EP0488450B1 - Anode pour tube à rayons X à couche d'oxyde - Google Patents
Anode pour tube à rayons X à couche d'oxyde Download PDFInfo
- Publication number
- EP0488450B1 EP0488450B1 EP91203023A EP91203023A EP0488450B1 EP 0488450 B1 EP0488450 B1 EP 0488450B1 EP 91203023 A EP91203023 A EP 91203023A EP 91203023 A EP91203023 A EP 91203023A EP 0488450 B1 EP0488450 B1 EP 0488450B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- anode
- ray
- intermediate layer
- oxidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010410 layer Substances 0.000 claims description 69
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 23
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- 229910052593 corundum Inorganic materials 0.000 claims description 9
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims 4
- 230000032683 aging Effects 0.000 description 11
- 238000000576 coating method Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910001182 Mo alloy Inorganic materials 0.000 description 4
- 238000007750 plasma spraying Methods 0.000 description 4
- 238000003878 thermal aging Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 229910004140 HfO Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/10—Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
- H01J35/105—Cooling of rotating anodes, e.g. heat emitting layers or structures
Definitions
- the invention relates to an X-ray anode, in particular a rotating anode, with high heat emissivity, with a carbon-containing base body made of a high-melting material and a focal spot or focal path region made of a high-melting metal or its alloys, which has an oxidic covering layer with a coating on at least parts of the surface outside the focal path homogeneous melted phase.
- EP-A-0 172 491 describes an X-ray anode made of a molybdenum alloy, such as TZM, with an oxide coating from a mixture of 40-70% titanium oxide, the rest being stabilized oxides from the group ZrO2, HfO, MgO, CeO2, La2O3 and SrO.
- TZM molybdenum alloy
- HfO, MgO, CeO2, La2O3 and SrO oxide coating from the group ZrO2, HfO, MgO, CeO2, La2O3 and SrO.
- melting the oxide coating improves the thermal emission coefficient and improves the adhesion of the oxide layer to the base body.
- the disadvantage of such an X-ray anode is that the carbon contained in the base body of the rotating anode causes the oxidic cover layer to age rapidly, which leads to a premature deterioration in the thermal heat emission coefficient.
- AT-A-376 064 describes an X-ray tube rotating anode with a base body made of a carbon-containing molybdenum alloy, e.g. B. TZM, which is provided outside the focal path with a coating of one or more oxides or a mixture of one or more metals with one or more oxides to improve the heat emissivity.
- a 10 - 200 »m thick intermediate layer made of molybdenum and / or tungsten between the base body and the oxidic coating in order to prevent the rapid aging of the rotating anode and thus the premature reduction of the thermal emission coefficient.
- a disadvantage of such a rotating anode is that melted oxide cover layers are practically impossible to produce. It has been found that, depending on the type of application of the molybdenum and / or tungsten intermediate layer, the oxidic top layer cannot be melted at all or runs off from the surface to be coated during melting.
- the object of the present invention is therefore to provide an X-ray tube anode consisting of a carbon-containing base body and a melted oxide cover layer to increase the to create thermal emission coefficients which have a noticeably improved aging resistance with respect to the thermal emission coefficient compared to the prior art and in which the melting of the oxide cover layer into a homogeneous phase is possible without problems.
- a two-layer intermediate layer is arranged with a layer of molybdenum and / or tungsten and a layer of Al2O3 with 1 - 30 wt.
- the X-ray anodes according to the invention have an oxidic cover layer that adheres well to the base body and has good melting properties.
- the thermal emission coefficient is over 80% for suitable oxidic cover layers and deteriorates only insignificantly in the long-term operation of the X-ray anode.
- oxide cover layers can now be melted without problems and do not run off the surface during melting, cannot be explained ad hoc from the theoretical background .
- thermal coating processes such as. B. plasma spraying, for use.
- PVD and CVD processes in particular plasma CVD processes and sputtering processes, have also proven themselves.
- the oxide layer of the intermediate layer consists of Al2O3 with 5-20% by weight of TiO2 and the total layer thickness of the intermediate layer is between 10 and 100 »m.
- the molybdenum alloy TZM with typical 0.5% Ti, 0.7% Zr and 0 - 0.05% C has proven itself as the material for the base body.
- An X-ray rotating anode consisting of the molybdenum alloy TZM, has an approx. 2 mm thick W-Re layer in the focal path area.
- the anode surface is first provided with an intermediate layer according to the invention and then with an oxidic cover layer.
- a completely sintered and mechanically shaped X-ray anode on the back of the anode to be coated is cleaned and roughened by means of sandblasting and, if possible, immediately provided with a 20 »m thick molybdenum layer using plasma spraying under the usual process conditions.
- annealing takes place under a hydrogen atmosphere at about 1350 ° C. for about 2 hours.
- the oxide powder has the following composition: 68% by weight of ZrO2, 7.5% by weight of CaO, 19% by weight of TiO2 and 5.5% by weight of SiO2
- the rotating anode coated in this way must be subjected to an annealing treatment in order to make it useful for use in X-ray tubes.
- the rotating anode both the base material and the layer material, is largely freed of gas inclusions and of contaminants which are volatile at higher temperatures, in order to prevent electrical flashovers as a result of the release of gas inclusions when the rotating anode is later used in the high-vacuum X-ray tube.
- the degassing annealing takes place within a narrow temperature and time range, matched to the anode base material, in order to avoid undesired structural changes in the base material.
- the applied layer must also be treated within a very specific temperature and time range in order to achieve melting in the desired homogeneous phase and with a slightly nubbed surface structure (orange peel layer).
- the annealing is carried out at 1620 ° C. for 65 minutes.
- the melted layer has the desired degree of blackening and the desired surface structure (orange peel).
- There is no uncontrolled flow of the melting oxide layer especially not in the transition area between coated and uncoated parts of the rotating anode surface.
- gaseous oxides evaporate from the layer surface during the annealing process, these are struck not as a disruptive layer in the originally uncoated focal path area of the rotating anode.
- the rotating anode was then tested in an X-ray tube arrangement under practical conditions. It ran there for several days without any problems within the required limit load.
- An X-ray rotating anode consisting of a TZM base body and a 2 mm thick W-Re layer in the focal path area is produced like the rotating anode according to Example 1, with the exception that the oxidic cover layer has the following changed composition: 68% by weight ZrO2, 7.5% by weight CaO, 19% by weight TiO2 and 5.5% by weight Al2O3
- rotating anodes according to Examples 1 and 2 with rotating anodes which have the same oxidic cover layer but no intermediate layer according to the invention, are used with regard to their thermal emission factor as a function of temperature and time compared with each other.
- curve 1 shows the course of the thermal emission factor ⁇ of a rotating anode produced according to Example 1 as a function of the temperature.
- Curve 2 shows the corresponding course of a rotary anode produced in accordance with Example 1, but without an intermediate layer according to the invention. It can be seen that the course of these two curves is approximately the same.
- Curve 3 shows the course of the thermal emission factor ⁇ of a rotating anode produced according to Example 1 after thermal aging of the rotating anode. The aging takes place by annealing the rotating anode for ten hours at a temperature which is higher than the maximum temperature that later occurs during operation.
- Curve 4 shows the corresponding course of a thermally aged rotating anode produced in accordance with Example 1, but without an intermediate layer according to the invention. It can be clearly seen that the thermal emission coefficient shows only a slight deterioration even under long-term exposure due to the intermediate layer according to the invention, while the thermal emission coefficient of the rotating anode without the intermediate layer according to the invention drops significantly.
- FIG. 2 shows, analogously to FIG. 1, the corresponding curves of a rotating anode produced according to Example 2 with and without an intermediate layer before and after ten hours of aging, curve 1 of the rotating anode with an intermediate layer before aging, curve 2 of the rotating anode without Intermediate layer before aging, curve 3 of the rotating anode with intermediate layer after aging and curve 4 of the rotating anode without intermediate layer after aging. It can also be seen here that the intermediate layer according to the invention achieves a significantly improved aging resistance of the thermal emission factor.
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Coating By Spraying Or Casting (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Claims (6)
- Anode pour tube à rayons X, en particulier anode tournante, à émittance thermique élevée, comprenant un corps de base, contenant du carbone et formé d'une matière à haut point de fusion, ainsi qu'une zone de trace focale en un métal à haut point de fusion ou. en alliages de tels métaux, qui présente au moins sur des parties de la surface situées en dehors de la trace focale une couche de revêtement d'oxydes à phase homogène appliquée par fusion,
caractérisée en ce que
une couche intermédiaire à deux strates, qui comprend en partant du corps de base une strate de molybdène et/ou de tungstène et une strate de Al₂O₃ contenant des proportions de 1 à 30% en poids de TiO₂, est disposée entre le corps de base et la couche de revêtement d'oxydes. - Anode pour tube à rayons X, en particulier anode tournante, selon la revendication 1, caractérisée en ce que la strate d'oxydes de la couche intermédiaire se compose de Al₂O₃ contenant des proportions de TiO₂ de 5 à 20% en poids.
- Anode pour tube à rayons X, en particulier anode tournante, selon l'une des revendications 1 ou 2, caractérisée en ce que l'épaisseur totale de couche de la couche intermédiaire est comprise entre 10 et 100 »m.
- Anode pour tube à rayons X, en particulier anode tournante, selon l'une des revendications 1 à 3, caractérisée en ce que la couche de revêtement d'oxydes se compose d'un mélange de ZrO₂, TiO₂ et Al₂O₃, et éventuellement d'oxydes stabilisants, tels que CaO et/ou Y₂O₃.
- Anode pour tube à rayons X, en particulier anode tournante, selon l'une des revendications 1 à 3, caractérisée en ce que la couche de revêtement d'oxydes se compose d'un mélange de TiO₂, ZrO₂ et SiO₂, et éventuellement d'oxydes stabilisants, tels que CaO et/ou Y₂O₃.
- Anode pour tube à rayons X, en particulier anode tournante, selon l'une des revendications 1 à 5, caractérisée en ce que le corps de base se compose d'un alliage titane-zirconium-molybdène, ou TZM.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT2421/90 | 1990-11-30 | ||
AT0242190A AT394642B (de) | 1990-11-30 | 1990-11-30 | Roentgenroehrenanode mit oxidbeschichtung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0488450A1 EP0488450A1 (fr) | 1992-06-03 |
EP0488450B1 true EP0488450B1 (fr) | 1995-03-08 |
Family
ID=3534049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91203023A Expired - Lifetime EP0488450B1 (fr) | 1990-11-30 | 1991-11-20 | Anode pour tube à rayons X à couche d'oxyde |
Country Status (5)
Country | Link |
---|---|
US (1) | US5157706A (fr) |
EP (1) | EP0488450B1 (fr) |
JP (1) | JPH04269436A (fr) |
AT (1) | AT394642B (fr) |
DE (1) | DE59104875D1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5264801A (en) * | 1992-05-05 | 1993-11-23 | Picker International, Inc. | Active carbon barrier for x-ray tube targets |
US20040194146A1 (en) * | 2000-02-15 | 2004-09-30 | Bates Cary Lee | Set top box and methods for using the same |
US6693990B1 (en) | 2001-05-14 | 2004-02-17 | Varian Medical Systems Technologies, Inc. | Low thermal resistance bearing assembly for x-ray device |
US7004635B1 (en) | 2002-05-17 | 2006-02-28 | Varian Medical Systems, Inc. | Lubricated ball bearings |
US6751292B2 (en) * | 2002-08-19 | 2004-06-15 | Varian Medical Systems, Inc. | X-ray tube rotor assembly having augmented heat transfer capability |
DE102005039187B4 (de) * | 2005-08-18 | 2012-06-21 | Siemens Ag | Röntgenröhre |
DE102005039188B4 (de) * | 2005-08-18 | 2007-06-21 | Siemens Ag | Röntgenröhre |
US20080081122A1 (en) * | 2006-10-03 | 2008-04-03 | H.C. Starck Inc. | Process for producing a rotary anode and the anode produced by such process |
CN111415852B (zh) * | 2020-05-06 | 2024-02-09 | 上海联影医疗科技股份有限公司 | X射线管的阳极组件、x射线管及医疗成像设备 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7312945A (nl) * | 1973-09-20 | 1975-03-24 | Philips Nv | Draaianode voor een roentgenbuis en werkwijze voor de vervaardiging van een dergelijke anode. |
AT336143B (de) * | 1975-03-19 | 1977-04-25 | Plansee Metallwerk | Rontgenanode |
AT337314B (de) * | 1975-06-23 | 1977-06-27 | Plansee Metallwerk | Rontgenanode |
AT376064B (de) * | 1982-02-18 | 1984-10-10 | Plansee Metallwerk | Roentgenroehren-drehanode |
DE3226858A1 (de) * | 1982-07-17 | 1984-01-19 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Drehanoden-roentgenroehre |
US4600659A (en) * | 1984-08-24 | 1986-07-15 | General Electric Company | Emissive coating on alloy x-ray tube target |
US4840850A (en) * | 1986-05-09 | 1989-06-20 | General Electric Company | Emissive coating for X-ray target |
US4870672A (en) * | 1987-08-26 | 1989-09-26 | General Electric Company | Thermal emittance coating for x-ray tube target |
US4953190A (en) * | 1989-06-29 | 1990-08-28 | General Electric Company | Thermal emissive coating for x-ray targets |
-
1990
- 1990-11-30 AT AT0242190A patent/AT394642B/de not_active IP Right Cessation
-
1991
- 1991-11-15 JP JP3326633A patent/JPH04269436A/ja not_active Withdrawn
- 1991-11-20 DE DE59104875T patent/DE59104875D1/de not_active Expired - Fee Related
- 1991-11-20 EP EP91203023A patent/EP0488450B1/fr not_active Expired - Lifetime
- 1991-11-21 US US07/795,790 patent/US5157706A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AT394642B (de) | 1992-05-25 |
EP0488450A1 (fr) | 1992-06-03 |
JPH04269436A (ja) | 1992-09-25 |
DE59104875D1 (de) | 1995-04-13 |
ATA242190A (de) | 1991-10-15 |
US5157706A (en) | 1992-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3303529C2 (fr) | ||
DE2805154C2 (de) | Röntgenröhren-Anode und Verfahren zu deren Herstellung | |
DE2610993A1 (de) | Roentgenanode und verfahren zu ihrer herstellung. | |
DE3151101C2 (de) | Gleichspannungs-Gasentladungsanzeigevorrichtung | |
EP0488450B1 (fr) | Anode pour tube à rayons X à couche d'oxyde | |
EP0459567B1 (fr) | Source quasi-monochromatique de rayons X | |
DE2621067A1 (de) | Roentgenanode | |
EP0023065A1 (fr) | Anode tournante pour tubes à rayons X | |
AT394643B (de) | Roentgenroehrenanode mit oxidbeschichtung | |
DE69913998T2 (de) | Durch heissisostatisches Pressen verbundener Körper und dessen Herstellungsverfahren | |
DE19822841B4 (de) | Ozonisator und Verfahren zur Herstellung eines solchen | |
WO1996030298A1 (fr) | Ozoniseur et procede de fabrication | |
EP0337007A1 (fr) | Couche de protection en matériau dur ayant une distribution homogène de particules | |
DE3002033A1 (de) | Sinterelektrode fuer entladungsroehren | |
DE69017877T2 (de) | Röntgendrehanode. | |
DE112018002438B4 (de) | Hochtemperaturkomponente | |
DE69718363T2 (de) | Thermionische Kathode und Verfahren zu ihrer Herstellung | |
EP1162647B1 (fr) | Source pour évaporation par plasma avec electrode cathodique pour un dispositif de dépot de couche | |
DE3602104A1 (de) | Gleit- oder reibelement mit funktionsteil aus keramischem werkstoff sowie verfahren zu seiner herstellung | |
DE102013110118B4 (de) | Solarabsorber und Verfahren zu dessen Herstellung | |
EP0487144A1 (fr) | Anode pour tube à rayons X munie d'une couche d'oxyde | |
DE2426387A1 (de) | Bauelement fuer vakuumpumpen | |
DE10320700A1 (de) | Vakuumgehäuse für eine Röntgenröhre | |
EP0168736A2 (fr) | Anode tournante à revêtement de surface pour tubes à rayons X | |
DE3751168T2 (de) | Struktur einer indirekt geheizten Kathode für Kathodenstrahlröhren. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19920408 |
|
17Q | First examination report despatched |
Effective date: 19940725 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: PLANSEE AKTIENGESELLSCHAFT |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950306 |
|
REF | Corresponds to: |
Ref document number: 59104875 Country of ref document: DE Date of ref document: 19950413 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: PLANSEE AKTIENGESELLSCHAFT TE REUTTE, OOSTENRIJK. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19951120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19951130 Ref country code: CH Effective date: 19951130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19951120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960731 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051120 |