EP0023065A1 - Drehanode für Röntgenröhren - Google Patents

Drehanode für Röntgenröhren Download PDF

Info

Publication number
EP0023065A1
EP0023065A1 EP80200678A EP80200678A EP0023065A1 EP 0023065 A1 EP0023065 A1 EP 0023065A1 EP 80200678 A EP80200678 A EP 80200678A EP 80200678 A EP80200678 A EP 80200678A EP 0023065 A1 EP0023065 A1 EP 0023065A1
Authority
EP
European Patent Office
Prior art keywords
layer
rhenium
intermediate layer
base body
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80200678A
Other languages
English (en)
French (fr)
Other versions
EP0023065B1 (de
Inventor
Horst Dr. Dipl.-Phys. Hübner
Bernhard Dr. Dipl.-Phys. Lersmacher
Hans Dr. Dipl.-Ing. Lydtin
Rolf Ing. Grad. Wilden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Priority to AT80200678T priority Critical patent/ATE3600T1/de
Publication of EP0023065A1 publication Critical patent/EP0023065A1/de
Application granted granted Critical
Publication of EP0023065B1 publication Critical patent/EP0023065B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/083Bonding or fixing with the support or substrate
    • H01J2235/084Target-substrate interlayers or structures, e.g. to control or prevent diffusion or improve adhesion

Definitions

  • the invention relates to a rotating anode for X-ray tubes with a base body made of carbon, an electron collecting layer made of a heavy metal and an intermediate layer consisting of several layers of rhenium, which is arranged between the base body and the electron collecting layer.
  • the basic body of the rotating anode is e.g. made of graphite, in particular electrographite, of pyrolytic graphite or of foamed carbon, such as those e.g. are described in DE-OS 24 53 204 and 26 48 900.
  • the base body can also consist of sub-elements made of these materials, e.g. be composed of electrographite and pyrolytic graphite.
  • the electron collecting layer is also referred to in the literature as an electron impact part (DE-PS 21 15 896), an X-ray active layer or an anti-cathode or baffle electrode layer (DE-OS 27 48 566). It consists e.g. made of tungsten, molybdenum, tantalum or alloys of these metals with each other or with rhenium.
  • a rotary anode is known from AT-PS 281 215, in which an intermediate layer made of rhenium is arranged between the base body made of graphite and the electron collecting layer made of tungsten or a tungsten alloy which contains, for example, osmium or iridium.
  • a diffusion of the graphite into the electron trapping layer is practically completely prevented by this intermediate layer.
  • the desired diffusion inhibition was above of 1500 K for a sufficiently long time can only be achieved with more than 10 ⁇ m thick and therefore expensive intermediate layers made of rhenium.
  • an intermediate layer containing rhenium and molybdenum is arranged between the base body made of graphite and the electron collecting layer made of tungsten or a tungsten alloy.
  • the intermediate layer consists of two layers, the layer in contact with the base body containing a large amount of rhenium, e.g. Contains 70 to 90% by weight of rhenium, based on the total weight of rhenium and molybdenum, while the layer in contact with the electron collecting layer contains a large amount of molybdenum.
  • Intermediate layers containing molybdenum give good adhesion.
  • molybdenum forms with the graphite of the base body at temperatures of or more than 1500 K molybdenum carbide, which has a relatively poor thermal conductivity and also the adhesion between the electron trapping layer, e.g. made of tungsten, on the one hand, and the base body made of graphite, on the other hand, so that, with prolonged exposure to the electron beam, the electron-collecting layer can completely detach from the base body.
  • the electron trapping layer e.g. made of tungsten
  • the invention has for its object to provide a barrier against carbon diffusion below the electron trapping layer, which has almost the heat conduction properties of metals and which also offers sufficient protection against the penetration of carbon into the electron trapping layer at temperatures above 1500 K.
  • the layer of the intermediate layer adjoining the base body and the layer adjoining the electron-collecting layer the intermediate layer consist of pure rhenium and that between these two layers there is a further layer of an alloy of rhenium with at least one carbide-forming metal.
  • the alloy preferably contains 1 to 25 mol% of carbide-forming metals.
  • Carbide-forming metals are e.g. Titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten and some rare earths (US Pat. No. 2,979,813) and NicKel and iron (German Pat. No. 896,234).
  • Rhenium alloys with 1 to 25 mol% tungsten or 1 to 5 mol% tantalum or 1 to 3 mol% hafnium are preferred.
  • the layer of pure rhenium adjoining the base body is preferably 1 to 20 ⁇ m, in particular 5 ⁇ m, thick.
  • the layer consisting of the rehnium alloy is preferably 1 to 30 ⁇ m, in particular 4 ⁇ m, thick.
  • the layer of pure rhenium adjoining the electron collecting layer is preferably 1 to 20 ⁇ m, in particular 2 ⁇ m, thick.
  • the individual layers of the intermediate layer are e.g. produced by deposition from the gas phase.
  • the pure rhenium layers are preferably obtained by reducing rhenium halides with hydrogen.
  • gaseous mixtures of rhenium halides and halides of the desired metal additives are reduced with hydrogen.
  • the multilayer structure according to the invention ensures that at temperatures of the intermediate layer below 1500 K - as occurs in rotating anodes in about 80% of the loading time - the diffusion-inhibiting effect of the layer of pure rhenium adjoining the base body is sufficient. At temperatures above 1500 K - which occur in about 20% of the load times - the hin maldiffundierenden by the aforementioned layer of carbon atoms of the k arbidrelienden metals are collected. Because of the low concentration of K arbidrelienden metals in the group consisting of the alloy layer of the intermediate layer, the carbide hardly adverse Auswir- K has Ungen to the conduction or adhesion. Finally, the rhenium layer adjacent to the electron-collecting layer ensures that the carbon exchange between the carbides in the intermediate layer and the metal, for example tungsten, of the electron-collecting layer is largely prevented.
  • the inventive structure of the intermediate layer acting as a diffusion barrier with outer layers made of pure rhenium also enables the already known good mechanical properties of rhenium intermediate layers to be maintained.
  • the effectiveness of the multilayer rhenium intermediate layer is further improved by the fact that the average diffusion coefficient becomes smaller with the progressive carbide formation in the central part of the barriers, which leads to an increased service life.
  • the base body 1 consists of electrographite.
  • the metal layers 2 to 5 are formed by deposition from the gas phase only applied to the bevelled end face of the base body of the rotating anode.
  • the rhenium layer 2 is 5 ⁇ m thick.
  • the layer 3, which consists of rhenium doped with 5 mol% tantalum, has a thickness of 4 ⁇ m.
  • the layer 4 made of pure rhenium is 2 ⁇ m thick and the electron collecting layer 5 made of tungsten has a thickness of 200 ⁇ m.

Landscapes

  • Physical Vapour Deposition (AREA)
  • X-Ray Techniques (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

Zwischen einem Grundkörper (1) aus Kohlenstoff und einer Elektronenauffangschicht (5) aus einem Schwermetall ist eine aus mehreren Lagen (2, 3, 4) bestehende Zwischenschicht angeordnet. Die an den Grundkörper (1) anschließende Lage (2) der Zwischenschicht und die an die Elektronenauffangschicht anschließende Lage (4) der Zwischenschicht bestehen aus reinem Rhenium. Zwischen diesen beiden Lagen ist eine weitere Lage (3) aus einer Legierung von Rhenium mit mindestens einem karbidbildenden Metall, z.B. Wolfram, Tantal oder Hafnium, angeordnet. Durch diesen Aufbau der Zwischenschicht wird eine Barriere gegen die Kohlenstoffdiffusion geschaffen, die nahezu die Wärmeleitungseigenschaften von Metallen aufweist und die auch bei Temperaturen oberhalb 1500 K einen ausreichenden Schutz gegen das Eindringen von Kohlenstoff in die Elektronen auffangschicht bietet.

Description

  • Die Erfindung betrifft eine Drehanode für Röntgenröhren mit einem Grundkörper aus Kohlenstoff, einer EleKtronenauffangschicht aus einem Schwermetall und einer aus mehreren Lagen bestehenden rheniumhaltigen Zwischenschicht, die zwischen dem Grundkörper und der Elektronenauffangschicht angeordnet ist.
  • Der Grundkörper der Drehanode besteht z.B. aus Graphit, insbesondere Elektrographit, aus pyrolytischem Graphit oder aus Schaumkohlenstoffen, wie sie z.B. in den DE-OS 24 53 204 und 26 48 900 beschrieben sind. Der Grundkörper kann auch aus Teilelementen aus diesen Werkstoffen, z.B. aus Elektrographit und pyrolytischem Graphit, zusammengesetzt sein.
  • Die Elektronenauffangschicht wird in der Literatur auch als Elektronen-Auftreffteil (DE-PS 21 15 896), röntgenaktive Schicht oder Antikathoden- bzw. Prallelektrodenschicht (DE-OS 27 48 566) bezeichnet. Sie besteht z.B. aus Wolfram, Molybdän, Tantal oder Legierungen dieser Metalle untereinander oder mit Rhenium.
  • Aus der AT-PS 281 215 ist eine Drehanode bekannt, bei der zwischen dem Grundkörper aus Graphit und der EleKtronenauffangschicht aus Wolfram bzw. einer Wolframlegierung, die z.B. Osmium oder Iridium enthält, eine Zwischenschicht aus Rhenium angeordnet ist. Durch diese Zwischenschicht wird zwar eine Diffusion des Graphits in die Elektronenauffangschicht praktisch vollkommen unterbunden. Bei den Untersuchungen, die zur Erfindung geführt haben, wurde aber festgestellt, daß die erwünschte Diffusionshemmung oberhalb von 1500 K für eine hinreichend lange Zeit nur mit mehr als 10 µm dicken und damit teuren Zwischenschichten aus Rhenium erreicht wird.
  • Bei der aus der DE-OS 27 48 566 bekannten Drehanode ist zwischen dem aus Graphit bestehenden Grundkörper und der aus Wolfram oder einer Wolframlegierung bestehenden Elektronenauffangschicht eine Rhenium und Molybdän enthaltende Zwischenschicht angeordnet. Die Zwischenschicht besteht aus zwei Lagen, wobei die mit dem Grundkörper in Berührung stehende Lage eine große Menge an Rhenium, z.B. 70 bis 90 Gew.% Rhenium, bezogen auf das Gesamtgewicht von Rhenium und Molybdän, enthält, während die mit der EleKtronenauffangschicht in Berührung stehende Schicht eine große Molybdänmenge enthält. Molybdänhaltige Zwischenschichten ergeben zwar eine gute Haftung. Molybdän bildet jedoch mit dem Graphit des GrundKörpers bei Temperaturen von bzw. von mehr als 1500 K MolybdänKarbid, das ein relativ schlechtes Wärmeleitvermögen hat und außerdem die Haftung zwischen der Elektronenauffangschicht, z.B. aus Wolfram, einerseits und dem Grundkörper aus Graphit andererseits beeinträchtigt, so daß es bei längerer Elektronenstrahlbelastung zum völligen Ablösen der Elektronenauffangschicht vom GrundKörper Kommen kann.
  • Der Erfindung liegt die Aufgabe zugrunde, unterhalb der Elektronenauffangschicht eine Barriere gegen die Kohlenstoffdiffusion zu schaffen, die nahezu dieWärmeleitungseigenschaften von Metallen aufweist und die auch bei Temperaturen oberhalb 1500 K einen ausreichenden Schutz gegen das Eindringen von Kohlenstoff in die Elektronenauffangschicht bietet.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die an den Grundkörper anschließende Lage der Zwischenschicht und die an die Elektronenauffangschicht anschließende Lage der Zwischenschicht aus reinem Rhenium bestehen und daß zwischen diesen beiden Lagen eine weitere Lage aus einer-Legierung von Rhenium mit mindestens einem karbidbildenden Metall angeordnet ist.
  • Die Legierung enthält vorzugsweise 1 bis 25 Mol % Karbidbildende Metalle.
  • Karbidbildende Metalle sindz.B. Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram und einige Seltene Erden (US-PS 29 79 813) sowie NicKel und Eisen (DE-PS 896 234).
  • Bevorzugt werden Rheniumlegierungen mit 1 bis 25 Mol % Wolfram oder 1 bis 5 Mol % Tantal oder 1 bis 3 Mol % Hafnium.
  • Die an den Grundkörper anschließende Lage aus reinem Rhenium ist vorzugsweise 1 bis 20 µm, insbesondere 5 um, dick. Die aus der Rehniumlegierung bestehende Lage ist vorzugsweise 1 bis 30 µm, insbesondere 4 µm, dick. Die an die Elektronenauffangschichtanschließende Lage aus reinem Rhenium ist vorzugsweise 1 bis 20 µm, insbesondere 2 um, dick.
  • Die einzelnen Lagen der Zwischenschicht werden z.B. durch Abscheidung aus der Gasphase hergestellt. Dabei werden die reinen Rheniumschichten vorzugsweise durch Reduktion von Rheniumhalogeniden mit Wasserstoff gewonnen. Bei der Abscheidung der aus einer Rheniumlegierung bestehenden Lage werden gasförmige Gemische von Rheniumhalogeniden und Halogeniden der gewünschten Metallzusätze mit Wasserstoff reduziert.
  • Durch den erfindungsgemäßen mehrlagigen Aufbau wird erreicht, daß bei Temperaturen der Zwischenschicht unterhalb 1500 K - wie sie in Drehanoden in etwa 80 % der Belastungszeit auftreten - die diffusionshemmende Wirkung der an den Grundkörper anschließenden Lage aus reinem Rhenium ausreicht. Bei Temperaturen oberhalb 1500 K - die in etwa 20 % der Belastungszeiten auftreten - werden die durch die zuvor genannte Lage hindurchdiffundierenden Kohlenstoffatome von den karbidbildenden Metallen aufgefangen. Wegen der geringen Konzentration an Karbidbildenden Metallen in der aus der Legierung bestehenden Lage der Zwischenschicht hat die Karbidbildung kaum nachteilige Auswir- Kungen auf die Wärmeleitung oder die Haftung. Schließlich gewährleistet die an die Elektronenauffangschichtangrenzende Lage aus Rhenium, daß der Kohlenstoffaustausch zwischen den Karbiden in der Zwischenschicht und dem Metall, z.B. Wolfram, der Elektronenauffangschicht weitgehend unterbunden wird.
  • Der erfindungsgemäße Aufbau der als Diffusionsbarriere wirkenden Zwischenschicht mit äußeren Lagen aus reinem Rhenium ermöglicht auch die Einhaltung der bereits bekannten, guten mechanischen Eigenschaften von Rhenium-Zwischenschichten. Die Wirksamkeit der mehrlagigen Rhenium-Zwischenschicht wird noch dadurch verbessert, daß der mittlere Diffusionskoeffizient mit fortschreitender Karbidbildung im mittleren Teil der Barrieren kleiner wird, was zu einer erhöhten Lebensdauer führt.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen
    • Fig. 1 eine Drehanode im Schnitt
    • Fig. 2 ein schematisches Schnittbild einer Schichtenfolge zur Diffusionshemmung.
  • Der Grundkörper 1 besteht aus Elektrographit. Die Metallschichten 2 bis 5 werden durch Abscheiden aus der Gasphase nur auf die abgeschrägte Stirnfläche des GrundKörpers der Drehanode aufgebracht. Die Rheniumschicht 2 ist 5 um dick. Die Schicht 3, die aus mit 5 Mol % Tantal dotiertem Rhenium besteht, hat eine Dicke von 4 um. Die Schicht 4 aus reinem Rhenium ist 2 um dick und die Elektronenauffangschicht 5 aus Wolfram hat eine Dicke von 200 µm.

Claims (6)

1. Drehanode für Röntgenröhren mit einem Grundkörper (1) aus Kohlenstoff, einer Elektronenauffangschicht (5) aus einem Schwermetall und einer aus mehreren Lagen bestehenden rheniumhaltigen Zwischenschicht, die zwischen dem Grundkörper (1) und der Elektronenauffangschicht (5) angeordnet ist, dadurch gekennzeichnet, daß die an den Grundkörper (1) anschließende Lage (2) der Zwischenschicht und die an die an die Elektronenauffangschicht (5) anschließende Lage (4) der Zwischenschicht aus reinem Rhenium bestehen und daß zwischen diesen beiden Lagen eine weitere Lage (3) aus einer Legierung von Rhenium mit mindestens einem karbidbildenden Metall angeordnet ist.
2. Drehanode nach Anspruch 1, dadurch gekennzeichnet, daß die Legierung, aus der die weitere Lage (3) besteht, 1 bis 25 Mol% karbidbildende Metalle enthält.
3. Drehanode nach Anspruch 2, dadurch gekennzeichnet, daß die Legierung, aus der die weitere Lage (3) besteht, 1 bis 25 Mol% Wolfram oder 1 bis 5 Mol% Tantal oder 1 bis 3 Mol% Hafnium enthält.
4. Drehanode nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die an den Grundkörper (1) anschließende Lage (2) aus reinem Rhenium 1 bis 20 um dick ist.
5. Drehanode nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die aus der Rheniumlegierung bestehende Lage (3) 1 bis 30 um dick ist.
6. Drehanode nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die an die Elektronenauffangschicht (5) anschließende Lage (4) aus reinem Rhenium 1 bis 20 um dick ist.
EP80200678A 1979-07-19 1980-07-11 Drehanode für Röntgenröhren Expired EP0023065B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80200678T ATE3600T1 (de) 1979-07-19 1980-07-11 Drehanode fuer roentgenroehren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792929136 DE2929136A1 (de) 1979-07-19 1979-07-19 Drehanode fuer roentgenroehren
DE2929136 1979-07-19

Publications (2)

Publication Number Publication Date
EP0023065A1 true EP0023065A1 (de) 1981-01-28
EP0023065B1 EP0023065B1 (de) 1983-05-25

Family

ID=6076091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80200678A Expired EP0023065B1 (de) 1979-07-19 1980-07-11 Drehanode für Röntgenröhren

Country Status (5)

Country Link
US (1) US4352041A (de)
EP (1) EP0023065B1 (de)
JP (1) JPS5618356A (de)
AT (1) ATE3600T1 (de)
DE (2) DE2929136A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0037956A1 (de) * 1980-04-11 1981-10-21 Kabushiki Kaisha Toshiba Eine Drehanode für eine Röntgenstrahlröhre und Verfahren zu ihrer Herstellung
FR2593324A1 (fr) * 1986-01-17 1987-07-24 Thomson Cgr Anode tournante avec graphite pour tube radiogene
EP0399621A1 (de) * 1989-05-26 1990-11-28 Metallwerk Plansee Gesellschaft M.B.H. Verbundkörper aus Graphit und hochschmelzendem Metall
US10622182B2 (en) 2015-05-08 2020-04-14 Plansee Se X-ray anode

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8101697A (nl) * 1981-04-07 1982-11-01 Philips Nv Werkwijze voor het vervaardigen van een anode en zo verkregen anode.
AT376064B (de) * 1982-02-18 1984-10-10 Plansee Metallwerk Roentgenroehren-drehanode
JPS598252A (ja) * 1982-07-07 1984-01-17 Hitachi Ltd X線管用回転ターゲットの製造法
US4573185A (en) * 1984-06-27 1986-02-25 General Electric Company X-Ray tube with low off-focal spot radiation
US4700882A (en) * 1985-02-15 1987-10-20 General Electric Company Composite rotary anode for X-ray tube and process for preparing the composite
US4641334A (en) * 1985-02-15 1987-02-03 General Electric Company Composite rotary anode for X-ray tube and process for preparing the composite
US4978051A (en) * 1986-12-31 1990-12-18 General Electric Co. X-ray tube target
JPH0731993B2 (ja) * 1987-03-18 1995-04-10 株式会社日立製作所 X線管用ターゲット及びそれを用いたx線管
FR2655191A1 (fr) * 1989-11-28 1991-05-31 Genral Electric Cgr Sa Anode pour tube a rayons x.
US5204891A (en) * 1991-10-30 1993-04-20 General Electric Company Focal track structures for X-ray anodes and method of preparation thereof
US5148463A (en) * 1991-11-04 1992-09-15 General Electric Company Adherent focal track structures for X-ray target anodes having diffusion barrier film therein and method of preparation thereof
US6400800B1 (en) * 2000-12-29 2002-06-04 Ge Medical Systems Global Technology Company, Llc Two-step brazed x-ray target assembly
DE102005049519B4 (de) * 2005-01-31 2014-10-30 Medicoat Ag Drehanodenteller für Röntgenröhren
US8165269B2 (en) * 2008-09-26 2012-04-24 Varian Medical Systems, Inc. X-ray target with high strength bond
DE102009007871B4 (de) * 2009-02-06 2012-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Röntgentarget, Röntgenröhre und Verfahren zur Erzeugung von Röntgenstrahlung
FR2962591B1 (fr) 2010-07-06 2017-04-14 Acerde Anode pour l'emission de rayons x et procede de fabrication d'une telle anode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1913793A1 (de) * 1969-03-19 1970-10-01 Ct D Etudes Et De Rech S Des E Drehanode fuer Roentgenroehre und Bearbeitungsverfahren hierzu
US3579022A (en) * 1967-08-28 1971-05-18 Schwarzkopf Dev Co Rotary anode for x-ray tube
FR2204041A1 (de) * 1972-10-20 1974-05-17 Siemens Ag
US3875444A (en) * 1972-12-06 1975-04-01 Philips Corp Rotating x-ray anode having a target area made of a tungsten rhenium tantalum alloy
US3890521A (en) * 1971-12-31 1975-06-17 Thomson Csf X-ray tube target and X-ray tubes utilising such a target

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104093C (de) * 1956-03-30
AT346981B (de) * 1976-03-18 1978-12-11 Plansee Metallwerk Roentgendrehanode und verfahren zu deren herstellung
US4145632A (en) * 1977-04-18 1979-03-20 General Electric Company Composite substrate for rotating x-ray anode tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579022A (en) * 1967-08-28 1971-05-18 Schwarzkopf Dev Co Rotary anode for x-ray tube
DE1913793A1 (de) * 1969-03-19 1970-10-01 Ct D Etudes Et De Rech S Des E Drehanode fuer Roentgenroehre und Bearbeitungsverfahren hierzu
US3890521A (en) * 1971-12-31 1975-06-17 Thomson Csf X-ray tube target and X-ray tubes utilising such a target
FR2204041A1 (de) * 1972-10-20 1974-05-17 Siemens Ag
US3875444A (en) * 1972-12-06 1975-04-01 Philips Corp Rotating x-ray anode having a target area made of a tungsten rhenium tantalum alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0037956A1 (de) * 1980-04-11 1981-10-21 Kabushiki Kaisha Toshiba Eine Drehanode für eine Röntgenstrahlröhre und Verfahren zu ihrer Herstellung
FR2593324A1 (fr) * 1986-01-17 1987-07-24 Thomson Cgr Anode tournante avec graphite pour tube radiogene
EP0234967A1 (de) * 1986-01-17 1987-09-02 General Electric Cgr S.A. Drehanode aus Graphit für Röntgenröhre
US4799250A (en) * 1986-01-17 1989-01-17 Thomson-Cgr Rotating anode with graphite for X-ray tube
EP0399621A1 (de) * 1989-05-26 1990-11-28 Metallwerk Plansee Gesellschaft M.B.H. Verbundkörper aus Graphit und hochschmelzendem Metall
US5122422A (en) * 1989-05-26 1992-06-16 Schwarzkopf Technologies Corporation Composite body made of graphite and high-melting metal
US10622182B2 (en) 2015-05-08 2020-04-14 Plansee Se X-ray anode

Also Published As

Publication number Publication date
JPS6232573B2 (de) 1987-07-15
ATE3600T1 (de) 1983-06-15
JPS5618356A (en) 1981-02-21
EP0023065B1 (de) 1983-05-25
DE2929136A1 (de) 1981-02-05
US4352041A (en) 1982-09-28
DE3063487D1 (en) 1983-07-07

Similar Documents

Publication Publication Date Title
EP0023065B1 (de) Drehanode für Röntgenröhren
DE1951383C3 (de) Röntgenröhren-Drehanode mit einem Verbundkörper aus einem Schwermetallteil und wenigstens einem Graphitteil und Verfahren zu ihrer Herstellung
DE3303529C2 (de)
EP0399621B1 (de) Verbundkörper aus Graphit und hochschmelzendem Metall
DE1764681A1 (de) Drehanode fuer Roentgenroehren
DE1930095A1 (de) Verfahren zur Herstellung von Drehanoden fuer Roentgenroehren
AT14991U1 (de) Röntgenanode
DE3028115A1 (de) Schalterkontaktstueck und verfahren zu seiner herstellung
DE19523163A1 (de) Gleitlagerteil für ein Flüssigmetallgleitlager
DE2945995A1 (de) Oxidbeschichtete kathode fuer elektronenroehre
DE69026032T2 (de) Scandatkathode
EP3948996A1 (de) Schichtsystem, bipolarplatte mit einem solchen schichtsystem und damit gebildete brennstoffzelle
EP0488450B1 (de) Röntgenröhrenanode mit Oxidbeschichtung
DE69017877T2 (de) Röntgendrehanode.
DE68916542T2 (de) Elektrode für entladungslichtquelle.
DE2357292A1 (de) Roentgendrehanode mit einer auftreffflaeche aus einer wolfram-rhenium-tantallegierung
DE1483302C3 (de) Verwendung einer Wolfram-Iridiumlegierung für die Anode von Röntgenröhren
DE3444333A1 (de) Oxidkathode
DE10320700A1 (de) Vakuumgehäuse für eine Röntgenröhre
EP0168736B1 (de) Röntgendrehanode mit Oberflächenbeschichtung
DE2426387A1 (de) Bauelement fuer vakuumpumpen
DE2400717C3 (de) Röntgenröhrendrehanode und Verfahren zu deren Herstellung
DE102005049519B4 (de) Drehanodenteller für Röntgenröhren
DE2430226A1 (de) Drehanode fuer roentgenroehren
DE833090C (de) Elektronen emittierende Elektrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB NL

17P Request for examination filed

Effective date: 19810709

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 3600

Country of ref document: AT

Date of ref document: 19830615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3063487

Country of ref document: DE

Date of ref document: 19830707

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840731

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910923

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911024

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920724

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920729

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920731

Ref country code: CH

Effective date: 19920731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930711

Ref country code: AT

Effective date: 19930711

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST