung des thermischen Emissionskoeffizienten und eine verbesserte Haftung der Oxidschicht am Grundkörper erreicht wird. Der Nachteil einer derartigen Röntgenanode besteht darin, daß der im Grundkörper der Drehanode enthaltene Kohlenstoff eine starke Alterung der oxidischen Deckschicht bewirkt, was zu einer vorzeitigen Verschlechterung des thermischen Wärmeemissions-Koeffizienten führt.
  • Die AT-A-376 064 beschreibt eine Röntgenröhren-Drehanode mit einem Grundkörper, aus einer Kohlenstoff enthaltenden Molybdänlegierung, z. B. TZM, die außerhalb der Brennbahn mit einem Überzug aus einem oder mehreren Oxiden oder aus einem Gemisch aus einem oder mehreren Metallen mit einem oder mehreren Oxiden zur Verbesserung der Wärmeemissivität versehen ist. Entsprechend dieser Vorveröffentlichung wird vorgeschlagen, zwischen Grundkörper und oxidischen Überzug eine 10 - 200 »m dicke Zwischenschicht aus Molybdän und/oder Wolfram anzuordnen, um auf diese Art und Weise die rasche Alterung der Drehanode und damit die vorzeitige Verminderung des thermischen Emissionskoeffizienten zu verhindern. Nachteilig bei einer derartigen Drehanode ist, daß aufgeschmolzene oxidische Deckschichten praktisch nicht herstellbar sind. Es ist festgestellt worden, daß je nach Art der Aufbringung der Molybdän- und/oder Wolfram-Zwischenschicht die oxidische Deckschicht überhaupt nicht zum Aufschmelzen gebracht werden kann oder beim Aufschmelzen von der zu beschichtenden Oberfläche abläuft.
  • Die Aufgabe der vorliegenden Erfindung ist es daher, eine Röntgenröhrenanode, bestehend aus einem kohlenstoffhältigen Grundkörper sowie einer aufgeschmolzenen oxidischen Deckschicht zur Erhöhung des thermischen Emissionskoeffizienten zu schaffen, die gegenüber dem Stand der Technik eine merklich verbesserte Alterungsbeständigkeit im Hinblick auf den thermischen Emissionskoeffizienten aufweist und bei der die Aufschmelzung der oxidischen Deckschicht zu einer homogenen Phase ohne Probleme möglich ist.
  • Erfindungsgemäß wird dies dadurch erreicht, daß zwischen Grundkörper und oxidischer Deckschicht eine zweilagige Zwischenschicht mit ausgehend vom Grundkörper einer Lage Molybdän und/oder Wolfram und einer Lage Al₂O₃ mit 1 - 30 Gew.%-Anteilen TiO₂ angeordnet ist.
  • Die erfindungsgemäßen Röntgenanoden weisen durch die spezielle Zwischenschicht eine ausgezeichnet auf dem Grundkörper haftende, gute aufschmelzbare oxidische Deckschicht auf. Der thermische Emissionskoeffizient liegt für geeignete oxidische Deckschichten über 80 % und verschlechtert sich im Langzeitbetrieb der Röntgenanode nur unwesentlich.
  • Der Effekt, daß sich durch Ergänzen der bekannten Zwischenschicht aus Molybdän und/oder Wolfram durch eine weitere oxidische Lage ganz spezieller Zusammensetzung oxidische Deckschichten nunmehr problemlos aufschmelzen lassen und bei der Aufschmelzung nicht von der Oberfläche ablaufen, ist von den theoretischen Hintergründen her nicht ad hoc erklärbar.
  • Als Abscheideverfahren für die Zwischenschicht und die oxidische Deckschicht kommen vorzugsweise thermische Beschichtungsverfahren, wie z. B. Plasmaspritzen, zur Anwendung. Andere Abscheideverfahren, wie PVD- und CVD-Verfahren, insbesondere Plasma-CVD-Verfahren und Sputterverfahren, haben sich jedoch ebenso bewährt.
  • Die besten Ergebnisse hinsichtlich Aufschmelzeigenschaften und Alterungsbeständigkeit werden erzielt, wenn die oxidsche Lage der Zwischenschicht aus Al₂O₃ mit 5 - 20 Gew.%-Anteilen TiO₂ besteht und die Gesamtschichtstarke der Zwischenschicht zwischen 10 und 100 »m beträgt.
  • Als aufgeschmolzene oxidische Deckschichten haben sich insbesondere Mischungen aus ZrO₂, TiO₂ und Al₂O₃ sowie Mischungen aus TiO₂, ZrO₂, Al₂O₃ und/oder SiO₂ jeweils mit oder ohne stabilisierende Oxide wie CaO und/oder Y₂O₃ bewährt.
  • Als Material für den Grundkörper hat sich insbesondere die Molybdänlegierung TZM mit typisch 0,5 % Ti, 0,7 % Zr und 0 - 0,05 % C bewährt.
  • Im folgenden wird die Erfindung anhand von Beispielen näher erläutert.
  • Beispiel 1
  • Eine Röntgendrehanode, bestehend aus der Molybdänlegierung TZM, weist im Brennbahnbereich eine ca. 2 mm dicke W-Re-Schicht auf. Zur Erhöhung der Wärmeabstrahlfähigkeit wird die Anodenoberfläche zuerst mit einer erfindungsgemäßen Zwischenschicht und dann mit einer oxidischen Deckschicht versehen. Dazu wird eine fertig gesinterte und mechanisch umgeformte Röntgenanode auf der zu beschichtenden Anoden-Rückseite mittels Sandstrahlen gereinigt und aufgerauht und möglichst gleich anschließend unter den üblichen Verfahrensbedingungen mittels Plasmaspritzens mit einer 20 »m starken Molybdänschicht versehen. Nach dieser Beschichtung erfolgt eine Glühung unter Wasserstoffatmosphäre bei ca. 1350°C während etwa 2 Stunden. Dann erfolgt abermals durch Plasmaspritzen die Aufbringung einer oxidischen Schicht mit 13 Gew.% TiO₂, Rest Al₂O₃ in einer Schichtstärke von 20 »m.
    Unmittelbar darauf erfolgt die Aufbringung der oxidischen Deckschicht in einer Schichtstärke von 20 »m ebenfalls durch Plasmaspritzen unter den üblichen Verfahrensbedingungen.
    Das Oxidpulver weist folgende Zusammensetzung auf:
    68 Gew.% ZrO₂, 7,5 Gew.% CaO, 19 Gew.% TiO₂ sowie 5,5 Gew.% SiO₂ Die so beschichtete Drehanode muß einer Glühbehandlung unterworfen werden, um sie für den Einsatz in Röntgenröhren brauchbar zu machen. Durch die Glühung wird die Drehanode, und zwar sowohl das Grundmaterial als auch das Schichtmaterial von Gaseinschlüssen sowie von bei höheren Temperaturen flüchtigen Verunreinigungen weitgehend befreit, um beim späteren Einsatz der Drehanode in der Hochvakuum-Röntgenröhre elektrische Überschläge als Folge der Freisetzung von Gaseinschlüssen auszuschalten. Die Entgasungsglühung erfolgt, abgestimmt auf das Anoden-Grundmaterial, innerhalb eines engen Temperatur- und Zeitbereiches, um unerwünschte Strukturänderungen des Grundmaterials zu vermeiden. Andererseits muß die aufgetragene Schicht in Abhängigkeit von deren Zusammensetzung ebenfalls innerhalb eines sehr spezifischen Temperatur- und Zeitbereiches behandelt werden, um ein Aufschmelzen in der gewünschten homogenen Phase und mit einer leicht genoppten Oberflächenstruktur (Orangenhautschicht) zu erzielen.
    Die Glühung erfolgt im vorliegenden Fall bei 1620°C während 65 Minuten. Die aufgeschmolzene Schicht weist den gewünschten Schwärzungsgrad sowie die angestrebte Oberflächenstruktur (Orangenhaut) auf. Es kommt zu keinem unkontrollierten Fließen der aufschmelzenden Oxidschicht, insbesondere nicht im Übergangsbereich zwischen beschichteten und unbeschichteten Teilen der Drehanodenoberfläche. Soweit während des Glühvorganges gasförmige Oxide von der Schichtoberflache abdampfen, schlagen sich diese nicht als störender Schichtbelag im ursprünglich nicht beschichteten Brennbahnbereich der Drehanode nieder.
    Die Drehanode wurde anschließend in einer Röntgenröhren-Versuchsanordnung unter praxisnahen Bedingungen erprobt. Sie lief dort über mehrere Tage störungsfrei innerhalb der geforderten Grenzbelastung.
  • Beispiel 2
  • Eine Röntgendrehanode aus einem TZM-Grundkörper und einer 2 mm dicken W-Re-Schicht im Brennbahnbereich wird wie die Drehanode entsprechend Beispiel 1 hergestellt, mit der Ausnahme, daß die oxidische Deckschicht folgende geänderte Zusammensetzung aufweist:
    68 Gew.% ZrO₂, 7,5 Gew.% CaO, 19 Gew.% TiO₂ sowie 5,5 Gew.% Al₂O₃
  • Zum Nachweis, daß die erfindungsgemäße Zwischenschicht die Alterungsbeständigkeit des thermischen Emissionskoeffizienten gegenüber Drehanoden ohne Zwischenschicht deutlich verbessert, werden Drehanoden entsprechend den Beispielen 1 und 2 mit Drehanoden, die dieselbe oxidische Deckschicht jedoch keine erfindungsgemäße Zwischenschicht aufweisen, hinsichtlich ihres thermischen Emissionsfaktors in Abhängigkeit von Temperaturen und Zeit miteinander verglichen.
  • Die Erfindung wird dabei anhand von Figuren näher erläutert.
  • Es zeigen
  • Figur 1
    ein Diagramm, das die Temperaturabhängigkeit des thermischen Emissionsfaktors ε der nach Beispiel 1 hergestellten Drehanode sowie einer entsprechenden Drehanode ohne Zwischenschicht jeweils mit und ohne thermischer Alterung wiedergibt
    Figur 2
    ein Diagramm, das die Temperaturabhängigkeit des thermischen Emissionsfaktors ε der nach Beispiel 2 hergestellten Drehanode sowie einer entsprechenden Drehanode ohne Zwischenschicht jeweils mit und ohne thermischer Alterung wiedergibt.
  • In Figur 1 zeigt die Kurve 1 den Verlauf des thermischen Emissionsfaktors ε einer nach Beispiel 1 hergestellten Drehanode in Abhängigkeit von der Temperatur.
    Kurve 2 zeigt den entsprechenden Verlauf einer entsprechend Beispiel 1, jedoch ohne erfindungsgemäße Zwischenschicht, hergestellten Drehanode. Es ist zu sehen, daß der Verlauf dieser beiden Kurven etwa gleich ist. Kurve 3 zeigt den Verlauf des thermischen Emissionsfaktors ε einer nach Beispiel 1 hergestellten Drehanode nach einer thermischen Alterung der Drehanode. Die Alterung erfolgt durch eine zehnstündige Glühung der Drehanode bei einer Temperatur, die über der späteren im Betrieb auftretenden maximalen Temperatur liegt.
    Kurve 4 zeigt den entsprechenden Verlauf einer entsprechend Beispiel 1, jedoch ohne erfindungsgemäße Zwischenschicht, hergestellten, thermisch gealterten Drehanode.
    Es ist klar zu sehen, daß durch die erfindungsgemäße Zwischenschicht der thermische Emissionskoeffizient auch bei Langzeitbelastung eine nur geringfügige Verschlechterung zeigt, während der thermische Emissionskoeffizient der Drehanode ohne erfindungsgemäße Zwischenschicht signifikant absinkt.
  • Figur 2 Zeigt analog wie Figur 1 die entsprechenden Kurven einer nach Beispiel 2 hergestellten Drehanode mit und ohne Zwischenschicht vor und nach zehnstündiger Alterung, wobei Kurve 1 der Drehanode mit Zwischenschicht vor der Alterung, Kurve 2 der Drehanode ohne Zwischenschicht vor der Alterung, Kurve 3 der Drehanode mit Zwischenschicht nach der Alterung und Kurve 4 der Drehanode ohne Zwischenschicht nach der Alterung entsprechen. Auch hier ist zu sehen, daß durch die erfindungsgemäße Zwischenschicht eine wesentlich verbesserte Alterungsbeständigkeit des thermischen Emissionsfaktors erreicht wird.

Claims (6)

  1. Röntgenanode, insbesondere Drehanode, hoher Wärmeemissivität mit einem Kohlenstoff enthaltenden Grundkörper aus einem hochschmelzenden Material sowie einem Brennfleck- bzw. Brennbahnbereich aus einem hochschmelzenden Metall oder dessen Legierungen, die zumindest auf Teilen der Oberfläche außerhalb der Brennbahn eine oxidische Deckschicht mit einer homogenen aufgeschmolzenen Phase aufweist,
    dadurch gekennzeichnet,
    daß zwischen Grundkörper und oxidischer Deckschicht eine zweilagige Zwischenschicht mit ausgehend vom Grundkörper einer Lage Molybdän und/oder Wolfram und einer Lage Al₂O₃ mit 1 - 30 Gew.%-Anteilen TiO₂ angeordnet ist.
  2. Röntgenanode, insbesondere Drehanode, nach Anspruch 1, dadurch gekennzeichnet, daß die oxidische Lage der Zwischenschicht aus Al₂O₃ mit 5 - 20 Gew.%-Anteilen TiO₂ besteht.
  3. Röntgenanode, insbesondere Drehanode, nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Gesamtschichtstärke der Zwischenschicht zwischen 10 und 100 »m beträgt.
  4. Röntgenanode, insbesondere Drehanode, nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß die oxidische Deckschicht aus einer Mischung aus ZrO₂, TiO₂ und Al₂O₃, gegebenenfalls mit stabilisierenden Oxiden, wie CaO und/oder Y₂O₃ besteht.
  5. Röntgenanode, insbesondere Drehanode, nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß die oxidische Deckschicht aus einer Mischung aus TiO₂, ZrO₂ und SiO₂, gegebenenfalls mit stabilisierenden Oxiden, wie CaO und/oder Y₂O₃ besteht.
  6. Röntgenanode, insbesondere Drehanode, nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß der Grundkörper aus TZM besteht.
EP91203023A 1990-11-30 1991-11-20 Röntgenröhrenanode mit Oxidbeschichtung Expired - Lifetime EP0488450B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0242190A AT394642B (de) 1990-11-30 1990-11-30 Roentgenroehrenanode mit oxidbeschichtung
AT2421/90 1990-11-30

Publications (2)

Publication Number Publication Date
EP0488450A1 EP0488450A1 (de) 1992-06-03
EP0488450B1 true EP0488450B1 (de) 1995-03-08

Family

ID=3534049

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91203023A Expired - Lifetime EP0488450B1 (de) 1990-11-30 1991-11-20 Röntgenröhrenanode mit Oxidbeschichtung

Country Status (5)

Country Link
US (1) US5157706A (de)
EP (1) EP0488450B1 (de)
JP (1) JPH04269436A (de)
AT (1) AT394642B (de)
DE (1) DE59104875D1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264801A (en) * 1992-05-05 1993-11-23 Picker International, Inc. Active carbon barrier for x-ray tube targets
US20040194146A1 (en) * 2000-02-15 2004-09-30 Bates Cary Lee Set top box and methods for using the same
US6693990B1 (en) 2001-05-14 2004-02-17 Varian Medical Systems Technologies, Inc. Low thermal resistance bearing assembly for x-ray device
US7004635B1 (en) 2002-05-17 2006-02-28 Varian Medical Systems, Inc. Lubricated ball bearings
US6751292B2 (en) * 2002-08-19 2004-06-15 Varian Medical Systems, Inc. X-ray tube rotor assembly having augmented heat transfer capability
DE102005039187B4 (de) * 2005-08-18 2012-06-21 Siemens Ag Röntgenröhre
DE102005039188B4 (de) * 2005-08-18 2007-06-21 Siemens Ag Röntgenröhre
US20080081122A1 (en) * 2006-10-03 2008-04-03 H.C. Starck Inc. Process for producing a rotary anode and the anode produced by such process
CN111415852B (zh) * 2020-05-06 2024-02-09 上海联影医疗科技股份有限公司 X射线管的阳极组件、x射线管及医疗成像设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7312945A (nl) * 1973-09-20 1975-03-24 Philips Nv Draaianode voor een roentgenbuis en werkwijze voor de vervaardiging van een dergelijke anode.
AT336143B (de) * 1975-03-19 1977-04-25 Plansee Metallwerk Rontgenanode
AT337314B (de) * 1975-06-23 1977-06-27 Plansee Metallwerk Rontgenanode
AT376064B (de) * 1982-02-18 1984-10-10 Plansee Metallwerk Roentgenroehren-drehanode
DE3226858A1 (de) * 1982-07-17 1984-01-19 Philips Patentverwaltung Gmbh, 2000 Hamburg Drehanoden-roentgenroehre
US4600659A (en) * 1984-08-24 1986-07-15 General Electric Company Emissive coating on alloy x-ray tube target
US4840850A (en) * 1986-05-09 1989-06-20 General Electric Company Emissive coating for X-ray target
US4870672A (en) * 1987-08-26 1989-09-26 General Electric Company Thermal emittance coating for x-ray tube target
US4953190A (en) * 1989-06-29 1990-08-28 General Electric Company Thermal emissive coating for x-ray targets

Also Published As

Publication number Publication date
EP0488450A1 (de) 1992-06-03
DE59104875D1 (de) 1995-04-13
JPH04269436A (ja) 1992-09-25
ATA242190A (de) 1991-10-15
AT394642B (de) 1992-05-25
US5157706A (en) 1992-10-20

Similar Documents

Publication Publication Date Title
DE3303529C2 (de)
DE2610993A1 (de) Roentgenanode und verfahren zu ihrer herstellung.
EP0488450B1 (de) Röntgenröhrenanode mit Oxidbeschichtung
DE2805154A1 (de) Anode fuer roentgenroehre, ueberzug dafuer, und verfahren zu deren herstellung
EP0459567B1 (de) Strahlenquelle für quasimonochromatische Röntgenstrahlung
DE2621067A1 (de) Roentgenanode
AT1669U1 (de) Oxidationsschutzschicht für refraktärmetalle
EP0023065A1 (de) Drehanode für Röntgenröhren
AT394643B (de) Roentgenroehrenanode mit oxidbeschichtung
EP1156505A1 (de) Verfahren zur Herstellung einer elektrischen Lampe
DE69913998T2 (de) Durch heissisostatisches Pressen verbundener Körper und dessen Herstellungsverfahren
WO1996030298A1 (de) Ozonisator und verfahren zur herstellung eines solchen
EP0337007A1 (de) Hartstoff-Schutzschicht mit homogener Elementverteilung
DE3002033A1 (de) Sinterelektrode fuer entladungsroehren
DE3335602A1 (de) Gasentladungsableiter und herstellungsverfahren
CH693851A5 (de) Ozonisator und Verfahren zur Herstellung eines solchen.
EP0907960A2 (de) Kalte elektrode für gasentladungen
EP1162647B1 (de) Plasma-Verdampfungsquelle mit Kathoden-Elektrode für eine Vakuum-Beschichtungsanordnung
DE3602104A1 (de) Gleit- oder reibelement mit funktionsteil aus keramischem werkstoff sowie verfahren zu seiner herstellung
DE102013110118B4 (de) Solarabsorber und Verfahren zu dessen Herstellung
EP0487144A1 (de) Röntgenröhrenanode mit Oxidbeschichtung
DE2426387A1 (de) Bauelement fuer vakuumpumpen
DE10320700A1 (de) Vakuumgehäuse für eine Röntgenröhre
EP0168736A2 (de) Röntgendrehanode mit Oberflächenbeschichtung
DE2202827B2 (de) Gitterelektrode für elektrische Entladungsgefäß^ und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19920408

17Q First examination report despatched

Effective date: 19940725

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PLANSEE AKTIENGESELLSCHAFT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950306

REF Corresponds to:

Ref document number: 59104875

Country of ref document: DE

Date of ref document: 19950413

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: PLANSEE AKTIENGESELLSCHAFT TE REUTTE, OOSTENRIJK.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951130

Ref country code: CH

Effective date: 19951130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051120