EP0464213B1 - Procede de decoupage au laser - Google Patents
Procede de decoupage au laser Download PDFInfo
- Publication number
- EP0464213B1 EP0464213B1 EP91901897A EP91901897A EP0464213B1 EP 0464213 B1 EP0464213 B1 EP 0464213B1 EP 91901897 A EP91901897 A EP 91901897A EP 91901897 A EP91901897 A EP 91901897A EP 0464213 B1 EP0464213 B1 EP 0464213B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser beam
- lens
- workpiece
- focussing
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0665—Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1435—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
- B23K26/1464—Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
- B23K26/1476—Features inside the nozzle for feeding the fluid stream through the nozzle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
Definitions
- the present invention relates to a method of cutting a workpiece such as a thick plate of mild steel, for example, with a laser beam, and more particularly to a method of cutting a workpiece with a laser beam which is focused with improved focussing characteristics that would otherwise be degraded by optical distortion.
- CO2 laser cutting machines mainly have had a laser beam output of 1 KW or less, and have been able to cut workpieces of mild steel, for example, which are up to 9 mm thick.
- the primary technical concern has been how small a focus spot can be made by focussing the laser beam.
- the focussing characteristics of the laser beam are affected by various factors such as the mode order that determines the divergent angle of the laser beam, the laser beam diameter on the focussing lens which determines a diffraction limitation, and the aberrations of the focussing optical system.
- the mode order has been considered to be most important for the CO2 laser cutting machines, and the achievement of the TEM00 mode which is the lowest-order mode is given the utmost importance See, for instance, "Modernetechnik, no. 10, October 1986, Landsberg am Lech, Germany, pages 45-48.
- the TEM00 mode has a smallest divergent angle, and has best focussing characteristics which make fine machining possible.
- the focussing optical system suffers optical distortion in the mode primarily of TEM00, and behaves in a manner completely different from that when the output power is lower, making it impossible to focus the laser beam into a small beam spot.
- the above drawback manifests itself especially with a ZnSe lens. More specifically, the lens undergoes a temperature rise due to laser beam absorption. Since the power density in the central region of the lens greatly increases in the TEM00 mode, the temperature distribution becomes similar to the power density distribution. As a result, the lens region which suffers the high temperature is thermally expanded and has an increased refractive index, resulting in a localized change in the focussing characteristics.
- JP-A-61-129 890 discloses the use of a focussing lens of potassium chloride in CO2 laser cutting.
- JP-A-60-24489 discloses a method of laser machining, wherein a gas cools the upper and lower surfaces of a focussing lens, and an auxiliary gas is supplied to a nozzle.
- Another object of the present invention is to provide a method of cutting a workpiece with a laser beam while applying a gas to the surface of a focussing optical system to cool the focussing optical system, thereby improving focussing characteristics that would otherwise be degraded by optical distortion.
- Still another object of the present invention is to provide a method of cutting a workpiece with a laser beam using a KCL lens as a focussing lens, thereby improving focussing characteristics that would otherwise be degraded by optical distortion.
- Yet still another object of the present invention is to provide a method of cutting a workpiece with a laser beam using a reflecting mirror as a focussing optical system, thereby improving focussing characteristics that would otherwise be degraded by optical distortion.
- a method of cutting a thick workpiece with a laser beam of high output power comprising the steps of: applying a laser beam dominantly in a ring mode, with a central region thereof being hollow; independently applying a gas to each of an upper and a lower surface of a focussing lens to cool the lens while the laser beam is passing through the lens towards the workpiece; and, independently supplying an auxiliary gas to a nozzle through which the laser beam passes and ejecting the auxiliary gas from the nozzle against the workpiece.
- a method of cutting a thick workpiece with a laser beam of high output power comprising the steps of: applying a laser beam dominantly in a ring mode, with a central region thereof being hollow; and, passing the laser beam through a potassium chloride lens as a focussing lens to focus the laser beam onto the workpiece while suppressing optical distortion, said potassium chloride lens being of the type that expands when its temperature increases thereby causing a decrease in the value of the refractive index whereby the expansion and the decrease of the value of the refractive index cancel out each other to suppress optical distortion.
- a method of cutting a thick workpiece with a laser beam of high output power comprising the steps of: applying a laser beam dominantly in a ring mode, with a central region thereof being hollow; reflecting the laser beam with a focussing reflecting mirror toward the workpiece; cooling the focusing reflecting mirror; and, supplying an auxiliary gas to a nozzle through which the laser beam passes and ejecting the auxiliary gas from the nozzle against the workpiece.
- the laser beam mainly in the ring mode is effective to reduce optical distortion due to laser beam absorption in a central region of a focusing optical system, e.g., a lens, thereby preventing focussing characteristics from being degraded.
- a focusing optical system e.g., a lens
- the laser beam is mainly in a TEM01 mode and produced with an output power of 2 KW or more, it can cut the workpiece in a fine way.
- the laser beam profile in this mode can be transmitted over a long distance for cutting the workpiece. Inasmuch as the thick workpiece is usually long, the ability to transmit the laser beam over the long distance (e.g., 20 m) is of practical importance.
- the central region thereof which tends to be heated more intensely than other regions, is directly cooled.
- the temperature of the lens is thus lowered to reduce optical distortion due to laser beam absorption in the central region of the lens, thereby preventing focussing characteristics from being degraded.
- a KCL (potassium chloride) lens as a focussing lens suffers less optical distortion, and hence is effective to prevent focussing characteristics from being degraded.
- the temperature of the KCL lens rises, it undergoes thermal expansion and at the same time decreases the value of refractive index. This expansion and refractive index decrease of the KCL lens cancel out each other in the degree of optical distortion. Therefore, any increases in optical distortion are suppressed.
- a focussing reflecting mirror When a focussing reflecting mirror is used as the focussing optical system, it only suffers distortions induced by thermal deformation, and not the change of refractive index because it is a reflecting mirror, but not a refractive system, and prevents a degradation of focussing characteristics which would otherwise be caused by a refractive index variation.
- FIGS. 1(a), 1(b), and 1(c) are diagrams illustrative of the manner in which a laser beam mode is made hollow according to the present invention.
- FIG. 1 (a) shows a TEM00 mode
- FIG. 1(b) a TEM01 mode
- FIG. 1(c) a TEM10 mode.
- Only the TEM01 mode has a hollow center. Even if the laser output power is the same as those of the other modes, the power density is low at the center of the TEM01 mode. Since the center would tend to be overheated in a focussing optical system which is peripherally cooled, the TEM01 mode with no laser beam present in its center is less likely to produce optical distortion.
- the mode may not necessarily fully be the TEM01 mode, but may contain the TEM00 mode and the TEM01 mode though it should dominantly be the TEM01 mode.
- the pure TEM01 mode is effective to prevent hopping between different modes, and its higher mode stability results in higher cut surface quality.
- a RF discharge-pumped laser is effective to obtain the TEM01 mode, because a high gain is present near the tube wall, which is favorable to the TEM01 mode. It is another method for the resonator to have an aperture for purifying the mode or a central absorber therein.
- FIG. 2 shows a process of cooling a focussing lens.
- the focussing lens has been cooled at its peripheral portion indirectly by water, and particularly in the TEM00 mode, suffered optical distortion since it is heated locally in the central region thereof.
- the central region of the focussing lens is cooled directly by air.
- the focussing lens denoted at 11
- a laser beam 12 which is shown hatched, passes through the focussing lens 11.
- the holder 10 has a nozzle 8 facing a workpiece 9 to be cut.
- the laser beam 12 is focussed by the focussing lens 11 in to a focal point 13 positioned outside of the nozzle 8 and on the workpiece 9.
- a cooling gas is applied to both surfaces of the focussing lens 11 to forcibly cool the focussing lens 11.
- clean air is introduced from a cooling gas inlet 1 in order to cool the upper surface of the focussing lens 11.
- the clean air is ejected against the focussing lens 11 in the direction indicated by the arrows, and then discharged from a cooling gas outlet 2.
- the clean air thus applied also serves to prevent the surface of the focussing lens 11 from being contaminated.
- oxygen or air is introduced from a cooling gas inlet 3, and discharged from a cooling gas outlet 4.
- the cooling gas flow is regulated by a variable valve 5 because the amount of the cooling gas to be applied to the focussing lens 11 has to be kept at an optimum level.
- the downstream side of the valve 5 may be evacuated by a discharge pump.
- An auxiliary gas is introduced from gas inlets 6, 7 into the nozzle 8, and then ejected from the nozzle 8 against the workpiece 9 while the workpiece 9 is being cut by the laser beam.
- the focussing lens 11 When the focussing lens 11 is thus forcibly cooled by the cooling gas, the focussing lens 11 is free from optical distortion, and can focus the laser beam with good focussing characteristics even though the mode is dominantly the TEM01 mode. Therefore, the laser beam can cut workpiece 9 even if it comprises a thick plate. Since the workpiece 9, in the form of a thick plate, is long, the cutting point on the workpiece 9 may be about 20 mm apart from the laser oscillator. While the TEM00 mode shown in FIG. 1 (a) cannot be maintained over the distance of 20 m, the method of the invention which employs the laser beam dominantly in the TEM01 mode is free from such a problem in cutting the long workpiece 9.
- a KCL (potassium chloride) lens is used as a focussing lens.
- the KCL lens does not suffer optical distortion even without being cooled. This is because when the temperature of the KCL lens rises, it expands and decreases in the value of refractive index, and this expansion and the refractive index decrease of the KCL lens cancel out each other.
- the KCL lens may also be used in the transmission of a laser beam over a long distance.
- FIG. 3 shows an arrangement which employs a focussing reflecting mirror.
- the focussing reflecting mirror comprises an off-axis parabolic mirror 25 for focussing a laser beam 22 through a nozzle 18 onto a focal point 23 on a workpiece 19.
- the parabolic mirror 25 is held in a holder 24.
- An auxiliary gas is introduced from a gas inlet 16 into the nozzle 18. Since the off-axis parabolic mirror 25 is a reflecting mirror, but not a refractive system, it only suffers distortions induced by thermal deformation.
- the entire reflecting surface of the parabolic mirror 25 may be cooled indirectly from its back by cooling water flowing through a cooling water passage 26.
- the arrangement shown in FIG. 3 is also capable of solving the problems which would otherwise occur in the transmission of a laser beam over a long distance.
- the above three methods prevent a degradation of focussing characteristics which would otherwise result from optical distortion of the focussing optical system, and are effective in cutting a workpiece with a laser beam of high output power.
- a CO2 laser having an output power of 3 KW can cut a workpiece of mild steel, which is up to 25 mm thick, and can cut a workpiece of mild steel, which is up to 19 mm, in a fine cutting process.
- the methods can also give stable focussing characteristics to large-size cutting apparatus which are required to transmit the laser beam over the distance of 20 m or more.
- the present invention prevents a degradation in the focussing characteristics which would otherwise be induced by optical distortion of the focussing optical system when the workpiece is cut with a laser beam of high output power
- the methods of the invention is capable of cutting relatively thick workpieces, which have heretofore been unable to cut.
- the methods according to the present invention can also give stable focussing characteristics to large-size cutting apparatus which are required to transmit the laser beam over a long distance.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Lasers (AREA)
Abstract
Claims (5)
- Un procédé de découpage d'une pièce d'ouvrage épaisse (9) à l'aide d'un faisceau laser (12) de puissance de sortie élevée, comprenant les opérations consistant à :
appliquer un faisceau laser principalement dans un mode en anneau, avec une zone centrale de ce dernier qui est creuse ;
appliquer, de manière indépendante, un gaz à chacune des surfaces supérieure et inférieure d'une lentille de focalisation (11) afin de refroidir la lentille tandis que le faisceau laser traverse la lentille en direction de la pièce d'ouvrage ; et
fournir, de manière indépendante, un gaz auxiliaire à une buse (8) à travers laquelle passe le faisceau laser et éjecter le gaz auxiliaire depuis la buse contre la pièce d'ouvrage. - Un procédé de découpage d'une pièce d'ouvrage épaisse (9) à l'aide d'un faisceau laser (12) de puissance de sortie élevée, comprenant les opérations consistant à :
appliquer un faisceau laser principalement dans un mode en anneau, avec une zone centrale de ce dernier qui est creuse ; et
faire passer le faisceau laser à travers une lentille en chlorure de potassium en tant que lentille de focalisation (11) afin de focaliser le faisceau laser sur la pièce d'ouvrage tout en supprimant la distorsion optique, ladite lentille en chlorure de potassium étant du type qui se dilate lorsque sa température augmente en provoquant ainsi une diminution dans la valeur de l'indice de réfraction, de sorte que la dilatation et la diminution de la valeur de l'indice de réfraction s'annulent mutuellement pour supprimer la distorsion optique. - Un procédé de découpage d'une pièce d'ouvrage épaisse (9) à l'aide d'un faisceau laser (22) de puissance de sortie élevée, comprenant les opérations consistant à :
appliquer un faisceau laser principalement dans un mode en anneau, avec une zone centrale de ce dernier qui est creuse ;
réfléchir le faisceau laser à l'aide d'un miroir de focalisation réfléchissant (25) en direction de la pièce d'ouvrage ;
refroidir le miroir de focalisation réfléchissant ; et
fournir un gaz auxiliaire à une buse (18) à travers laquelle passe le faisceau laser et éjecter le gaz auxiliaire depuis la buse contre la pièce d'ouvrage. - Un procédé selon une quelconque des revendications 1 à 3, dans lequel ledit mode en anneau est principalement un mode TEM01.
- Un procédé selon une quelconque des revendications 1 à 4, dans lequel ledit mode en anneau contient un mode TEM00.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10029/90 | 1990-01-19 | ||
JP2010029A JPH03216287A (ja) | 1990-01-19 | 1990-01-19 | レーザ切断加工方法 |
PCT/JP1991/000022 WO1991010533A1 (fr) | 1990-01-19 | 1991-01-11 | Procede de decoupage au laser |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0464213A1 EP0464213A1 (fr) | 1992-01-08 |
EP0464213A4 EP0464213A4 (en) | 1993-09-29 |
EP0464213B1 true EP0464213B1 (fr) | 1995-07-19 |
Family
ID=11738971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91901897A Expired - Lifetime EP0464213B1 (fr) | 1990-01-19 | 1991-01-11 | Procede de decoupage au laser |
Country Status (5)
Country | Link |
---|---|
US (1) | US5237150A (fr) |
EP (1) | EP0464213B1 (fr) |
JP (1) | JPH03216287A (fr) |
DE (1) | DE69111314T2 (fr) |
WO (1) | WO1991010533A1 (fr) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4215561C2 (de) * | 1991-11-19 | 1995-04-06 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum Abtragen von Werkstoff eines relativbewegten metallenen Werkstücks |
JP2829192B2 (ja) * | 1992-05-15 | 1998-11-25 | 住友電気工業株式会社 | レ−ザビ−ムスキャナ |
JP2658809B2 (ja) * | 1992-08-27 | 1997-09-30 | 三菱電機株式会社 | レーザ加工装置 |
US5776220A (en) * | 1994-09-19 | 1998-07-07 | Corning Incorporated | Method and apparatus for breaking brittle materials |
WO1996020062A1 (fr) * | 1994-12-23 | 1996-07-04 | Kondratenko Vladimir Stepanovi | Procede de coupe de materiaux non metalliques et dispositif de mise en ×uvre dudit procede |
US5834094A (en) * | 1996-09-30 | 1998-11-10 | Surface Technologies Ltd. | Bearing having micropores and design method thereof |
DE19715537C2 (de) * | 1997-04-14 | 1999-08-05 | Schott Glas | Verfahren und Vorrichtung zum Durchtrennen von flachen Werkstücken aus sprödem Material, insbesondere aus Glas |
MY120533A (en) * | 1997-04-14 | 2005-11-30 | Schott Ag | Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass. |
DE19830237C2 (de) * | 1998-07-07 | 2001-10-04 | Schott Spezialglas Gmbh | Verfahren und Vorrichtung zum Schneiden eines Werkstückes aus sprödbrüchigem Werkstoff |
JP4162772B2 (ja) * | 1998-09-09 | 2008-10-08 | 日酸Tanaka株式会社 | レーザピアシング方法およびレーザ切断装置 |
DE19856347C2 (de) * | 1998-12-07 | 2002-12-19 | Schott Spezialglas Gmbh | Verfahren und Vorrichtung zum Schneiden eines dünnen Werkstücks aus sprödbrüchigem Werkstoff |
US6331693B1 (en) * | 1999-06-28 | 2001-12-18 | Cincinnati Incorporated | Beam delivery system |
DE19952331C1 (de) | 1999-10-29 | 2001-08-30 | Schott Spezialglas Gmbh | Verfahren und Vorrichtung zum schnellen Schneiden eines Werkstücks aus sprödbrüchigem Werkstoff mittels Laserstrahlen |
DE29922544U1 (de) | 1999-12-22 | 2001-05-03 | KUKA Schweissanlagen GmbH, 86165 Augsburg | Blasvorrichtung für eine Lasereinrichtung |
GB0328370D0 (en) * | 2003-12-05 | 2004-01-14 | Southampton Photonics Ltd | Apparatus for providing optical radiation |
JP4182034B2 (ja) * | 2004-08-05 | 2008-11-19 | ファナック株式会社 | 切断加工用レーザ装置 |
EP1657020A1 (fr) * | 2004-11-10 | 2006-05-17 | Synova S.A. | Méthode et dispositif pour optimiser la cohérence d'un jet de fluide utilisé pour le travail de matériaux et buse pour un tel dispositif |
JP2007095936A (ja) * | 2005-09-28 | 2007-04-12 | Mitsubishi Electric Corp | 炭酸ガスレーザ加工機及び炭酸ガスレーザ加工方法 |
US8895892B2 (en) * | 2008-10-23 | 2014-11-25 | Corning Incorporated | Non-contact glass shearing device and method for scribing or cutting a moving glass sheet |
US8274743B2 (en) * | 2010-04-08 | 2012-09-25 | Scaggs Michael J | Thermally compensating lens for high power lasers |
KR102096048B1 (ko) * | 2012-10-10 | 2020-04-02 | 삼성디스플레이 주식회사 | 레이저 가공장치 |
KR102020912B1 (ko) | 2013-02-21 | 2019-09-11 | 엔라이트 인크. | 다층 구조의 레이저 패터닝 |
US9260337B2 (en) | 2014-01-09 | 2016-02-16 | Corning Incorporated | Methods and apparatus for free-shape cutting of flexible thin glass |
US10069271B2 (en) | 2014-06-02 | 2018-09-04 | Nlight, Inc. | Scalable high power fiber laser |
EP3165615B1 (fr) * | 2014-07-03 | 2022-12-21 | Nippon Steel Corporation | Utilisation d'un appareil de traitement au laser pour affiner les domaines magnétiques d'une tôle d'acier électromagnétique à grains orientés |
WO2016009978A1 (fr) * | 2014-07-15 | 2016-01-21 | 株式会社トヨコー | Dispositif d'exposition à un rayonnement laser |
CN111496379B (zh) * | 2014-08-19 | 2022-08-26 | 亮锐控股有限公司 | 用于减少在管芯级激光剥离期间所受机械损伤的蓝宝石收集器 |
EP3210064A1 (fr) | 2014-10-20 | 2017-08-30 | Corelase OY | Ensemble optique et son procédé de production |
US9837783B2 (en) | 2015-01-26 | 2017-12-05 | Nlight, Inc. | High-power, single-mode fiber sources |
US10050404B2 (en) | 2015-03-26 | 2018-08-14 | Nlight, Inc. | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss |
KR102572643B1 (ko) * | 2015-05-13 | 2023-08-31 | 루미리즈 홀딩 비.브이. | 다이 레벨의 레이저 리프트-오프 중에 기계적 손상을 줄이기 위한 사파이어 수집기 |
HUE056149T2 (hu) | 2015-06-09 | 2022-01-28 | Corelase Oy | Lézeres megmunkáló berendezés és eljárás és egy optikai egység ehhez |
CN107924023B (zh) | 2015-07-08 | 2020-12-01 | 恩耐公司 | 具有用于增加的光束参数乘积的中心折射率受抑制的纤维 |
US10423015B2 (en) * | 2016-09-29 | 2019-09-24 | Nlight, Inc. | Adjustable beam characteristics |
US10730785B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Optical fiber bending mechanisms |
JP6450783B2 (ja) | 2017-01-19 | 2019-01-09 | ファナック株式会社 | レーザ加工ヘッド用ノズル |
JP6450784B2 (ja) * | 2017-01-19 | 2019-01-09 | ファナック株式会社 | レーザ加工機 |
KR102418512B1 (ko) | 2017-12-29 | 2022-07-07 | 코렐라스 오와이 | 레이저 프로세싱 장치 및 방법 |
DE102019103659B4 (de) * | 2019-02-13 | 2023-11-30 | Bystronic Laser Ag | Gasführung, Laserschneidkopf und Laserschneidmaschine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0156231A2 (fr) * | 1984-03-26 | 1985-10-02 | BIAS Forschungs- und Entwicklungslabor für angewandte Strahltechnik | Dispositif pour traiter des pièces d'oeuvre par faisceau d'énergie à puissance volumique très élevée, notamment un faisceau laser de laser à CO2 |
LU86107A1 (fr) * | 1984-10-18 | 1986-03-24 | Centre Rech Metallurgique | Procede de refroidissement d'un ensemble optique |
EP0252268A2 (fr) * | 1986-07-11 | 1988-01-13 | BIAS Forschungs- und Entwicklungslabor für angewandte Strahltechnik | Procédé pour la surveillance de source d'énergie d'usinage, en particulier d'un laser, et optique d'usinage pour la réalisation de celui-ci |
DE3814985A1 (de) * | 1987-05-20 | 1988-12-01 | Weidmueller C A Gmbh Co | Laserbearbeitungswerkzeug |
JPS6462294A (en) * | 1987-09-01 | 1989-03-08 | Sumitomo Electric Industries | Laser beam machining method |
EP0329438A1 (fr) * | 1988-02-16 | 1989-08-23 | The Wiggins Teape Group Limited | Dispositif de laser pour marquer à répétition un matériel mobile en forme de feuille |
EP0349511A2 (fr) * | 1988-06-29 | 1990-01-03 | CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif | Procédé pour refroidir un ensemble optique |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3419321A (en) * | 1966-02-24 | 1968-12-31 | Lear Siegler Inc | Laser optical apparatus for cutting holes |
US4167662A (en) * | 1978-03-27 | 1979-09-11 | National Research Development Corporation | Methods and apparatus for cutting and welding |
DE2821883C2 (de) * | 1978-05-19 | 1980-07-17 | Ibm Deutschland Gmbh, 7000 Stuttgart | Vorrichtung zur Materialbearbeitung |
JPS57149086A (en) * | 1981-03-12 | 1982-09-14 | Toshiba Corp | Moving cutter with mechanism for adjusting focal length of laser beam |
US4467168A (en) * | 1981-04-01 | 1984-08-21 | Creative Glassworks International | Method of cutting glass with a laser and an article made therewith |
JPS5954485A (ja) * | 1982-09-22 | 1984-03-29 | Hitachi Ltd | 管状製品切断用レ−ザ加工装置 |
DK149266C (da) * | 1983-01-19 | 1986-11-03 | Sektionen For Almen Procestekn | Skaerehoved til bearbejdning ved hjaelp af en laserstraale |
JPS59142520A (ja) * | 1983-02-03 | 1984-08-15 | Asahi Optical Co Ltd | レ−ザ応用機の集光レンズ冷却装置 |
JPS59215292A (ja) * | 1983-05-20 | 1984-12-05 | Mitsubishi Electric Corp | レ−ザ加工装置 |
DE3462568D1 (en) * | 1983-10-28 | 1987-04-09 | Gretag Ag | Laser device for processing work pieces |
JPS60108190A (ja) * | 1983-11-17 | 1985-06-13 | Asahi Optical Co Ltd | レ−ザ応用機の集光レンズ冷却装置 |
JPS60227993A (ja) * | 1984-04-27 | 1985-11-13 | Mitsubishi Electric Corp | レ−ザ加工装置の加工ヘツド |
JPS6159837A (ja) * | 1984-08-31 | 1986-03-27 | Toshiba Ceramics Co Ltd | ウエ−ハ洗浄連続装置 |
JPS6171193A (ja) * | 1984-09-13 | 1986-04-12 | Toshiba Corp | レ−ザ集光装置 |
JPS61129890A (ja) * | 1984-11-29 | 1986-06-17 | Agency Of Ind Science & Technol | 炭酸ガスレ−ザ用透明光学部品 |
JPS6393494A (ja) * | 1986-10-09 | 1988-04-23 | Toshiba Corp | 放物面鏡レ−ザ加工光学系 |
JPS63121813A (ja) * | 1986-11-11 | 1988-05-25 | Minolta Camera Co Ltd | レ−ザ−切断用光学系 |
JPH0624489U (ja) * | 1993-09-02 | 1994-04-05 | 日世冷機株式会社 | 冷菓製造機 |
-
1990
- 1990-01-19 JP JP2010029A patent/JPH03216287A/ja active Pending
-
1991
- 1991-01-11 WO PCT/JP1991/000022 patent/WO1991010533A1/fr active IP Right Grant
- 1991-01-11 DE DE69111314T patent/DE69111314T2/de not_active Expired - Fee Related
- 1991-01-11 US US07/761,802 patent/US5237150A/en not_active Expired - Fee Related
- 1991-01-11 EP EP91901897A patent/EP0464213B1/fr not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0156231A2 (fr) * | 1984-03-26 | 1985-10-02 | BIAS Forschungs- und Entwicklungslabor für angewandte Strahltechnik | Dispositif pour traiter des pièces d'oeuvre par faisceau d'énergie à puissance volumique très élevée, notamment un faisceau laser de laser à CO2 |
LU86107A1 (fr) * | 1984-10-18 | 1986-03-24 | Centre Rech Metallurgique | Procede de refroidissement d'un ensemble optique |
EP0252268A2 (fr) * | 1986-07-11 | 1988-01-13 | BIAS Forschungs- und Entwicklungslabor für angewandte Strahltechnik | Procédé pour la surveillance de source d'énergie d'usinage, en particulier d'un laser, et optique d'usinage pour la réalisation de celui-ci |
DE3814985A1 (de) * | 1987-05-20 | 1988-12-01 | Weidmueller C A Gmbh Co | Laserbearbeitungswerkzeug |
JPS6462294A (en) * | 1987-09-01 | 1989-03-08 | Sumitomo Electric Industries | Laser beam machining method |
EP0329438A1 (fr) * | 1988-02-16 | 1989-08-23 | The Wiggins Teape Group Limited | Dispositif de laser pour marquer à répétition un matériel mobile en forme de feuille |
EP0349511A2 (fr) * | 1988-06-29 | 1990-01-03 | CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif | Procédé pour refroidir un ensemble optique |
Non-Patent Citations (1)
Title |
---|
FEINWERKTECHNIK + MESSTECHNIK vol. 96, no. 9, 1988, MUENCHEN DE pages 364 - 372D. PETRING 'Werkstoffbearbeitung mit Laserstrahlung' * |
Also Published As
Publication number | Publication date |
---|---|
JPH03216287A (ja) | 1991-09-24 |
DE69111314T2 (de) | 1996-01-11 |
EP0464213A4 (en) | 1993-09-29 |
EP0464213A1 (fr) | 1992-01-08 |
US5237150A (en) | 1993-08-17 |
WO1991010533A1 (fr) | 1991-07-25 |
DE69111314D1 (de) | 1995-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0464213B1 (fr) | Procede de decoupage au laser | |
US7348517B2 (en) | Laser cutting apparatus with a high quality laser beam | |
US6512781B1 (en) | Gas laser with mode control | |
EP1855831A2 (fr) | Procede et appareil de traitement laser | |
US4745618A (en) | Optically stable resonator for producing a laser beam | |
CA3017005A1 (fr) | Appareil de soudage au laser et methode de fabrication de composante | |
JPH01245992A (ja) | 多波長レーザー加工装置 | |
JPH0332484A (ja) | レーザ加工装置 | |
GB1336806A (en) | Deep penetration welding using coherent optical radiation | |
JP2757649B2 (ja) | レーザ加工ヘッド | |
US4199735A (en) | Optical compensation for thermal lensing in conductively cooled laser rod | |
US20080314880A1 (en) | Laser processing machine with an optical diaphragm | |
EP0595335B1 (fr) | Oscillateur laser | |
JP3623274B2 (ja) | レーザー加工装置の加工ヘッド | |
JP2712937B2 (ja) | ガスレーザ発振装置 | |
JP3397312B2 (ja) | レーザビーム合成装置およびレーザ加工システム | |
CN221494599U (zh) | 一种应用于水导激光的光路补偿系统 | |
Schellhorn et al. | Deep penetration welding using a CO laser with an unstable resonator | |
JP3241707B2 (ja) | レーザ加工装置 | |
KR100805436B1 (ko) | 레이저가공기의 빔 반사체 냉각구조 | |
JP3290546B2 (ja) | Al系部材のレーザ加工法 | |
JPS60217678A (ja) | レ−ザ共振器 | |
JPH03185776A (ja) | レーザ加工機 | |
JPH11112074A (ja) | レーザビーム通過開口板およびそれを用いた高出力レーザ装置およびレーザ光伝送装置 | |
JPH0623579A (ja) | レーザ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19911018 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
RHK1 | Main classification (correction) |
Ipc: B23K 26/00 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19930809 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19940613 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69111314 Country of ref document: DE Date of ref document: 19950824 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980109 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990114 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000111 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000111 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020212 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030801 |