DE102005039188B4 - Röntgenröhre - Google Patents
Röntgenröhre Download PDFInfo
- Publication number
- DE102005039188B4 DE102005039188B4 DE102005039188A DE102005039188A DE102005039188B4 DE 102005039188 B4 DE102005039188 B4 DE 102005039188B4 DE 102005039188 A DE102005039188 A DE 102005039188A DE 102005039188 A DE102005039188 A DE 102005039188A DE 102005039188 B4 DE102005039188 B4 DE 102005039188B4
- Authority
- DE
- Germany
- Prior art keywords
- anode
- ray tube
- cathode
- tube according
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/10—Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
- H01J35/105—Cooling of rotating anodes, e.g. heat emitting layers or structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/12—Cooling non-rotary anodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/08—Targets (anodes) and X-ray converters
- H01J2235/081—Target material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/08—Targets (anodes) and X-ray converters
- H01J2235/088—Laminated targets, e.g. plurality of emitting layers of unique or differing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/12—Cooling
- H01J2235/1204—Cooling of the anode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/12—Cooling
- H01J2235/1225—Cooling characterised by method
- H01J2235/1291—Thermal conductivity
Landscapes
- X-Ray Techniques (AREA)
Abstract
Röntgenröhre mit
einer Kathode (2) und einer aus einem ersten Material hergestellten
Anode (3), wobei die Anode (3) an ihrer der Kathode (2) abgewandten
ersten Seite zumindest abschnittsweise mit einem aus einem eine
höhere
Wärmeleitfähigkeit
als das erste Material aufweisenden zweiten Material hergestellten
Wärmeleitelement
(4) zum Abführen
von Wärme
versehen ist, wobei das zweite Material eine Wärmeleitfähigkeit von zumindest 500 W/mK
aufweist, dadurch gekennzeichnet, dass das zweite Material aus mit
Titan dotiertem Grafit hergestellt ist.
Description
- Die Erfindung betrifft eine Röntgenröhre nach dem Oberbegriff des Anspruchs 1.
- Bei Röntgenröhren nach dem Stand der Technik ist eine Anode aus einem ersten Material hergestellt, welches üblicherweise aus einem einen hohen Schmelzpunkt aufweisenden Metall gebildet ist. Die Anode ist an einer der Kathode abgewandten Seite zumindest abschnittsweise mit einer Schicht zum Abführen von Wärme versehen. Die Schicht ist aus einem zweiten Material hergestellt, welches eine höhere Wärmeleitfähigkeit als das erste Material aufweist. Derartige Anoden finden bei unterschiedlichen Konstruktionen von Röntgenröhren, beispielsweise bei Röntgenröhren mit Festanoden, Drehanoden oder bei Drehkolbenröhren, Verwendung.
- Die Leistung von Röntgenröhren wird insbesondere durch die thermische Belastbarkeit der Anode begrenzt. Zur Erhöhung der thermischen Belastbarkeit der Anode sind nach dem Stand der Technik verschiedene Konstruktionen bekannt, bei denen versucht wird, die durch den abgebremsten Elektronenstrahl eingetragene Wärme auf eine möglichst große Fläche zu verteilen. Zu diesen Konstruktionen gehören beispielsweise Röntgenröhren mit Drehanoden oder Drehkolbenröhren. Ferner ist mit einer Vielzahl unterschiedlicher Konstruktionen versucht worden, die Anode möglichst effizient zu kühlen. Damit hat eine Steigerung der Leistung von Röntgenröhren erreicht werden können.
- Eine gattungsgemäße Röntgenröhre ist aus der
DE 196 50 061 A1 bekannt. - Die
DE 103 01 069 A1 und dieDE 2 154 888 A1 beschreiben Röntgenröhren, bei denen die Anode auf einer aus Grafit hergestellten Scheibe angebracht ist. - Die
US 5,943,389 A beschreibt eine Drehanode für eine Röntgenröhre, bei der die auf einem Kohlenstoff-Kohlenstoff-Material angebrachte Anode über Fasern mit einer gegenüberliegenden Fläche des Kohlenstoff-Kohlenstoff-Materials verbunden ist. - Die WO 03/043046 A1 offenbart eine Anode, welche zur Verminderung der Erzeugung von Sekundärelektronen mit aus Kohlenstoff hergestellten Nanotubes beschichtet ist.
- Die
US 4,271,372 A betrifft schließlich eine Anode, welche auf einem aus einem porösen Material hergestellten Trägerkörper angebracht ist. Die Poren des porösen Trägerkörpers sind mit einem Metall infiltriert. - Aufgabe der Erfindung ist es, eine Röntgenröhre mit weiter verbesserter Leistung anzugeben.
- Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Zweckmäßige Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 10.
- Nach Maßgabe der Erfindung ist vorgesehen, dass das zweite Material aus mit Titan dotiertem Grafit hergestellt ist. – Damit kann ein erheblich verbesserter Abtransport der Wärme von der Anode realisiert werden. Die Leistung der vorgeschlagenen Röntgenröhre kann um bis zu 15% verbessert werden. Das vorgeschlagene Material weist zumindest in zwei kristallografischen Ebenen eine Wärmeleitfähigkeit von zumindest 690 W/mK bei Raumtemperatur auf. Die Wärmeleitfähigkeit des vorgeschlagenen Grafits liegt damit deutlich höher als die Wärmeleitfähigkeit herkömmlichen Grafits oder von Kupfer. Insoweit hat es sich als zweckmäßig erwiesen, den Grafit im Wärmeleitelement so zu orientieren, dass zumindest eine die vorgenannte hohe Wärmeleitfähigkeit aufweisende kristallografische E bene im Wesentlichen senkrecht zur ersten Seite orientiert ist.
- Nach einer weiteren Ausgestaltung der Erfindung ist das Wärmeleitelement in einer aus Kupfer hergestellten Trägerstruktur aufgenommen. Die Trägerstruktur kann Bestandteil der aus dem ersten Material hergestellten Anode sein. Es kann sich aber auch um ein gesondertes Bauteil handeln, welches das Wärmeleitelement aufnimmt und an die erste Seite montiert ist.
- Nach einer weiteren Ausgestaltung ist vorgesehen, dass das erste Material aus der folgenden Gruppe ausgewählt ist: Cu, Rh, Mo, Fe, Ni, Co, Cr, Ti, W oder eine Legierung, welche vorwiegend eines der vorgenannten Metalle enthält. Ein derartiges erstes Material weist einen besonders hohen Schmelzpunkt auf und ermöglicht einen Betrieb der Anode bei hohen Temperaturen.
- Nach einer weiteren vorteilhaften Ausgestaltung ist die Anode an ihrer der Kathode zugewandten zweiten Seite zumindest in einer Brennzone mit einer aus einem dritten Material gebildeten Schicht versehen, wobei das dritte Material bei einer Temperatur von 800°C einen geringeren Dampfdruck als das erste Material aufweist. Damit kann ein unerwünschtes Abdampfen des ersten Materials bei einem Betrieb der Anode bei hohen Temperaturen vermindert werden. Infolgedessen können sich an einem Röntgenaustrittsfenster keine aus dem ersten Material gebildeten Ablagerungen niederschlagen, welche nachteiligerweise Röntgenstrahlung absorbieren. Die vorgeschlagene Röntgenröhre kann also bei hohen Anodentemperaturen dauerhaft ohne Leistungsverlust betrieben werden.
- Das dritte Material ist zweckmäßigerweise aus der folgenden Gruppe ausgewählt: SiO2, TiO2, CrN, TaC, HfC, WC, WB, Re, TiB, HfB, TiAlN, TiAlCN, B, Co, Ni, Ti, V, Pt, Ta. Die genannten Verbindungen zeichnen sich durch eine sehr geringe Bildungsenthalpie und damit nach allgemeiner praktischer Erfahrung durch einen besonders geringen Dampfdruck aus.
- Als drittes Material kann auch W verwendet werden, falls als erstes Material ein von W verschiedenes Material verwendet wird.
- Nach einer vorteilhaften Ausgestaltung kann das SiO2 mit aus Kohlenstoff oder TiO2 hergestellten Füllkörpern versehen sein. Die vorgeschlagene Ausführungsvariante zeichnet sich durch eine verbesserte Festigkeit des dritten Materials, insbesondere bei hohen Temperaturen, aus. Nach einer vorteilhaften Ausgestaltung weist die Schicht eine Dicke im Bereich von 0,2 bis 1,0 μm auf. Besonders zweckmäßig hat sich eine Dicke der Schicht im Bereich von 0,3 bis 0,8 μm erwiesen.
- Die Anode kann eine Festanode oder eine relativ zur Kathode drehbare Drehanode sein. Es kann auch sein, dass die Anode Bestandteil einer Drehkolbenröhre ist. Insbesondere bei einer Verwendung der erfindungsgemäßen Anode als Bestandteil einer Drehanode oder einer Drehkolbenröhre können besonders hohe Leistungen erzielt werden.
- Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der einzigen Zeichnung näher erläutert.
- In der einzigen Zeichnung ist eine Schnittansicht einer Röntgenröhre mit Festanode schematisch gezeigt. In einem vakuumdichten Gehäuse
1 ist gegenüberliegend einer Kathode2 eine, z.B. aus Wolfram hergestellte, Anode3 vorgesehen. An der Anode3 ist an der der Kathode2 abgewandten ersten Seite ein Wärmeleitelement4 angebracht. Das Wärmeleitelement4 besteht aus einem Material, welches im Vergleich zum Anodenmaterial eine höhere Wärmeleitfähigkeit aufweist. Das Wärmeleitelement4 kann beispielsweise mit aus Titan dotiertem Grafit mit einer Wärmeleitfähigkeit von > 650 w/mK hergestellt sein. Soweit das Wärmeleitelement4 hinsichtlich seiner Wärmeleitfä higkeit anisotrop ist, ist es so an der Anode3 angebracht, dass die Richtung der maximalen Wärmeleitfähigkeit etwa senkrecht zur Oberfläche der Anode3 verläuft. - Die Anode
3 ist an ihrer der Kathode2 zugewandten zweiten Seite mit einer, z.B. aus TaC oder HfC hergestellten Schicht6 versehen. Das zur Herstellung der Schicht6 verwendete Material weist einen geringeren Dampfdruck bei 800°C als das zur Herstellung der Anode3 verwendete Material auf. Infolgedessen kann damit ein Abdampfen von Anodenmaterial und dessen unerwünschte Ablagerung an einem Röntgenaustrittsfenster7 vermieden werden. - Die Schicht
6 weist zweckmäßigerweise eine Dicke von 300 bis 700 nm auf. Sie kann beispielsweise mittels eines Sol-Gel-Verfahrens oder eines PVD-Verfahrens auf die Anode3 aufgebracht werden. - Zur Herstellung des Wärmeleitelements
4 eignen sich insbesondere auch aus Grafit hergestellte Fasern, welche beispielsweise von der Firma Cytec Engineered Materials GmbH unter der Marke "THORNEL CARBON FIBRES" angeboten werden. Desgleichen eignen sich von derselben Firma unter der Marke "THERMALGRAF" angebotene Grafitfasern. Aus den vorgenannten Fasern können Platten hergestellt werden, welche wiederum das Ausgangsmaterial zur Herstellung des Wärmeleitelements4 bilden.
Claims (10)
- Röntgenröhre mit einer Kathode (
2 ) und einer aus einem ersten Material hergestellten Anode (3 ), wobei die Anode (3 ) an ihrer der Kathode (2 ) abgewandten ersten Seite zumindest abschnittsweise mit einem aus einem eine höhere Wärmeleitfähigkeit als das erste Material aufweisenden zweiten Material hergestellten Wärmeleitelement (4 ) zum Abführen von Wärme versehen ist, wobei das zweite Material eine Wärmeleitfähigkeit von zumindest 500 W/mK aufweist, dadurch gekennzeichnet, dass das zweite Material aus mit Titan dotiertem Grafit hergestellt ist. - Röntgenröhre nach Anspruch 1 wobei das Wärmeleitelement (
4 ) in einer aus Kupfer hergestellten Trägerstruktur (5 ) aufgenommen ist. - Röntgenröhre nach Anspruch 1 oder 2, wobei das erste Material aus der folgenden Gruppe ausgewählt ist: Cu, Rh, Mo, Fe, Ni, Co, Cr, Ti, W oder eine Legierung, welche vorwiegend eines der vorgenannten Metalle enthält.
- Röntgenröhre nach einem der vorhergehenden Ansprüche, wobei die Anode (
3 ) an ihrer der Kathode (2 ) zugewandten zweiten Seite zumindest in einer Brennzone mit einer aus einem dritten Material gebildeten Schicht (6 ) versehen ist, wobei das dritte Material bei einer Temperatur von 800°C einen geringeren Dampfdruck als das erste Material aufweist. - Röntgenröhre nach Anspruch 4, wobei das dritte Material aus der folgenden Gruppe ausgewählt ist: SiO2, TiO2, CrN, TaC, HfC, WC, WB, Re, TiB, HfB, TiAlN, TiAlCN, B, V, Pt, Ta.
- Röntgenröhre nach Anspruch 4, wobei als drittes Material W verwendet wird, falls als erstes Material ein von W verschiedenes Material verwendet wird.
- Röntgenröhre nach Anspruch 5, wobei das SiO2 mit aus Kohlenstoff oder TiO2 hergestellten Füllkörpern versehen ist.
- Röntgenröhre nach einem der Ansprüche 4 bis 7, wobei die Schicht eine Dicke von 0,2 bis 1,0 μm aufweist.
- Röntgenröhre nach einem der vorhergehenden Ansprüche, wobei die Anode (
3 ) eine Festanode oder relativ zur Kathode (2 ) drehbare Drehanode ist. - Röntgenröhre nach einem der vorhergehenden Ansprüche, wobei die Anode (
3 ) Bestandteil einer Drehkolbenröhre ist.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005039188A DE102005039188B4 (de) | 2005-08-18 | 2005-08-18 | Röntgenröhre |
US11/504,839 US7406156B2 (en) | 2005-08-18 | 2006-08-15 | X-ray tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005039188A DE102005039188B4 (de) | 2005-08-18 | 2005-08-18 | Röntgenröhre |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102005039188A1 DE102005039188A1 (de) | 2007-02-22 |
DE102005039188B4 true DE102005039188B4 (de) | 2007-06-21 |
Family
ID=37697326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102005039188A Expired - Fee Related DE102005039188B4 (de) | 2005-08-18 | 2005-08-18 | Röntgenröhre |
Country Status (2)
Country | Link |
---|---|
US (1) | US7406156B2 (de) |
DE (1) | DE102005039188B4 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005039187B4 (de) * | 2005-08-18 | 2012-06-21 | Siemens Ag | Röntgenröhre |
AT10598U1 (de) * | 2007-09-28 | 2009-06-15 | Plansee Metall Gmbh | Ríntgenanode mit verbesserter warmeableitung |
WO2009043344A1 (de) | 2007-10-02 | 2009-04-09 | Hans-Henning Reis | Röntgen-drehanodenteller und verfahren zu seiner herstellung |
US9449782B2 (en) * | 2012-08-22 | 2016-09-20 | General Electric Company | X-ray tube target having enhanced thermal performance and method of making same |
DE102014208729A1 (de) * | 2014-05-09 | 2015-11-12 | Incoatec Gmbh | Zweiteilige Hochspannungs-Vakuumdurchführung für eine Elektronenröhre |
US11282668B2 (en) * | 2016-03-31 | 2022-03-22 | Nano-X Imaging Ltd. | X-ray tube and a controller thereof |
DE102016215378B4 (de) * | 2016-08-17 | 2023-05-11 | Siemens Healthcare Gmbh | Röntgenröhre und ein Röntgenstrahler mit der Röntgenröhre |
EP3933881A1 (de) | 2020-06-30 | 2022-01-05 | VEC Imaging GmbH & Co. KG | Röntgenquelle mit mehreren gittern |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2154888A1 (de) * | 1971-11-04 | 1973-05-17 | Siemens Ag | Roentgenroehre |
US4271372A (en) * | 1976-04-26 | 1981-06-02 | Siemens Aktiengesellschaft | Rotatable anode for an X-ray tube composed of a coated, porous body |
DE19650061A1 (de) * | 1995-12-05 | 1997-06-12 | Gen Electric | Kohlenstoff-Kohlenstoff-Verbundstruktur für eine umlaufende Röntgenanode |
US5943389A (en) * | 1998-03-06 | 1999-08-24 | Varian Medical Systems, Inc. | X-ray tube rotating anode |
WO2003043046A1 (en) * | 2001-11-13 | 2003-05-22 | United States Of America As Represented By The Secretary Of The Air Force | Carbon nanotube coated anode |
DE10301069A1 (de) * | 2003-01-14 | 2004-07-22 | Siemens Ag | Thermisch belastbarer Werkstoffverbund aus einem faserverstärkten und einem weiteren Werkstoff |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2125896A (en) * | 1934-07-10 | 1938-08-09 | Westinghouse Electric & Mfg Co | Article of manufacture and method of producing the same |
US2345722A (en) * | 1942-04-30 | 1944-04-04 | Gen Electric X Ray Corp | X-ray tube |
US2829271A (en) * | 1953-08-10 | 1958-04-01 | Cormack E Boucher | Heat conductive insulating support |
US2790102A (en) * | 1955-10-04 | 1957-04-23 | Dunlee Corp | X-ray tube anode |
US3795832A (en) * | 1972-02-28 | 1974-03-05 | Machlett Lab Inc | Target for x-ray tubes |
US3969131A (en) * | 1972-07-24 | 1976-07-13 | Westinghouse Electric Corporation | Coated graphite members and process for producing the same |
US3842305A (en) * | 1973-01-03 | 1974-10-15 | Machlett Lab Inc | X-ray tube anode target |
US3894863A (en) * | 1973-03-22 | 1975-07-15 | Fiber Materials | Graphite composite |
US3959685A (en) * | 1975-02-18 | 1976-05-25 | Konieczynski Ronald D | Heat sink target |
US4103198A (en) * | 1977-07-05 | 1978-07-25 | Raytheon Company | Rotating anode x-ray tube |
DE2928993C2 (de) * | 1979-07-18 | 1982-12-09 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Verfahren zur Herstellung einer Röntgenröhren-Drehanode |
DE3040719A1 (de) * | 1980-10-29 | 1982-05-19 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Roentgenroehren-drehanode |
JPH04118841A (ja) * | 1990-05-16 | 1992-04-20 | Toshiba Corp | 回転陽極x線管およびその製造方法 |
AT394642B (de) * | 1990-11-30 | 1992-05-25 | Plansee Metallwerk | Roentgenroehrenanode mit oxidbeschichtung |
US5541975A (en) * | 1994-01-07 | 1996-07-30 | Anderson; Weston A. | X-ray tube having rotary anode cooled with high thermal conductivity fluid |
US5673301A (en) * | 1996-04-03 | 1997-09-30 | General Electric Company | Cooling for X-ray systems |
JP3663111B2 (ja) * | 1999-10-18 | 2005-06-22 | 株式会社東芝 | 回転陽極型x線管 |
US6256376B1 (en) * | 1999-12-17 | 2001-07-03 | General Electric Company | Composite x-ray target |
KR100460585B1 (ko) * | 1999-12-24 | 2004-12-09 | 니뽄 가이시 가부시키가이샤 | 히트 싱크재 및 그 제조 방법 |
JP2002080280A (ja) * | 2000-06-23 | 2002-03-19 | Sumitomo Electric Ind Ltd | 高熱伝導性複合材料及びその製造方法 |
EP1432005A4 (de) * | 2001-08-29 | 2006-06-21 | Toshiba Kk | Röntgenröhre des dreh-positivpoltyps |
US6799627B2 (en) * | 2002-06-10 | 2004-10-05 | Santoku America, Inc. | Castings of metallic alloys with improved surface quality, structural integrity and mechanical properties fabricated in titanium carbide coated graphite molds under vacuum |
US20040013234A1 (en) * | 2002-06-28 | 2004-01-22 | Siemens Aktiengesellschaft | X-ray tube rotating anode with an anode body composed of composite fiber material |
US7279023B2 (en) * | 2003-10-02 | 2007-10-09 | Materials And Electrochemical Research (Mer) Corporation | High thermal conductivity metal matrix composites |
DE102004003370B4 (de) * | 2004-01-22 | 2015-04-02 | Siemens Aktiengesellschaft | Hochleistungsanodenteller für eine direkt gekühlte Drehkolbenröhre |
JP2005276760A (ja) * | 2004-03-26 | 2005-10-06 | Shimadzu Corp | X線発生装置 |
WO2006003772A1 (ja) * | 2004-07-06 | 2006-01-12 | Mitsubishi Corporation | 炭素繊維Ti-Al複合材料及びその製造方法 |
EP1782454A4 (de) * | 2004-07-07 | 2009-04-29 | Ii Vi Inc | Wenig dotierte halbisolierende sic-kristalle und verfahren |
DE102005034687B3 (de) * | 2005-07-25 | 2007-01-04 | Siemens Ag | Drehkolbenstrahler |
DE102005039187B4 (de) * | 2005-08-18 | 2012-06-21 | Siemens Ag | Röntgenröhre |
-
2005
- 2005-08-18 DE DE102005039188A patent/DE102005039188B4/de not_active Expired - Fee Related
-
2006
- 2006-08-15 US US11/504,839 patent/US7406156B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2154888A1 (de) * | 1971-11-04 | 1973-05-17 | Siemens Ag | Roentgenroehre |
US4271372A (en) * | 1976-04-26 | 1981-06-02 | Siemens Aktiengesellschaft | Rotatable anode for an X-ray tube composed of a coated, porous body |
DE19650061A1 (de) * | 1995-12-05 | 1997-06-12 | Gen Electric | Kohlenstoff-Kohlenstoff-Verbundstruktur für eine umlaufende Röntgenanode |
US5943389A (en) * | 1998-03-06 | 1999-08-24 | Varian Medical Systems, Inc. | X-ray tube rotating anode |
WO2003043046A1 (en) * | 2001-11-13 | 2003-05-22 | United States Of America As Represented By The Secretary Of The Air Force | Carbon nanotube coated anode |
DE10301069A1 (de) * | 2003-01-14 | 2004-07-22 | Siemens Ag | Thermisch belastbarer Werkstoffverbund aus einem faserverstärkten und einem weiteren Werkstoff |
Also Published As
Publication number | Publication date |
---|---|
US20070041503A1 (en) | 2007-02-22 |
US7406156B2 (en) | 2008-07-29 |
DE102005039188A1 (de) | 2007-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005039188B4 (de) | Röntgenröhre | |
DE19934987B4 (de) | Röntgenanode und ihre Verwendung | |
DE60116446T2 (de) | Mehrlagig beschichtetes Schneidwerkzeug | |
DE60216003T2 (de) | Schneidwerkzeug und Werkzeughalter | |
WO2017152198A1 (de) | Zerspanungswerkzeug | |
AT10598U1 (de) | Ríntgenanode mit verbesserter warmeableitung | |
DE102005039187B4 (de) | Röntgenröhre | |
DE2443354A1 (de) | Drehanode fuer eine roentgenroehre und verfahren zur herstellung einer derartigen anode | |
DE102008050716A1 (de) | Röntgen-Drehanodenteller und Verfahren zu seiner Herstellung | |
WO2009056544A2 (de) | Verfahren zur herstellung eines verbundwerkstoffs sowie verbundwerkstoff und verbundwerkstoffkörper | |
EP2326742A1 (de) | Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets | |
DE102016006626A1 (de) | Mehrfachkomponentenelektrode für einen plasmaschneidbrenner sowie brenner, der diese enthält | |
DE3602132A1 (de) | Gleit- oder reibelement mit funktionsteil aus keramischem werkstoff mit eingelagertem stabilisator sowie verfahren zu seiner herstellung | |
WO2015000679A1 (de) | Gebautes hohlventil | |
DE10304936B3 (de) | Drehanode für eine Röntgenröhre mit einem Anodenkörper aus Faserwerkstoff sowie Verfahren zu deren Herstellung | |
DE102016102126A1 (de) | PVD-beschichteter polykristalliner Diamant und dessen Anwendungen | |
DE102011117232A1 (de) | Matrixpulversystem und Verbundmaterialien daraus hergestellte Artikel | |
DE10320700A1 (de) | Vakuumgehäuse für eine Röntgenröhre | |
DE102006001855A1 (de) | Verdampferkörper und Verfahren zum Bereitstellen eines Verdampferkörpers | |
AT412687B (de) | Verfahren zum herstellen eines kreisförmigen röntgenröhrentargets | |
DE102016217423B4 (de) | Anode | |
DE2101097A1 (de) | Werkstoff und Herstellungsverfahren für wärmebeanspruchte elektrisch leitende Bauteile hoher Festigkeit | |
WO2010015252A1 (de) | Lötspitze mit einer sperrschicht und einer verschleissschicht; verfahren zum herstellen einer solchen lötspitze | |
DE102005015523A1 (de) | Beschichteter Werkstoff zur Bildung eines Hochtemperaturwerkstoffs und dessen Verwendung in einer Brennstoffzelle | |
WO2014082746A1 (de) | Verfahren zur strukturierung von schichtoberflächen und vorrichtung dazu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8120 | Willingness to grant licences paragraph 23 | ||
8364 | No opposition during term of opposition | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20150303 |