EP0464213B1 - Procede de decoupage au laser - Google Patents

Procede de decoupage au laser Download PDF

Info

Publication number
EP0464213B1
EP0464213B1 EP91901897A EP91901897A EP0464213B1 EP 0464213 B1 EP0464213 B1 EP 0464213B1 EP 91901897 A EP91901897 A EP 91901897A EP 91901897 A EP91901897 A EP 91901897A EP 0464213 B1 EP0464213 B1 EP 0464213B1
Authority
EP
European Patent Office
Prior art keywords
laser beam
lens
workpiece
focussing
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91901897A
Other languages
German (de)
English (en)
Other versions
EP0464213A4 (en
EP0464213A1 (fr
Inventor
Norio Karube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Publication of EP0464213A1 publication Critical patent/EP0464213A1/fr
Publication of EP0464213A4 publication Critical patent/EP0464213A4/en
Application granted granted Critical
Publication of EP0464213B1 publication Critical patent/EP0464213B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material

Definitions

  • the present invention relates to a method of cutting a workpiece such as a thick plate of mild steel, for example, with a laser beam, and more particularly to a method of cutting a workpiece with a laser beam which is focused with improved focussing characteristics that would otherwise be degraded by optical distortion.
  • CO2 laser cutting machines mainly have had a laser beam output of 1 KW or less, and have been able to cut workpieces of mild steel, for example, which are up to 9 mm thick.
  • the primary technical concern has been how small a focus spot can be made by focussing the laser beam.
  • the focussing characteristics of the laser beam are affected by various factors such as the mode order that determines the divergent angle of the laser beam, the laser beam diameter on the focussing lens which determines a diffraction limitation, and the aberrations of the focussing optical system.
  • the mode order has been considered to be most important for the CO2 laser cutting machines, and the achievement of the TEM00 mode which is the lowest-order mode is given the utmost importance See, for instance, "Modernetechnik, no. 10, October 1986, Landsberg am Lech, Germany, pages 45-48.
  • the TEM00 mode has a smallest divergent angle, and has best focussing characteristics which make fine machining possible.
  • the focussing optical system suffers optical distortion in the mode primarily of TEM00, and behaves in a manner completely different from that when the output power is lower, making it impossible to focus the laser beam into a small beam spot.
  • the above drawback manifests itself especially with a ZnSe lens. More specifically, the lens undergoes a temperature rise due to laser beam absorption. Since the power density in the central region of the lens greatly increases in the TEM00 mode, the temperature distribution becomes similar to the power density distribution. As a result, the lens region which suffers the high temperature is thermally expanded and has an increased refractive index, resulting in a localized change in the focussing characteristics.
  • JP-A-61-129 890 discloses the use of a focussing lens of potassium chloride in CO2 laser cutting.
  • JP-A-60-24489 discloses a method of laser machining, wherein a gas cools the upper and lower surfaces of a focussing lens, and an auxiliary gas is supplied to a nozzle.
  • Another object of the present invention is to provide a method of cutting a workpiece with a laser beam while applying a gas to the surface of a focussing optical system to cool the focussing optical system, thereby improving focussing characteristics that would otherwise be degraded by optical distortion.
  • Still another object of the present invention is to provide a method of cutting a workpiece with a laser beam using a KCL lens as a focussing lens, thereby improving focussing characteristics that would otherwise be degraded by optical distortion.
  • Yet still another object of the present invention is to provide a method of cutting a workpiece with a laser beam using a reflecting mirror as a focussing optical system, thereby improving focussing characteristics that would otherwise be degraded by optical distortion.
  • a method of cutting a thick workpiece with a laser beam of high output power comprising the steps of: applying a laser beam dominantly in a ring mode, with a central region thereof being hollow; independently applying a gas to each of an upper and a lower surface of a focussing lens to cool the lens while the laser beam is passing through the lens towards the workpiece; and, independently supplying an auxiliary gas to a nozzle through which the laser beam passes and ejecting the auxiliary gas from the nozzle against the workpiece.
  • a method of cutting a thick workpiece with a laser beam of high output power comprising the steps of: applying a laser beam dominantly in a ring mode, with a central region thereof being hollow; and, passing the laser beam through a potassium chloride lens as a focussing lens to focus the laser beam onto the workpiece while suppressing optical distortion, said potassium chloride lens being of the type that expands when its temperature increases thereby causing a decrease in the value of the refractive index whereby the expansion and the decrease of the value of the refractive index cancel out each other to suppress optical distortion.
  • a method of cutting a thick workpiece with a laser beam of high output power comprising the steps of: applying a laser beam dominantly in a ring mode, with a central region thereof being hollow; reflecting the laser beam with a focussing reflecting mirror toward the workpiece; cooling the focusing reflecting mirror; and, supplying an auxiliary gas to a nozzle through which the laser beam passes and ejecting the auxiliary gas from the nozzle against the workpiece.
  • the laser beam mainly in the ring mode is effective to reduce optical distortion due to laser beam absorption in a central region of a focusing optical system, e.g., a lens, thereby preventing focussing characteristics from being degraded.
  • a focusing optical system e.g., a lens
  • the laser beam is mainly in a TEM01 mode and produced with an output power of 2 KW or more, it can cut the workpiece in a fine way.
  • the laser beam profile in this mode can be transmitted over a long distance for cutting the workpiece. Inasmuch as the thick workpiece is usually long, the ability to transmit the laser beam over the long distance (e.g., 20 m) is of practical importance.
  • the central region thereof which tends to be heated more intensely than other regions, is directly cooled.
  • the temperature of the lens is thus lowered to reduce optical distortion due to laser beam absorption in the central region of the lens, thereby preventing focussing characteristics from being degraded.
  • a KCL (potassium chloride) lens as a focussing lens suffers less optical distortion, and hence is effective to prevent focussing characteristics from being degraded.
  • the temperature of the KCL lens rises, it undergoes thermal expansion and at the same time decreases the value of refractive index. This expansion and refractive index decrease of the KCL lens cancel out each other in the degree of optical distortion. Therefore, any increases in optical distortion are suppressed.
  • a focussing reflecting mirror When a focussing reflecting mirror is used as the focussing optical system, it only suffers distortions induced by thermal deformation, and not the change of refractive index because it is a reflecting mirror, but not a refractive system, and prevents a degradation of focussing characteristics which would otherwise be caused by a refractive index variation.
  • FIGS. 1(a), 1(b), and 1(c) are diagrams illustrative of the manner in which a laser beam mode is made hollow according to the present invention.
  • FIG. 1 (a) shows a TEM00 mode
  • FIG. 1(b) a TEM01 mode
  • FIG. 1(c) a TEM10 mode.
  • Only the TEM01 mode has a hollow center. Even if the laser output power is the same as those of the other modes, the power density is low at the center of the TEM01 mode. Since the center would tend to be overheated in a focussing optical system which is peripherally cooled, the TEM01 mode with no laser beam present in its center is less likely to produce optical distortion.
  • the mode may not necessarily fully be the TEM01 mode, but may contain the TEM00 mode and the TEM01 mode though it should dominantly be the TEM01 mode.
  • the pure TEM01 mode is effective to prevent hopping between different modes, and its higher mode stability results in higher cut surface quality.
  • a RF discharge-pumped laser is effective to obtain the TEM01 mode, because a high gain is present near the tube wall, which is favorable to the TEM01 mode. It is another method for the resonator to have an aperture for purifying the mode or a central absorber therein.
  • FIG. 2 shows a process of cooling a focussing lens.
  • the focussing lens has been cooled at its peripheral portion indirectly by water, and particularly in the TEM00 mode, suffered optical distortion since it is heated locally in the central region thereof.
  • the central region of the focussing lens is cooled directly by air.
  • the focussing lens denoted at 11
  • a laser beam 12 which is shown hatched, passes through the focussing lens 11.
  • the holder 10 has a nozzle 8 facing a workpiece 9 to be cut.
  • the laser beam 12 is focussed by the focussing lens 11 in to a focal point 13 positioned outside of the nozzle 8 and on the workpiece 9.
  • a cooling gas is applied to both surfaces of the focussing lens 11 to forcibly cool the focussing lens 11.
  • clean air is introduced from a cooling gas inlet 1 in order to cool the upper surface of the focussing lens 11.
  • the clean air is ejected against the focussing lens 11 in the direction indicated by the arrows, and then discharged from a cooling gas outlet 2.
  • the clean air thus applied also serves to prevent the surface of the focussing lens 11 from being contaminated.
  • oxygen or air is introduced from a cooling gas inlet 3, and discharged from a cooling gas outlet 4.
  • the cooling gas flow is regulated by a variable valve 5 because the amount of the cooling gas to be applied to the focussing lens 11 has to be kept at an optimum level.
  • the downstream side of the valve 5 may be evacuated by a discharge pump.
  • An auxiliary gas is introduced from gas inlets 6, 7 into the nozzle 8, and then ejected from the nozzle 8 against the workpiece 9 while the workpiece 9 is being cut by the laser beam.
  • the focussing lens 11 When the focussing lens 11 is thus forcibly cooled by the cooling gas, the focussing lens 11 is free from optical distortion, and can focus the laser beam with good focussing characteristics even though the mode is dominantly the TEM01 mode. Therefore, the laser beam can cut workpiece 9 even if it comprises a thick plate. Since the workpiece 9, in the form of a thick plate, is long, the cutting point on the workpiece 9 may be about 20 mm apart from the laser oscillator. While the TEM00 mode shown in FIG. 1 (a) cannot be maintained over the distance of 20 m, the method of the invention which employs the laser beam dominantly in the TEM01 mode is free from such a problem in cutting the long workpiece 9.
  • a KCL (potassium chloride) lens is used as a focussing lens.
  • the KCL lens does not suffer optical distortion even without being cooled. This is because when the temperature of the KCL lens rises, it expands and decreases in the value of refractive index, and this expansion and the refractive index decrease of the KCL lens cancel out each other.
  • the KCL lens may also be used in the transmission of a laser beam over a long distance.
  • FIG. 3 shows an arrangement which employs a focussing reflecting mirror.
  • the focussing reflecting mirror comprises an off-axis parabolic mirror 25 for focussing a laser beam 22 through a nozzle 18 onto a focal point 23 on a workpiece 19.
  • the parabolic mirror 25 is held in a holder 24.
  • An auxiliary gas is introduced from a gas inlet 16 into the nozzle 18. Since the off-axis parabolic mirror 25 is a reflecting mirror, but not a refractive system, it only suffers distortions induced by thermal deformation.
  • the entire reflecting surface of the parabolic mirror 25 may be cooled indirectly from its back by cooling water flowing through a cooling water passage 26.
  • the arrangement shown in FIG. 3 is also capable of solving the problems which would otherwise occur in the transmission of a laser beam over a long distance.
  • the above three methods prevent a degradation of focussing characteristics which would otherwise result from optical distortion of the focussing optical system, and are effective in cutting a workpiece with a laser beam of high output power.
  • a CO2 laser having an output power of 3 KW can cut a workpiece of mild steel, which is up to 25 mm thick, and can cut a workpiece of mild steel, which is up to 19 mm, in a fine cutting process.
  • the methods can also give stable focussing characteristics to large-size cutting apparatus which are required to transmit the laser beam over the distance of 20 m or more.
  • the present invention prevents a degradation in the focussing characteristics which would otherwise be induced by optical distortion of the focussing optical system when the workpiece is cut with a laser beam of high output power
  • the methods of the invention is capable of cutting relatively thick workpieces, which have heretofore been unable to cut.
  • the methods according to the present invention can also give stable focussing characteristics to large-size cutting apparatus which are required to transmit the laser beam over a long distance.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

Procédé de découpage au laser servant à usiner une plaque épaisse à l'aide d'un laser à puissance de sortie élevée. Le découpage s'effectue à l'aide d'un faisceau laser annulaire dont la partie centrale est creuse, lequel faisceau permet de réduire une distorsion optique due à l'absorption du faisceau laser dans la partie centrale d'un système optique de focalisation, c'est-à-dire une lentille de focalisation, afin d'empêcher la détérioration des caractéristiques de focalisation. Par ailleurs, on souffle un gaz sur la surface du système optique de focalisation afin de la refroidir, et la lentille de focalisation est une lentille en KCl (chlorure de potassium).

Claims (5)

  1. Un procédé de découpage d'une pièce d'ouvrage épaisse (9) à l'aide d'un faisceau laser (12) de puissance de sortie élevée, comprenant les opérations consistant à :
    appliquer un faisceau laser principalement dans un mode en anneau, avec une zone centrale de ce dernier qui est creuse ;
    appliquer, de manière indépendante, un gaz à chacune des surfaces supérieure et inférieure d'une lentille de focalisation (11) afin de refroidir la lentille tandis que le faisceau laser traverse la lentille en direction de la pièce d'ouvrage ; et
    fournir, de manière indépendante, un gaz auxiliaire à une buse (8) à travers laquelle passe le faisceau laser et éjecter le gaz auxiliaire depuis la buse contre la pièce d'ouvrage.
  2. Un procédé de découpage d'une pièce d'ouvrage épaisse (9) à l'aide d'un faisceau laser (12) de puissance de sortie élevée, comprenant les opérations consistant à :
    appliquer un faisceau laser principalement dans un mode en anneau, avec une zone centrale de ce dernier qui est creuse ; et
    faire passer le faisceau laser à travers une lentille en chlorure de potassium en tant que lentille de focalisation (11) afin de focaliser le faisceau laser sur la pièce d'ouvrage tout en supprimant la distorsion optique, ladite lentille en chlorure de potassium étant du type qui se dilate lorsque sa température augmente en provoquant ainsi une diminution dans la valeur de l'indice de réfraction, de sorte que la dilatation et la diminution de la valeur de l'indice de réfraction s'annulent mutuellement pour supprimer la distorsion optique.
  3. Un procédé de découpage d'une pièce d'ouvrage épaisse (9) à l'aide d'un faisceau laser (22) de puissance de sortie élevée, comprenant les opérations consistant à :
    appliquer un faisceau laser principalement dans un mode en anneau, avec une zone centrale de ce dernier qui est creuse ;
    réfléchir le faisceau laser à l'aide d'un miroir de focalisation réfléchissant (25) en direction de la pièce d'ouvrage ;
    refroidir le miroir de focalisation réfléchissant ; et
    fournir un gaz auxiliaire à une buse (18) à travers laquelle passe le faisceau laser et éjecter le gaz auxiliaire depuis la buse contre la pièce d'ouvrage.
  4. Un procédé selon une quelconque des revendications 1 à 3, dans lequel ledit mode en anneau est principalement un mode TEM01.
  5. Un procédé selon une quelconque des revendications 1 à 4, dans lequel ledit mode en anneau contient un mode TEM00.
EP91901897A 1990-01-19 1991-01-11 Procede de decoupage au laser Expired - Lifetime EP0464213B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10029/90 1990-01-19
JP2010029A JPH03216287A (ja) 1990-01-19 1990-01-19 レーザ切断加工方法
PCT/JP1991/000022 WO1991010533A1 (fr) 1990-01-19 1991-01-11 Procede de decoupage au laser

Publications (3)

Publication Number Publication Date
EP0464213A1 EP0464213A1 (fr) 1992-01-08
EP0464213A4 EP0464213A4 (en) 1993-09-29
EP0464213B1 true EP0464213B1 (fr) 1995-07-19

Family

ID=11738971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91901897A Expired - Lifetime EP0464213B1 (fr) 1990-01-19 1991-01-11 Procede de decoupage au laser

Country Status (5)

Country Link
US (1) US5237150A (fr)
EP (1) EP0464213B1 (fr)
JP (1) JPH03216287A (fr)
DE (1) DE69111314T2 (fr)
WO (1) WO1991010533A1 (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215561C2 (de) * 1991-11-19 1995-04-06 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Abtragen von Werkstoff eines relativbewegten metallenen Werkstücks
JP2829192B2 (ja) * 1992-05-15 1998-11-25 住友電気工業株式会社 レ−ザビ−ムスキャナ
JP2658809B2 (ja) * 1992-08-27 1997-09-30 三菱電機株式会社 レーザ加工装置
US5776220A (en) * 1994-09-19 1998-07-07 Corning Incorporated Method and apparatus for breaking brittle materials
WO1996020062A1 (fr) * 1994-12-23 1996-07-04 Kondratenko Vladimir Stepanovi Procede de coupe de materiaux non metalliques et dispositif de mise en ×uvre dudit procede
US5834094A (en) * 1996-09-30 1998-11-10 Surface Technologies Ltd. Bearing having micropores and design method thereof
DE19715537C2 (de) * 1997-04-14 1999-08-05 Schott Glas Verfahren und Vorrichtung zum Durchtrennen von flachen Werkstücken aus sprödem Material, insbesondere aus Glas
MY120533A (en) * 1997-04-14 2005-11-30 Schott Ag Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass.
DE19830237C2 (de) * 1998-07-07 2001-10-04 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum Schneiden eines Werkstückes aus sprödbrüchigem Werkstoff
JP4162772B2 (ja) * 1998-09-09 2008-10-08 日酸Tanaka株式会社 レーザピアシング方法およびレーザ切断装置
DE19856347C2 (de) * 1998-12-07 2002-12-19 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum Schneiden eines dünnen Werkstücks aus sprödbrüchigem Werkstoff
US6331693B1 (en) * 1999-06-28 2001-12-18 Cincinnati Incorporated Beam delivery system
DE19952331C1 (de) 1999-10-29 2001-08-30 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum schnellen Schneiden eines Werkstücks aus sprödbrüchigem Werkstoff mittels Laserstrahlen
DE29922544U1 (de) 1999-12-22 2001-05-03 KUKA Schweissanlagen GmbH, 86165 Augsburg Blasvorrichtung für eine Lasereinrichtung
GB0328370D0 (en) * 2003-12-05 2004-01-14 Southampton Photonics Ltd Apparatus for providing optical radiation
JP4182034B2 (ja) * 2004-08-05 2008-11-19 ファナック株式会社 切断加工用レーザ装置
EP1657020A1 (fr) * 2004-11-10 2006-05-17 Synova S.A. Méthode et dispositif pour optimiser la cohérence d'un jet de fluide utilisé pour le travail de matériaux et buse pour un tel dispositif
JP2007095936A (ja) * 2005-09-28 2007-04-12 Mitsubishi Electric Corp 炭酸ガスレーザ加工機及び炭酸ガスレーザ加工方法
US8895892B2 (en) * 2008-10-23 2014-11-25 Corning Incorporated Non-contact glass shearing device and method for scribing or cutting a moving glass sheet
US8274743B2 (en) * 2010-04-08 2012-09-25 Scaggs Michael J Thermally compensating lens for high power lasers
KR102096048B1 (ko) * 2012-10-10 2020-04-02 삼성디스플레이 주식회사 레이저 가공장치
KR102020912B1 (ko) 2013-02-21 2019-09-11 엔라이트 인크. 다층 구조의 레이저 패터닝
US9260337B2 (en) 2014-01-09 2016-02-16 Corning Incorporated Methods and apparatus for free-shape cutting of flexible thin glass
US10069271B2 (en) 2014-06-02 2018-09-04 Nlight, Inc. Scalable high power fiber laser
EP3165615B1 (fr) * 2014-07-03 2022-12-21 Nippon Steel Corporation Utilisation d'un appareil de traitement au laser pour affiner les domaines magnétiques d'une tôle d'acier électromagnétique à grains orientés
WO2016009978A1 (fr) * 2014-07-15 2016-01-21 株式会社トヨコー Dispositif d'exposition à un rayonnement laser
CN111496379B (zh) * 2014-08-19 2022-08-26 亮锐控股有限公司 用于减少在管芯级激光剥离期间所受机械损伤的蓝宝石收集器
EP3210064A1 (fr) 2014-10-20 2017-08-30 Corelase OY Ensemble optique et son procédé de production
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
KR102572643B1 (ko) * 2015-05-13 2023-08-31 루미리즈 홀딩 비.브이. 다이 레벨의 레이저 리프트-오프 중에 기계적 손상을 줄이기 위한 사파이어 수집기
HUE056149T2 (hu) 2015-06-09 2022-01-28 Corelase Oy Lézeres megmunkáló berendezés és eljárás és egy optikai egység ehhez
CN107924023B (zh) 2015-07-08 2020-12-01 恩耐公司 具有用于增加的光束参数乘积的中心折射率受抑制的纤维
US10423015B2 (en) * 2016-09-29 2019-09-24 Nlight, Inc. Adjustable beam characteristics
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
JP6450783B2 (ja) 2017-01-19 2019-01-09 ファナック株式会社 レーザ加工ヘッド用ノズル
JP6450784B2 (ja) * 2017-01-19 2019-01-09 ファナック株式会社 レーザ加工機
KR102418512B1 (ko) 2017-12-29 2022-07-07 코렐라스 오와이 레이저 프로세싱 장치 및 방법
DE102019103659B4 (de) * 2019-02-13 2023-11-30 Bystronic Laser Ag Gasführung, Laserschneidkopf und Laserschneidmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156231A2 (fr) * 1984-03-26 1985-10-02 BIAS Forschungs- und Entwicklungslabor für angewandte Strahltechnik Dispositif pour traiter des pièces d'oeuvre par faisceau d'énergie à puissance volumique très élevée, notamment un faisceau laser de laser à CO2
LU86107A1 (fr) * 1984-10-18 1986-03-24 Centre Rech Metallurgique Procede de refroidissement d'un ensemble optique
EP0252268A2 (fr) * 1986-07-11 1988-01-13 BIAS Forschungs- und Entwicklungslabor für angewandte Strahltechnik Procédé pour la surveillance de source d'énergie d'usinage, en particulier d'un laser, et optique d'usinage pour la réalisation de celui-ci
DE3814985A1 (de) * 1987-05-20 1988-12-01 Weidmueller C A Gmbh Co Laserbearbeitungswerkzeug
JPS6462294A (en) * 1987-09-01 1989-03-08 Sumitomo Electric Industries Laser beam machining method
EP0329438A1 (fr) * 1988-02-16 1989-08-23 The Wiggins Teape Group Limited Dispositif de laser pour marquer à répétition un matériel mobile en forme de feuille
EP0349511A2 (fr) * 1988-06-29 1990-01-03 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Procédé pour refroidir un ensemble optique

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419321A (en) * 1966-02-24 1968-12-31 Lear Siegler Inc Laser optical apparatus for cutting holes
US4167662A (en) * 1978-03-27 1979-09-11 National Research Development Corporation Methods and apparatus for cutting and welding
DE2821883C2 (de) * 1978-05-19 1980-07-17 Ibm Deutschland Gmbh, 7000 Stuttgart Vorrichtung zur Materialbearbeitung
JPS57149086A (en) * 1981-03-12 1982-09-14 Toshiba Corp Moving cutter with mechanism for adjusting focal length of laser beam
US4467168A (en) * 1981-04-01 1984-08-21 Creative Glassworks International Method of cutting glass with a laser and an article made therewith
JPS5954485A (ja) * 1982-09-22 1984-03-29 Hitachi Ltd 管状製品切断用レ−ザ加工装置
DK149266C (da) * 1983-01-19 1986-11-03 Sektionen For Almen Procestekn Skaerehoved til bearbejdning ved hjaelp af en laserstraale
JPS59142520A (ja) * 1983-02-03 1984-08-15 Asahi Optical Co Ltd レ−ザ応用機の集光レンズ冷却装置
JPS59215292A (ja) * 1983-05-20 1984-12-05 Mitsubishi Electric Corp レ−ザ加工装置
DE3462568D1 (en) * 1983-10-28 1987-04-09 Gretag Ag Laser device for processing work pieces
JPS60108190A (ja) * 1983-11-17 1985-06-13 Asahi Optical Co Ltd レ−ザ応用機の集光レンズ冷却装置
JPS60227993A (ja) * 1984-04-27 1985-11-13 Mitsubishi Electric Corp レ−ザ加工装置の加工ヘツド
JPS6159837A (ja) * 1984-08-31 1986-03-27 Toshiba Ceramics Co Ltd ウエ−ハ洗浄連続装置
JPS6171193A (ja) * 1984-09-13 1986-04-12 Toshiba Corp レ−ザ集光装置
JPS61129890A (ja) * 1984-11-29 1986-06-17 Agency Of Ind Science & Technol 炭酸ガスレ−ザ用透明光学部品
JPS6393494A (ja) * 1986-10-09 1988-04-23 Toshiba Corp 放物面鏡レ−ザ加工光学系
JPS63121813A (ja) * 1986-11-11 1988-05-25 Minolta Camera Co Ltd レ−ザ−切断用光学系
JPH0624489U (ja) * 1993-09-02 1994-04-05 日世冷機株式会社 冷菓製造機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156231A2 (fr) * 1984-03-26 1985-10-02 BIAS Forschungs- und Entwicklungslabor für angewandte Strahltechnik Dispositif pour traiter des pièces d'oeuvre par faisceau d'énergie à puissance volumique très élevée, notamment un faisceau laser de laser à CO2
LU86107A1 (fr) * 1984-10-18 1986-03-24 Centre Rech Metallurgique Procede de refroidissement d'un ensemble optique
EP0252268A2 (fr) * 1986-07-11 1988-01-13 BIAS Forschungs- und Entwicklungslabor für angewandte Strahltechnik Procédé pour la surveillance de source d'énergie d'usinage, en particulier d'un laser, et optique d'usinage pour la réalisation de celui-ci
DE3814985A1 (de) * 1987-05-20 1988-12-01 Weidmueller C A Gmbh Co Laserbearbeitungswerkzeug
JPS6462294A (en) * 1987-09-01 1989-03-08 Sumitomo Electric Industries Laser beam machining method
EP0329438A1 (fr) * 1988-02-16 1989-08-23 The Wiggins Teape Group Limited Dispositif de laser pour marquer à répétition un matériel mobile en forme de feuille
EP0349511A2 (fr) * 1988-06-29 1990-01-03 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Procédé pour refroidir un ensemble optique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FEINWERKTECHNIK + MESSTECHNIK vol. 96, no. 9, 1988, MUENCHEN DE pages 364 - 372D. PETRING 'Werkstoffbearbeitung mit Laserstrahlung' *

Also Published As

Publication number Publication date
JPH03216287A (ja) 1991-09-24
DE69111314T2 (de) 1996-01-11
EP0464213A4 (en) 1993-09-29
EP0464213A1 (fr) 1992-01-08
US5237150A (en) 1993-08-17
WO1991010533A1 (fr) 1991-07-25
DE69111314D1 (de) 1995-08-24

Similar Documents

Publication Publication Date Title
EP0464213B1 (fr) Procede de decoupage au laser
US7348517B2 (en) Laser cutting apparatus with a high quality laser beam
US6512781B1 (en) Gas laser with mode control
EP1855831A2 (fr) Procede et appareil de traitement laser
US4745618A (en) Optically stable resonator for producing a laser beam
CA3017005A1 (fr) Appareil de soudage au laser et methode de fabrication de composante
JPH01245992A (ja) 多波長レーザー加工装置
JPH0332484A (ja) レーザ加工装置
GB1336806A (en) Deep penetration welding using coherent optical radiation
JP2757649B2 (ja) レーザ加工ヘッド
US4199735A (en) Optical compensation for thermal lensing in conductively cooled laser rod
US20080314880A1 (en) Laser processing machine with an optical diaphragm
EP0595335B1 (fr) Oscillateur laser
JP3623274B2 (ja) レーザー加工装置の加工ヘッド
JP2712937B2 (ja) ガスレーザ発振装置
JP3397312B2 (ja) レーザビーム合成装置およびレーザ加工システム
CN221494599U (zh) 一种应用于水导激光的光路补偿系统
Schellhorn et al. Deep penetration welding using a CO laser with an unstable resonator
JP3241707B2 (ja) レーザ加工装置
KR100805436B1 (ko) 레이저가공기의 빔 반사체 냉각구조
JP3290546B2 (ja) Al系部材のレーザ加工法
JPS60217678A (ja) レ−ザ共振器
JPH03185776A (ja) レーザ加工機
JPH11112074A (ja) レーザビーム通過開口板およびそれを用いた高出力レーザ装置およびレーザ光伝送装置
JPH0623579A (ja) レーザ装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RHK1 Main classification (correction)

Ipc: B23K 26/00

A4 Supplementary search report drawn up and despatched

Effective date: 19930809

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19940613

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69111314

Country of ref document: DE

Date of ref document: 19950824

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980109

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990114

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020212

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801