EP0451566B1 - Verfahren und Vorrichtung zur gaschromatographischen Trennung - Google Patents

Verfahren und Vorrichtung zur gaschromatographischen Trennung Download PDF

Info

Publication number
EP0451566B1
EP0451566B1 EP91104387A EP91104387A EP0451566B1 EP 0451566 B1 EP0451566 B1 EP 0451566B1 EP 91104387 A EP91104387 A EP 91104387A EP 91104387 A EP91104387 A EP 91104387A EP 0451566 B1 EP0451566 B1 EP 0451566B1
Authority
EP
European Patent Office
Prior art keywords
evaporator tube
solvent
temperature
substances
sample material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91104387A
Other languages
English (en)
French (fr)
Other versions
EP0451566A2 (de
EP0451566A3 (en
Inventor
Eberhard Gerstel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904011350 external-priority patent/DE4011350A1/de
Priority claimed from DE19904027009 external-priority patent/DE4027009A1/de
Application filed by Individual filed Critical Individual
Publication of EP0451566A2 publication Critical patent/EP0451566A2/de
Publication of EP0451566A3 publication Critical patent/EP0451566A3/de
Application granted granted Critical
Publication of EP0451566B1 publication Critical patent/EP0451566B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/121Preparation by evaporation cooling; cold traps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3023Control of physical parameters of the fluid carrier of temperature using cryogenic fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/303Control of physical parameters of the fluid carrier of temperature using peltier elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3038Control of physical parameters of the fluid carrier of temperature temperature control of column exit, e.g. of restrictors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3046Control of physical parameters of the fluid carrier of temperature temperature control of column inlet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/18Injection using a septum or microsyringe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/40Flow patterns using back flushing

Definitions

  • the invention relates to a method and a device for gas chromatographic separation of substances according to the preamble of claims 1 and 16, respectively.
  • EP-A-0 292 612 discloses a gas chromatograph and a method for separating substances, a carrier gas supply for the pressure-controlled supply of a carrier gas stream, a sample application device with pre-separation, a separation column, to which a detector is optionally connected, and one between the Sample application device and the branching column arranged with a throttle point are provided.
  • the branching piece additionally has an outlet leading to a switchable valve device, which is arranged on the sample application side to the throttle point, and a feed line for a regulated auxiliary gas flow, which is arranged on the separating column side to the throttle point.
  • the sample application device can be heated to effect the pre-separation.
  • German application P 39 13 738.4 in which the solvent is removed by removal by means of a Carrier gas stream is hidden during the sample application, while the substances to be examined are retained on a phase located in front of the separation column in order to be separated from the phase in a further operating state by heating and introduced into a separation column system.
  • This makes it possible to carry out a multiple sample application and thereby enrich substances to be examined.
  • this would be very time-consuming and difficult, if not practically impossible, for the investigation of traces in solvents, for example in water, since large amounts of solvent have to be applied in this process until sufficient trace accumulation can be achieved.
  • With regard to the solvent virtually no complete masking can then be achieved in view of the large amount.
  • the object of the invention is to provide a method and a device according to the preamble of claims 1 and 16, respectively, which make it possible to hide the solvent and, at the same time, in particular only trace substances present in the solvent to be examined in the shortest possible time and as good as possible Enrich the yield in order to put it on the separation column after the sample application.
  • the regulation is carried out in such a way that a maximum evaporation rate for the solvent and removal of the resultant in accordance with the otherwise existing conditions Solvent vapor is achieved so that the optimal time possible results from practically maximum solvent vapor exposure to the purge gas.
  • a relatively high temperature in the evaporator tube is advantageous for solvent evaporation, but in general substances to be retained are then entrained to a greater extent than at lower temperatures, the latter increasing the task time.
  • the substances to be examined are in the evaporator tube as a result of a sufficiently large difference between the boiling point of the solvent and the boiling point (s) of the substances to be retained - if appropriate with appropriate cooling of the evaporator tube in such a way that the solvent evaporates but the substances to be retained are precipitated - or, for example, over a selective packing in the evaporator tube - for example by polar adhesion or the like. - captured and enriched.
  • Fig. 1 shows schematically an embodiment of a gas chromatograph.
  • FIG. 2 shows a diagram with respect to the maximum metering speed of the sample material as a function of the temperature and the carrier gas flow rate.
  • FIG. 3 shows an embodiment of an evaporator tube.
  • Fig. 4 shows schematically a dosing device for sample material.
  • the gas chromatograph shown comprises a sample application device 1 which is provided with an application head 2 which is coupled to a metering device 3, for example having an injection needle.
  • the sample application device 1 is, for example, a cold application device as described in DE-PS 34 00 458, while as a delivery head 2 preferably an embodiment comes into question, as described in DE-GM 87 15 782.
  • a purging and carrier gas source 4 (if purging and carrier gas are not identical, two gas sources are to be provided accordingly) is provided, which is connected to the feed head 2 via a gas line 5 and a flow regulator 6.
  • the sample application device 1 opens into a branching piece 7, which has a through-bore 10 which is narrowed by a throttle 8 and leads to a capillary separation column 9.
  • a discharge line 11 leads from the through bore 10 and leads to a valve device 12, for example consisting of a solenoid valve and a needle valve.
  • an auxiliary gas line 14 which is connected to the purge and carrier gas source 4 via a flow regulator 13, opens for an auxiliary gas flow.
  • the gas chromatographic separation column 9, like the branching piece 7, is located in an oven 15, the temperature of which can be regulated.
  • the temperature of the material to be processed is measured by means of a temperature sensor 16.
  • the temperature sensor 16 is connected to a controller 17 comprising, for example, a microprocessor, which in turn controls the injection speed of the metering device 3 in accordance with the received measured values.
  • the sample application device 1 has an evaporator tube 18 which can be cooled and heated by means of a cooling and heating device 19 (e.g. liquid gas (liquid CO2, N2 or the like) or Peltier element cooling and resistance heating) and through which the flushing gas and the sample material supplied flow.
  • a cooling and heating device 19 e.g. liquid gas (liquid CO2, N2 or the like) or Peltier element cooling and resistance heating
  • This evaporator tube 18 serves to retain substances to be examined.
  • a relatively strong purging gas stream flows through the gas line 5 through the sample application device 1.
  • the metering device 3 transmits the Sample material metered in such a way that the entire solvent of the sample material evaporates and can be removed with the purge gas stream.
  • the purge gas with the vaporous solvent is discharged via the discharge line 11, since the throttle 8 is closed pneumatically by the gas flow of the auxiliary gas line 14.
  • the sample is fed continuously over a sufficiently long period of time, which is dimensioned such that a sufficient amount of substances to be examined for their detection and identification accumulates in the evaporator tube 18.
  • a sample amount on the order of several milliliters or the like. be used.
  • V G V L d M ⁇ RT p j
  • V G V L d M ⁇ RT p j
  • the volume of the saturated vapor is determined by the volume of the carrier gas which flows through the evaporator tube 18 per unit of time, which results in the amount of the evaporable volume of liquid per unit of time in accordance with the temperature, since the density and molecular weight of the solvent are known.
  • v Max p O p i ⁇ Mp j dRT O ⁇ V t, o , where p o / p i is the outlet / inlet pressure ratio at the evaporator tube 18, T o is the temperature at the outlet of the evaporator tube 18 and v t, o is the total gas flow rate at the outlet of the evaporator tube 18.
  • the purge gas flow rate and thus the total gas flow rate is determined by the flow controller 6.
  • the inlet pressure is determined by the purge gas source 4 or an associated pressure reducing valve.
  • the outlet pressure is the inlet pressure plus partial pressure of the solvent. Accordingly, the maximum dosing speed v max or, if this is specified, can be regulated to a different size, such as the amount of purge gas per unit of time, while the temperature is generally specified in accordance with expediency considerations.
  • the metering speed can be regulated via the temperature in such a way that all the solvent can be evaporated in practically the shortest time required for this and can be masked out via the discharge line 11, it being possible to continuously process large amounts of sample material for a chromatogram.
  • the column admission pressure of the carrier gas is set via the flow regulator 6 and the valve device 12, while the throttle 8 is opened by the elimination of the auxiliary gas flow, and the separation column 9 is heated.
  • the evaporator tube 18 By heating the evaporator tube 18, the substances to be examined are evaporated and transported by the carrier gas stream into the separating column 9 and separated accordingly in order to be later analyzed and / or split and / or collected.
  • Such a gas chromatograph allows the analysis of very small traces in solvents, e.g. Impurities in the ppm range or below, whereby large amounts of sample can be applied in a relatively short time.
  • FIG. 2 shows an example of a diagram in which the maximum dosing speed v max of the sample to be applied is plotted logarithmically on the ordinate and the temperature is plotted linearly on the abscissa.
  • the curves 20 relate to the solvent hexane, the curves 21 to methanol and the curves 22 to water, the solid curves being plotted at a carrier gas throughput of 620 cm 3 / min and the dashed curves at 210 cm 3 / min.
  • a detector 23 responsive to the solvent on the outlet side to the evaporator tube 18, which can be coupled to a switching device integrated or separately configured in the controller 17 in order to switch over from the first operating state of the sample application with solvent suppression to the second operating state of the application of the substances to be examined onto the separation column 9 if a predetermined threshold value is undershot.
  • a thermal conductivity detector which can be arranged as a micro component in the evaporator tube 18, is particularly suitable for this purpose.
  • Fig. 3 shows an embodiment of an evaporator tube 18, the inlet side Area is provided with a filling 24 enlarging the evaporation surface for the solvent, for example made of silanized glass wool.
  • the filling 24 should be readily wettable by the solvent. This promotes rapid evaporation.
  • An additional partial resistance heater 25 in the inlet-side area of the evaporator tube 18 can additionally accelerate the evaporation of the solvent or can be achieved in that the solvent is already completely evaporated in this inlet-side area of the evaporator tube 18 provided with the additional resistance heater 25, in the evaporated state with the purge gas and the substances to be examined in the subsequent colder area of the evaporator tube, where the substances to be examined are retained.
  • This is particularly expedient with water as the solvent in order to be able to effect an effective retention of the substances to be examined in the evaporator tube 18.
  • the substances to be examined can precipitate on the inner wall of the evaporator tube 18 and / or can be retained by a selective phase located on the inner wall or a filling 26.
  • the selective phases include, for example, those of the carbon type (e.g. activated carbon, etc.), of the polymer type (selective polymers), molecular sieves, fine-grained carrier material or the like wetted with the liquid phase. questionable.
  • the selective phase can be evaporated onto the inner wall of the evaporator tube 18 or the filling 26 or form the latter.
  • the evaporator tube 18 can be provided with inward swirling projections 27, for example in the form of nub-shaped indentations, in the region which is not reached by the injection needle for the sample application.
  • the swirling projections 27 are preferably arranged in a regular arrangement and increase the dwell time of the sample material in the evaporator tube 18.
  • the evaporator tube 18 can also have one or more outwardly directed, optionally annular widenings.
  • the evaporator tube 18 has a limited, predetermined volume and a small heat absorption capacity in order to enable very rapid heating to ensure chromatograms with a high resolution.
  • Fig. 4 shows a syringe pump 28 for the metering device 3, comprising a controllable stepper motor 29, with which a piston 30 is coupled in a syringe cylinder 31 via a spindle 32 and a spindle nut 33, so that the sample material located in the syringe cylinder 31 by appropriate Control of the stepping motor 29 by the piston 30 via an injection needle 34 protruding into the evaporator tube 18 can be applied at a metering speed determined by the controller 17.
  • the metering speed can be specified by the liquid chromatograph in the case of direct coupling, in which case the amount of carrier gas / time unit can be regulated via the flow regulator and / or the temperature by means of the regulator 17 in order to achieve an optimal sample addition.
  • Supercritical CO2 can also be used as a solvent since it does not reach the separation column 11, but is hidden so that coupling with an SFC or SFE device is possible.
  • the controller 17 expediently has a memory for the freezing and boiling point and a family of curves for at least one solvent corresponding to the family of curves in FIG. 2 or a program for calculating at least one such family of curves. Then it is sufficient if the user specifies the solvent and the application quantity.
  • the controller 17 is expediently programmed so that it selects a temperature setpoint, or the like, depending on the apparatus conditions with regard to cooling, for example by Peltier elements, liquid nitrogen. - Is as close as possible to the freezing point of the given solvent, so that the solvent does not evaporate suddenly, as would be the case at a temperature near the boiling point, but also does not precipitate as a solid. This temperature setting is set via the temperature sensor 16 and the cooling and heating device 19 controlled accordingly by the controller 17.
  • the controller 17 expediently selects the highest possible flow setpoint of the carrier gas quantity / time unit, since the evaporation is correspondingly low at a lower temperature and as much solvent as possible should be evaporated per unit time. If two sizes are selected in this way, the target value for the third, the feed rate of the sample material, can be determined from this in such a way that there is an optimal value just below the corresponding curve, as shown in FIG. 2 for several solvents , calculated and adjusted by means of the controller 17, without requiring special considerations by the user.
  • the two remaining parameters can be selected or calculated and adjusted by the controller 17 in accordance with the above statements.
  • a contactless measurement of the internal temperature of the evaporator tube 18 can be provided, for example via an infrared sensor (pyrometer). Instead, however, the outside temperature of the evaporator tube 18 can also be measured, from which the inside temperature can then be calculated as a function - possibly empirically determined - of the outside temperature and the flow rate of the carrier gas. If necessary, the enthalpy of vaporization must also be taken into account if it is sufficiently large and therefore not negligible.
  • a focusing device downstream of the feed device 1 in order to avoid input peaks that are too wide.
  • This can be, for example, a special phase e.g. act in the beginning of the column or in a cold trap, the latter realized, for example, by cooling the beginning of the column, for example using liquefied gas, where the substances to be examined supplied from the feeder 1 after the solvent has been hidden are initially retained, and then released by rapid heating to form small peak widths to become.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur gaschromatographischen Trennung von Substanzen nach dem Oberbegriff des Anspruchs 1 bzw. 16.
  • Aus der EP-A-0 292 612 ist ein Gaschromatograph sowie ein Verfahren zum Trennen von Substanzen bekannt, wobei eine Trägergaszufuhr zur druckgeregelten Zufuhr eines Trägergasstromes, eine Probenaufgabeeinrichtung mit Vortrennung, eine Trennsäule, an die sich gegebenenfalls ein Detektor anschließt, und ein zwischen der Probenaufgabeeinrichtung und der Trennsäule angeordnetes Verzweigungsstück mit einer Drosselstelle vorgesehen sind. Das Verzweigungsstück weist zusätzlich einen zu einer schaltbaren Ventileinrichtung führenden Ausgang, der probenaufgabeseitig zur Drosselstelle angeordnet ist, und eine Zuführleitung für einen geregelten Hilfsgasstrom auf, die trennsäulenseitig zur Drosselstelle angeordnet ist. Die Probenaufgabeeinrichtung ist beheizbar, um die Vortrennung zu bewirken. Mit diesem Gaschromatographen lassen sich zwar Schnitte durch Ausblendung bestimmter Chromatogrammteile, die über einen an das Verzweigungsstück angeschlossenen Kontrolldetektor bestimmbar sind, vornehmen, jedoch lassen sich hierdurch nur über zusätzliche Fallen, deren Inhalt später erneut dem Trennvorgang zu unterwerfen ist, Substanzen anreichern. Ansonsten geht die Probe einschließlich des Lösungsmittels auf die Trennsäule, die hierdurch relativ stark belastet wird, wodurch ihre Trennschärfe beeinträchtigt wird.
  • Ferner ist in der deutschen Anmeldung P 39 13 738.4 ein Verfahren vorgeschlagen worden, bei dem das Lösungsmittel durch Abführen mittels eines Trägergasstroms bei der Probenaufgabe ausgeblendet wird, während die zu untersuchenden Substanzen an einer vor der Trennsäule befindlichen Phase zurückgehalten werden, um in einem weiteren Betriebszustand durch Aufheizen von der Phase getrennt und in ein Trennsäulensystem eingeführt zu werden. Hierdurch wird es möglich eine mehrfache Probenaufgabe vorzunehmen und dadurch zu untersuchende Substanzen anzureichern. Jedoch wäre dies für die Untersuchung von Spuren in Lösungsmitteln, beispielsweise in Wasser, sehr zeitaufwendig und schwierig, wenn nicht gar praktisch undurchführbar, da hierbei große Mengen an Lösungsmittel aufgegeben werden müssen, bis eine ausreichende Spurenanreicherung erreicht werden kann. Bezüglich des Lösungsmittels kann dann angesichts der großen Menge praktisch keine vollständige Ausblendung gelingen.
  • Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung nach dem Oberbegriff des Anspruchs 1 bzw. 16 zu schaffen, das es ermöglicht, das Lösungsmittel auszublenden und gleichzeitig insbesondere nur spurenartig in dem Lösungsmittel vorhandene, zu untersuchende Substanzen in möglichst kurzer Zeit und möglichst guter Ausbeute anzureichern, um sie nach der Probenaufgabe auf die Trennsäule zu geben.
  • Diese Aufgabe wird entsprechend dem kennzeichnenden Teil des Anspruchs 1 bzw. 16 gelöst.
  • Um aus größeren Mengen an Probenmaterial mit einem sehr hohen Lösungsmittelanteil zu untersuchende Substanzen sammeln und auf eine Trennsäule geben zu können, während das Lösungsmittel ausgeblendet wird, wird wenigstens eine der drei Größen - Dosiergeschwindigkeit des Probenmaterials, Temperatur im Verdampferrohr und das Verdampferrohr durchströmende Spülgasmenge pro Zeiteinheit - in Abhängigkeit von der oder den anderen derart geregelt, daß noch sämtliches Lösungsmittel im Verdampferrohr verdampft und mit dem Spülgasstrom abgeführt wird, d.h. daß die Regelung derart vorgenommen wird, daß entsprechend den ansonsten vorliegenden Bedingungen eine maximale Verdampfungsgeschwindigkeit für das Lösungsmittel und Abführung des hierbei entstehenden Lösungsmitteldampfes erzielt wird, so daß sich eine zeitlich möglichst optimale Aufgabe durch praktisch maximale Lösungsmitteldampfbelastung des Spülgases ergibt. Hierbei ist eine relativ hohe Temperatur im Verdampferrohr für die Lösungsmittelverdampfung vorteilhaft, allerdings werden dann im allgemeinen zurückzuhaltende Substanzen in größerem Maße als bei tieferen Temperaturen mitgerissen, wobei sich letztere als aufgabezeitverlängernd auswirken. Hier ist ein zweckmäßiger Kompromiß entsprechend den jeweiligen Gegebenheiten durch entsprechende Vorgaben von Sollwerten für bestimmte Größen, etwa die Temperatur im Verdampferrohr etc., zu treffen.
  • Selbst in sehr großen Mengen aufgegebenes Lösungsmittel läßt sich praktisch gänzlich ausblenden, während gleichzeitig zu untersuchende Substanzen festgehalten und damit angereichert werden. Spuren im ppm-Bereich und darunter lassen sich hierdurch in genügender Menge anreichern. Die Aufgabe des Probenmaterials erfolgt kontinuierlich in praktisch optimaler Zeit derart, daß sämtliches Lösungsmittel im Verdampferrohr verdampft und mit dem Trägergasstrom abgeführt wird, indem fortwährend ein für die Verdampfung des Lösungsmittels genügendes Volumen zur Verfügung gestellt wird. Durch entsprechendes Erwärmen wird nach dem Ausblenden des Lösungsmittels der zu untersuchende Anteil der Trennsäule zugeführt, deren Belastung durch den Wegfall des Lösungsmittels somit entsprechend herabgesetzt ist, wodurch sich eine entsprechend hohe Trennschärfe ergibt.
  • Die zu untersuchenden Substanzen werden in dem Verdampferrohr infolge einer genügend großen Differenz zwischen dem Siedepunkt des Lösungsmittels und dem oder den Siedepunkten der zurückzuhaltenden Substanzen - gegebenenfalls bei entsprechender Kühlung des Verdampferrohrs derart, daß das Lösungsmittel verdampft, aber die zurückzuhaltenden Substanzen sich niederschlagen - oder beispielsweise über eine selektive Packung im Verdampferrohr - etwa durch polare Adhäsion o.dgl. - festgehalten und damit angereichert.
  • Weitere Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung und den abhängigen Ansprüchen zu entnehmen.
  • Die Erfindung wird nachstehend anhand der beigefügten Abbildungen näher erläutert.
  • Fig. 1 zeigt schematisch ein Ausführungsbeispiel eines Gaschromatographen.
  • Fig. 2 zeigt ein Diagramm bezüglich der maximalen Dosiergeschwindigkeit des Probenmaterials in Abhängigkeit von der Temperatur und der Trägergasdurchflußmenge.
  • Fig. 3 zeigt eine Ausführungsform eines Verdampferrohrs.
  • Fig. 4 zeigt schematisch eine Dosiereinrichtung für Probenmaterial.
  • Der dargestellte Gaschromatograph umfaßt eine Probenaufgabeeinrichtung 1, die mit einem Aufgabekopf 2 versehen ist, der mit einer beispielsweise eine Injektionsnadel aufweisenden Dosiereinrichtung 3 gekoppelt ist. Bei der Probenaufgabeeinrichtung 1 handelt es sich beispielsweise um eine Kaltaufgabeeinrichtung, wie sie in der DE-PS 34 00 458 beschrieben ist, während als Aufgabekopf 2 vorzugsweise eine Ausführungsform infrage kommt, wie sie in dem DE-GM 87 15 782 beschrieben ist.
  • Eine Spül- und Trägergasquelle 4 (wenn Spül- und Trägergas nicht identisch ist, sind entsprechend zwei Gasquellen vorzusehen) ist vorgesehen, die über eine Gasleitung 5 und einen Strömungsregler 6 mit dem Aufgabekopf 2 verbunden ist.
  • Die Probenaufgabeeinrichtung 1 mündet in einem Verzweigungsstück 7, das eine durch eine Drossel 8 verengte, zu einer kapillaren Trennsäule 9 führende Durchgangsbohrung 10 aufweist. In Strömungsrichtung des Spülgases vor der Drossel 8 führt von der Durchgangsbohrung 10 eine Abführleitung 11 ab, die zu einer Ventileinrichtung 12, etwa bestehend aus einem Magnet- und einem Nadelventil, führt.
  • In Strömungsrichtung des Spülgases nach der Drossel 8 mündet eine über einen Strömungsregler 13 mit der Spül- und Trägergasquelle 4 verbundene Hilfsgasleitung 14 für einen Hilfsgasstrom.
  • Die gaschromatographische Trennsäule 9 befindet sich ebenso wie das Verzweigungsstück 7 in einem Ofen 15, dessen Temperatur regelbar ist.
  • In der Probenaufgabeeinrichtung 1 wird die Temperatur des zu verarbeitenden Materials mittels eines Temperaturfühlers 16 gemessen. Der Temperaturfühler 16 ist mit einem beispielsweise einen Mikroprozessor umfassenden Regler 17 verbunden, der seinerseits entsprechend den empfangenen Meßwerten die Injektionsgeschwindigkeit der Dosiereinrichtung 3 steuert.
  • Die Probenaufgabeeinrichtung 1 besitzt ein Verdampferrohr 18, das mittels einer Kühl- und Heizeinrichtung 19 (z.B. Flüssiggas- (flüssiges CO₂, N₂ o.dgl.) oder Peltierelementkühlung und Widerstandsheizung) kühlbar und beheizbar ist sowie von dem Spülgas und dem aufgegebenen Probenmaterial durchströmt wird. Dieses Verdampferrohr 18 dient zum Zurückhalten von zu untersuchenden Substanzen.
  • Während der Probenaufgabe, bei der die Trennsäule 9 kalt, gegebenenfalls über die Kühl- und Heizeinrichtung 19 gekühlt ist, strömt ein relativ starker Spülgasstrom über die Gasleitung 5 durch die Probenaufgabeeinrichtung 1. In den durch die Probenaufgabeeinrichtung 1 strömenden Spülgasstrom wird durch die Dosiereinrichtung 3 das Probenmaterial derart zudosiert, daß das gesamte Lösungsmittel des Probenmaterials verdampfen und mit dem Spülgasstrom abgeführt werden kann. Das Spülgas mit dem dampfförmigen Lösungsmittel wird über die Abführleitung 11 abgeleitet, da die Drossel 8 pneumatisch durch den Gasstrom der Hilfsgasleitung 14 verschlossen ist. Die Probenaufgabe erfolgt kontinuierlich über einen genügend langen Zeitraum, der derart bemessen ist, daß sich eine zu ihrem Nachweis und ihrer Identifizierung genügende Menge an zu untersuchenden Substanzen in dem Verdampferrohr 18 ansammelt. Hierbei kann eine Probenaufgabemenge in der Größenordnung von mehreren Millilitern o.dgl. eingesetzt werden.
  • Die Steuerung der Dosiermenge/Zeiteinheit der Dosiereinrichtung erfolgt durch den Regler 17 entsprechend den Meßwerten des Temperaturfühlers 16 und der durch den Strömungsregler 6 eingestellten Spülgasdurchflußmenge. Für den statischen Zustand gilt, wenn man ein Idealverhalten des Lösungsmitteldampfes voraussetzt, die Formel: V G = V L d M · RT p j
    Figure imgb0001

    wobei VG das Volumen des gesättigten Dampfes, VL das Volumen der verdampften Flüssigkeit, d die Dichte der verdampften Flüssigkeit, M deren Molgewicht, R die Gaskonstante, pj der Partialdruck und T die Temperatur ist. Der Partialdruck pj ist von der Temperatur T und den Stoffdaten abhängig. Hierbei wird das Volumen des gesättigten Dampfes durch das Volumen des Trägergases bestimmt, das pro Zeiteinheit durch das Verdampferrohr 18 strömt, wodurch sich entsprechend der Temperatur die Menge des verdampfbaren Volumens an Flüssigkeit pro Zeiteinheit ergibt, da Dichte und Molekulargewicht des Lösungsmittels bekannt sind. Wenn man davon ausgeht, daß das aus dem Verdampferrohr 18 austretende Spülgas mit Lösungsmitteldampf gesättigt ist, ergibt sich als maximale Dosiergeschwindigkeit vmax für das Probenmaterial: v max = p o p i · Mp j dRT o · v t,o ,
    Figure imgb0002

    wobei po/pi das Auslaß-/Einlaßdruckverhältnis am Verdampferrohr 18, To die Temperatur am Auslaß des Verdampferrohrs 18 und vt,o die Gesamtgasdurchflußrate am Auslaß des Verdampferrohrs 18 ist. Die Spülgasdurchflußmenge und damit die Gesamtgasdurchflußrate wird durch den Strömungsregler 6 bestimmt. Der Einlaßdruck wird von der Spülgasquelle 4 bzw. einem zugehörigen Druckminderventil bestimmt. Der Auslaßdruck ist der Einlaßdruck plus Partialdruck des Lösungsmittels. Dementsprechend kann auf die maximale Dosiergeschwindigkeit vmax bzw., falls diese vorgegeben wird, auf eine andere Größe, etwa Spülgasmenge pro Zeiteinheit, geregelt werden, während die Temperatur im allgemeinen entsprechend Zweckmäßigkeitsbetrachtungen vorgegeben wird.
  • Dementsprechend kann über die Temperatur die Dosiergeschwindigkeit derart geregelt werden, daß sämtliches Lösungsmittel in praktisch der kürzesten hierfür benötigten Zeit verdampft und über die Abführleitung 11 ausgeblendet werden kann, wobei sich große Mengen an Probenmaterial für ein Chromatogramm kontinuierlich verarbeiten lassen. Die zu untersuchenden Substanzen - soweit es sich um Substanzen handelt, die bei der verwendeten Betriebstemperatur des Verdampferrohrs 18 im Gegensatz zum Lösungsmittel nicht oder nicht wesentlich verdampfen und damit nicht mit dem Lösungsmittel abgeführt werden - werden im Verdampferrohr 18 zurückgehalten und angereichert.
  • Zum Erstellen eines Chromatogramms wird der Säulenvordruck des Trägergases über den Strömungsregler 6 und die Ventileinrichtung 12 eingestellt, während die Drossel 8 durch Wegfall des Hilfsgasstroms geöffnet wird, und die Trennsäule 9 erwärmt. Durch Erhitzen des Verdampferrohrs 18 werden die zu untersuchenden Substanzen verdampft und durch den Trägergasstrom in die Trennsäule 9 transportiert und entsprechend getrennt, um später analysiert und/oder gesplittet und/oder gesammelt zu werden.
  • Ein derartiger Gaschromatograph erlaubt das Analysieren von sehr geringen Spuren in Lösungsmitteln, z.B. Verunreinigungen im ppm-Bereich oder darunter, wobei große Probenmengen in relativ kurzer Zeit aufgegebenen werden können.
  • Fig. 2 zeigt als Beispiel ein Diagramm, bei dem auf der Ordinate die maximale Dosiergeschwindigkeit vmax der aufzugebenden Probe logarithmisch und auf der Abszisse die Temperatur linear aufgetragen ist. Die Kurven 20 betreffen das Lösungsmittel Hexan, die Kurven 21 Methanol und die Kurven 22 Wasser, wobei die durchgezogenen Kurven bei einem Trägergasdurchsatz von 620 cm³/min und die gestrichelten Kurven bei 210 cm³/min aufgetragen sind.
  • Um am Ende der Probenaufgabe feststellen zu können, ob noch Lösungsmittel ausgeblendet wird, ist es zweckmäßig, auslaßseitig zum Verdampferrohr 18 einen auf das Lösungsmittel ansprechenden Detektor 23 vorzusehen, der mit einer im Regler 17 intergrierten oder getrennt ausgebildeten Umschalteinrichtung gekoppelt sein kann, um eine Umschaltung vom ersten Betriebszustand der Probenaufgabe mit Lösungsmittelausblendung auf den zweiten Betriebszustand der Aufgabe der zu untersuchenden Substanzen auf die Trennsäule 9 zu bewirken, wenn ein vorgegebener Schwellenwert unterschritten wird. Insbesondere eignet sich hierzu ein Wärmeleitfähigkeitsdetektor, der als Mikrobauelement in dem Verdampferrohr 18 angeordnet werden kann.
  • Fig. 3 zeigt eine Ausführungsform eines Verdampferrohrs 18, das im einlaßseitigen Bereich mit einer die Verdampfungsfläche für das Lösungsmittel vergrößernden Füllung 24 beispielsweise aus silanisierter Glaswolle versehen ist. Die Füllung 24 sollte durch das Lösungsmittel gut benetzbar sein. Hierdurch wird eine schnelle Verdampfung gefördert.
  • Eine zusätzliche partielle Widerstandsheizung 25 im einlaßseitigen Bereich des Verdampferrohrs 18 kann die Verdampfung des Lösungsmittels zusätzlich beschleunigen bzw. läßt sich hierdurch erreichen, daß das Lösungsmittel bereits in diesem mit der zusätzlichen Widerstandsheizung 25 versehenen einlaßseitigen Bereich des Verdampferrohrs 18 gänzlich verdampft wird, um im verdampften Zustand mit dem Spülgas und den zu untersuchenden Substanzen in den nachfolgenden kälteren Bereich des Verdampferrohrs zu gelangen, wo die zu untersuchenden Substanzen zurückgehalten werden. Dies ist insbesondere bei Wasser als Lösungsmittel zweckmäßig, um ein effektives Zurückhalten der zu untersuchenden Substanzen im Verdampferrohr 18 bewirken zu können.
  • Wie bereits erwähnt, können sich bei entsprechendem Siedepunktunterschied die zu untersuchenden Substanzen auf der Innenwandung des Verdampferrohrs 18 niederschlagen und/oder von einer auf der Innenwandung bzw. einer Füllung 26 befindlichen selektiven Phase zurückgehalten werden. Als selektive Phasen kommen beispielsweise solche vom Kohlenstofftyp (z.B. Aktivkohle etc.) vom Polymertyp (selektive Polymere), Molekularsiebe, mit flüssiger Phase benetztes feinkörniges Trägermaterial o.dgl. infrage. Die selektive Phase kann auf die Innenwandung des Verdampferrohrs 18 bzw. die Füllung 26 aufgedampft sein oder letztere bilden.
  • Außerdem kann das Verdampferrohr 18 mit nach innen gerichteten Verwirbelungsvorsprüngen 27 etwa in Form von nuppenförmigen Eindrückungen in dem Bereich versehen sein, der von der Injektionsnadel für die Probenaufgabe nicht erreicht wird. Die Verwirbelungsvorsprünge 27 sind vorzugsweise in regelmäßiger Anordnung angebracht und erhöhen die Verweilzeit des Probenmaterials im Verdampferrohr 18. Das Verdampferrohr 18 kann auch eine oder mehrere nach aussen gerichtete, gegebenenfalls ringförmige Aufweitungen aufweisen.
  • Das Verdampferrohr 18 hat ein beschränktes, vorbestimmtes Volumen und eine geringe Wärmeaufnahmekapazität, um ein sehr schnelles Aufheizen zu ermöglichen, um Chromatogramme mit hohem Auflösungsvermögen zu gewährleisten.
  • Fig. 4 zeigt eine Spritzenpumpe 28 für die Dosiereinrichtung 3, umfassend einen steuerbaren Schrittmotor 29, mit dem ein Kolben 30 in einem Spritzenzylinder 31 über eine Spindel 32 und eine Spindelmutter 33 gekoppelt ist, so daß das im Spritzenzylinder 31 befindliche Probenmaterial durch entsprechende Steuerung des Schrittmotors 29 durch den Kolben 30 über eine in das Verdampferrohr 18 ragende Injektionsnadel 34 mit einer etwa vom Regler 17 bestimmten Dosiergeschwindigkeit aufgebbar ist.
  • Es ist auch vorteilhafterweise eine Kombination mit einem Flüssigkeitschromatographen möglich, der üblicherweise mit viel Lösungsmittel arbeitet und dessen Split zum Befüllen der Dosiereinrichtung 3 direkt verwendet werden kann, so daß dieser Split kontinuierlich oder diskontinuierlich aufgegeben wird. In diesem Fall kann die Dosiergeschwindigkeit vom Flüssigkeitschromatographen bei direkter Kopplung vorgeben werden, wobei dann die Trägergasmenge/Zeiteinheit über den Strömungsregler und/oder die Temperatur durch den Regler 17 geregelt werden kann, um eine optimale Probenzugabe zu erreichen.
  • Als Lösungsmittel kann hierbei auch überkritisches CO₂ verwendet werden, da es nicht auf die Trennsäule 11 gelangt, sondern ausgeblendet wird, so daß eine Kopplung mit einer SFC- oder SFE-Einrichtung möglich ist.
  • Zweckmäßigerweise weist der Regler 17 einen Speicher für den Gefrier- und den Siedepunkt sowie eine Kurvenschar für mindestens ein Lösungsmittel entsprechend den Kurvenscharen von Fig. 2 oder ein Programm zur Berechnung mindestens einer derartigen Kurvenschar auf. Dann genügt es, wenn der Anwender das Lösungsmittel und die Aufgabemenge vorgibt. Der Regler 17 wird zweckmäßigerweise so programmiert, daß er einen Temperatursollwert auswählt, der - entsprechend den apparativen Gegebenheiten bezüglich Kühlmöglichkeit etwa durch Peltierelemente, flüssigen Stickstoff o.dgl. - möglichst nahe zum Gefrierpunkt des vorgegebenen Lösungsmittels liegt, damit aufgegebenes Lösungsmittel nicht schlagartig verdampft, wie es bei einer Temperatur in der Nähe des Siedepunktes der Fall wäre, sich aber auch nicht als Feststoff niederschlägt. Diese Temperatureinstellung wird über den Temperaturmeßfühler 16 und die entsprechend vom Regler 17 gesteuerte Kühl- und Heizeinrichtung 19 eingestellt. Hierzu wählt der Regler 17 zweckmäßigerweise einen möglichst hohen Durchflußsollwert von Trägergasmenge/Zeiteinheit, da bei niedrigerer Temperatur die Verdampfung entsprechend gering ist und möglichst viel Lösungsmittel pro Zeiteinheit verdampft werden sollte. Wenn zwei Größen auf diese Weise ausgewählt werden, kann der Sollwert für die dritte, die Aufgabegeschwindigkeit des Probenmaterials, hieraus derart bestimmt werden, daß sich hierfür ein optimaler Wert knapp unterhalb der entsprechenden Kurve, wie sie in Fig. 2 beispielhaft für mehrere Lösungsmittel dargestellt ist, berechnet und mittels des Reglers 17 eingeregelt werden, ohne daß es besonderer Überlegungen des Anwenders bedürfte.
  • Aber auch wenn der Anwender einen weiteren Parameter vorgibt, können die beiden verbleibenden durch den Regler 17 entsprechend den vorstehenden Ausführungen ausgewählt bzw. berechnet und eingeregelt werden.
  • Für die Temperaturmessung durch den Temperaturfühler 16 kann eine berührungslose Messung der Innentemperatur des Verdampferrohrs 18 etwa über einen Infrarotsensor (Pyrometer) vorgesehen sein. Stattdessen kann aber auch die Außentemperatur des Verdampferrohrs 18 gemessen werden, aus der dann die Innentemperatur als - gegebenenfalls empirisch bestimmte - Funktion der Außentemperatur und der Durchflußmenge des Trägergases berechnet werden. Gegebenenfalls ist hierbei auch noch die Verdampfungsenthalpie zu berücksichtigen, wenn sie hinreichend groß und damit nicht vernachlässigbar ist.
  • Bei Kapillarsäulen 9 mit sehr geringem Durchmesser ist es zweckmäßig der Aufgabeeinrichtung 1 eine Fokussierungseinrichtung nachzuschalten, um zu breite Eingangspeaks zu vermeiden. Hierbei kann es sich beispielsweise um eine spezielle Phase z.B. im Säulenanfang oder eine Kältefalle, letztere etwa realisiert durch eine Kühlung des Säulenanfangs beispielsweise durch Flüssiggas, handeln, wo die aus der Aufgabeeinrichtung 1 nach dem Ausblenden des Lösungsmittels zugeführten zu untersuchenden Substanzen zunächst zurückgehalten werden, um dann durch schnelles Hochheizen unter Ausbildung von kleinen Peakbreiten freigegeben zu werden.

Claims (35)

  1. Verfahren zur gaschromatographischen Trennung von Substanzen, wobei ein geregelter Spülgasstrom durch eine ein Verdampferrohr aufweisende Probenaufgabeeinrichtung geführt wird, wobei in einem ersten Betriebszustand eine Aufgabe des aus Lösungsmittel und zu untersuchenden Substanzen bestehenden, flüssigen Probenmaterials erfolgt, während der Zugang zur Trennsäule blockiert und der Spülgasstrom zusammen mit dem verdampften Lösungsmittel abgeführt wird sowie zu untersuchende Substanzen in dem Verdampferrohr zurückgehalten werden, und wobei in einem zweiten Betriebszustand, in dem der Zugang zur Trennsäule offen ist, mittels eines Trägergases die während des ersten Betriebszustands zurückgehaltenen Substanzen des Probenmaterials durch Erwärmen des Verdampferrohrs der Trennsäule zugeführt werden, dadurch gekennzeichnet, daß wenigstens eine der drei Größen Dosiergeschwindigkeit des Probenmaterials, Temperatur im Verdampferrohr und das Verdampferrohr durchströmende Spülgasmenge pro Zeiteinheit in Abhängigkeit von der oder den anderen derart geregelt wird, daß sämtliches Lösungsmittel im Verdampferrohr verdampft und der abgeführte Spülgasstrom praktisch mit Lösungsmitteldampf gesättigt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Aufgabe einer großen Menge des Probenmaterials kontinuierlich über einen längeren Zeitraum hinweg vorgenommen wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Probenmaterial durch Regelung der Dosiergeschwindigkeit des Probenmaterials entsprechend der Temperatur im Verdampferrohr bei voreingestellter Spülgasmenge/Zeiteinheit aufgegeben wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Dosiergeschwindigkeit in bezug auf einen oberen Grenzwert vmax entsprechend v max = p o p i · Mp j dRT o · v t,o
    Figure imgb0003
    geregelt wird, wobei po/pi das Auslaß-/Einlaßdruckverhältnis am Verdampferrohr, M das Molekulargewicht, pj der Partialdruck und d die Dichte des Lösungsmittels, R die Gaskonstante, To die Temperatur am Auslaß des Verdampferrohrs und vt,o die Gesamtgasdurchflußrate am Auslaß des Verdampferrohrs ist.
  5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Dosiergeschwindigkeit konstant gehalten und die Temperatur im Verdampferrohr bei voreingestellter Spülgasmenge/Zeiteinheit geregelt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Probenmaterial in Form eines Splits eines Flüssigkeitschromatographen aufgegeben wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Lösungsmittel überkritisches Kohlendioxid verwendet wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß bei vorgegebenem Lösungsmittel die gesamte Aufgabemenge des Probenmaterials vorgegeben und automatisch mindestens ein Sollwert für eine der drei Größen zur zeitlich möglichst optimalen Probenaufgabe bestimmt und eingeregelt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß bei sehr geringen Konzentrationen von zu untersuchenden Substanzen im Lösungsmittel und/oder bei einer geringen Siedepunktsdifferenz von Lösungsmittel und zu untersuchenden Substanzen ein Sollwert für die Temperatur im Verdampferrohr im Temperaturregelbereich nahe zum Gefrierpunkt des Lösungsmittels ausgewählt wird.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß automatisch ein Sollwert für die Trägergasmenge/Zeiteinheit am oberen Ende des zugehörigen Regelbereichs ausgewählt und die Dosiergeschwindigkeit in Abhängigkeit hiervon und von der Temperatur im Verdampferrohr eingestellt wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Messung der Temperatur im Verdampferrohr berührungslos vorgenommen wird.
  12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Außentemperatur des Verdampferrohrs gemessen und dessen Innentemperatur als Funktion der gemessenen Außentemperatur und der das Verdampferrohr durchströmenden Trägergasmenge/Zeiteinheit berechnet wird.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß am Ende der Aufgabe des Probenmaterials das Zuführen der im Verdampferrohr zurückgehaltenen Substanzen zur Trennsäule ausgelöst wird, wenn der im Spülgas enthaltene Anteil an Lösungsmittel unter einen vorgegebenen Schwellenwert gesunken ist.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der im Spülgas enthaltene Anteil an Lösungsmittel über eine Wärmeleitfähigkeitsmessung bestimmt wird.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Probenmaterial durch Wärmezufuhr zum eintrittsseitigen Bereich des Verdampferrohrs bereits in diesem verdampft wird, während der übrige Bereich des Verdampferrohrs kühl gehalten wird.
  16. Vorrichtung zur gaschromatographischen Trennung von Substanzen mittels einer Trennsäule (9), wobei ein geregelter Spülgasstrom durch eine ein heiz- und kühlbares Verdampferrohr (18) aufweisende Probenaufgabeeinrichtung (1) führbar und zwischen einem ersten Betriebszustand, in dem eine Aufgabe des aus Lösungsmittel und zu untersuchenden Substanzen bestehenden, flüssigen Probenmaterials erfolgt, während der Zugang zur Trennsäule (9) blockiert und der Spülgasstrom zusammen mit dem Lösungsmittel durch eine geöffnete Abführleitung (11) abgeführt wird sowie zu untersuchende Substanzen in dem vor der Trennsäule (9) befindlichen Verdampferrohr (18) zurückgehalten werden, und einem zweiten Betriebszustand umschaltbar ist, in dem die Abführleitung (11) für den Spülgasstrom geschlossen und der Zugang zur Trennsäule (9) offen ist, mittels eines Trägergases die während des ersten Betriebszustands zurückgehaltenen Substanzen des Probenmaterials durch Erwärmen des Verdampferrohrs (18) der Trennsäule (9) zugeführt werden, dadurch gekennzeichnet, daß ein Regler (17) vorgesehen ist, der wenigstens eine der drei Größen Dosiergeschwindigkeit des Probenmaterials, Temperatur im Verdampferrohr (18) und das Verdampferrohr (18) durchströmende Spülgasmenge/Zeiteinheit in Abhängigkeit von der oder den anderen derart regelt, daß sämtliches Lösungsmittel im Verdampferrohr (18) verdampft und mit dem mit Lösungsmitteldampf im wesentlichen gesättigten Spülgasstrom während des ersten Betriebszustands abgeführt wird, und daß ein mit dem Regler (17) gekoppelter Meßfühler (16) für die Temperatur im Verdampferrohr (18), eine mit dem Regler (17) gekoppelte Dosiereinrichtung (3) für das Aufgabematerial, gegebenenfalls ein mit dem Regler (17) gekoppelter Durchflußregler (6) in der Zuführleitung (5) zum Verdampferrohr (18) und gegebenenfalls eine mit dem Regler (17) gekoppelte Heiz- und Kühleinrichtung (19) für das Verdampferrohr (18) vorgesehen sind.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Dosiergeschwindigkeit der Dosiervorrichtung (3) durch den Regler (17) regelbar ist.
  18. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß die Temperatur im Verdampferrohr (18) durch den Regler (17) regelbar ist.
  19. Vorrichtung nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß der Regler (17) einen Speicher oder eine Recheneinheit für eine Kurvenschar (20, 21, 22) bezüglich der Dosiergeschwindigkeit des Probenmaterials gegenüber der Temperatur im Verdampferrohr (18) in Abhängigkeit von der Spülgasmenge/Zeiteinheit für mindestens ein Lösungsmittel beinhaltet.
  20. Vorrichtung nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der Regler (17) derart programmiert ist, daß er nach Vorgabe der gesamten Aufgabemenge des Probenmaterials entsprechend dem Lösungsmittel mindestens einen Sollwert für eine der drei Größen zur zeitlich optimalen Probenaufgabe selbsttätig bestimmt.
  21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß der Regler (17) den Sollwert für die Temperatur im Verdampferrohr (18) im Temperaturregelbereich der Heiz- und Kühleinrichtung (19) nahe zum Gefrierpunkt des Lösungsmittels bestimmt.
  22. Vorrichtung nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß der Regler (17) einen Sollwert für die Spülgasmenge/Zeiteinheit am oberen Ende des zugehörigen Regelbereichs des Strömungsreglers (6) bestimmt.
  23. Vorrichtung nach einem der Ansprüche 16 bis 22, dadurch gekennzeichnet, daß ein Meßfühler (16) zum berührungslosen Messen der Innentemperatur des Verdampferrohrs (18) vorgesehen ist.
  24. Vorrichtung nach einem der Ansprüche 16 bis 22, dadurch gekennzeichnet, daß ein Meßfühler (16) für die Außentemperatur des Verdampferrohrs (18) und eine damit gekoppelte Recheneinheit zum Bestimmen der Innentemperatur des Verdampferrohrs (18) als Funktion der Außentemperatur und der Spülgasmenge/Zeiteinheit vorgesehen sind.
  25. Vorrichtung nach einem der Ansprüche 16 bis 24, dadurch gekennzeichnet, daß am Ende des Verdampferrohrs (18) ein auf Lösungsmittel ansprechender Detektor (23) vorgesehen ist, dessen Signal bei Unterschreiten eines Schwellenwertes ein Umschalten vom ersten in den zweiten Betriebszustand bewirkt.
  26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, daß der Detektor (23) ein Wärmeleitfähigkeitsdetektor ist.
  27. Vorrichtung nach einem der Ansprüche 16 bis 26, dadurch gekennzeichnet, daß das Verdampferrohr (18) im einlaßseitigen Bereich eine die Verdampfungsfläche für das Lösungsmittel vergrößernde Füllung (24) aufweist.
  28. Vorrichtung nach einem der Ansprüche 16 bis 27, dadurch gekennzeichnet, daß das Verdampferrohr (18) im einlaßseitigen Bereich eine Zusatzheizung (25) aufweist.
  29. Vorrichtung nach einem der Ansprüche 16 bis 28, dadurch gekennzeichnet, daß das Verdampferrohr (18) eine selektive Füllung (26) aufweist.
  30. Vorrichtung nach Anspruch 29, dadurch gekennzeichnet, daß die Füllung (26) aus Trägermaterial mit einer darauf befindlichen selektiven Phase besteht.
  31. Vorrichtung nach einem der Ansprüche 16 bis 30, dadurch gekennzeichnet, daß das Verdampferrohr (18) mit einer auf seine Innenwandung aufgedampften selektiven Phase versehen ist.
  32. Vorrichtung nach einem der Ansprüche 16 bis 31, dadurch gekennzeichnet, daß das Verdampferrohr (18) mit einwärts gerichteten Verwirbelungsvorsprüngen (27) versehen ist.
  33. Vorrichtung nach einem der Ansprüche 16 bis 32, dadurch gekennzeichnet, daß die Dosiereinrichtung (3) eine Spritzenpumpe (28) mit einem über einen steuerbaren Schrittmotor (29) verstellbaren Kolben (30) ist.
  34. Vorrichtung nach einem der Ansprüche 16 bis 33, dadurch gekennzeichnet, daß die Dosiereinrichtung (3) mit einem Splitausgang eines Flüssigkeitschromatographen direkt gekoppelt ist.
  35. Vorrichtung nach einem der Ansprüche 16 bis 34, dadurch gekennzeichnet, daß der Probenaufgabeeinrichtung (1) eine Fokussierungseinrichtung für die zu untersuchenden Substanzen nachgeschaltet ist.
EP91104387A 1990-04-07 1991-03-21 Verfahren und Vorrichtung zur gaschromatographischen Trennung Expired - Lifetime EP0451566B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4011350 1990-04-07
DE19904011350 DE4011350A1 (de) 1990-04-07 1990-04-07 Verfahren und vorrichtung zur gaschromatographischen trennung
DE19904027009 DE4027009A1 (de) 1990-08-27 1990-08-27 Verfahren und vorrichtung zur gaschromatographischen trennung
DE4027009 1990-08-27

Publications (3)

Publication Number Publication Date
EP0451566A2 EP0451566A2 (de) 1991-10-16
EP0451566A3 EP0451566A3 (en) 1992-11-25
EP0451566B1 true EP0451566B1 (de) 1994-05-25

Family

ID=25891998

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91104387A Expired - Lifetime EP0451566B1 (de) 1990-04-07 1991-03-21 Verfahren und Vorrichtung zur gaschromatographischen Trennung

Country Status (3)

Country Link
EP (1) EP0451566B1 (de)
DE (1) DE59101698D1 (de)
ES (1) ES2054387T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035409B4 (de) * 2000-07-19 2008-09-25 Stefan Strathmann Differentielle Thermodesorption für Gassensorsysteme

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1260543B (it) * 1992-06-05 1996-04-09 Erba Strumentazione Procedimento e dispositivo per la preparazione di campioni liquidi per analisi
US5288310A (en) * 1992-09-30 1994-02-22 The Regents Of The University Of Michigan Adsorbent trap for gas chromatography
DE4316375C1 (de) * 1993-05-15 1994-06-30 Gerstel Gmbh Verfahren zur gaschromatographischen Trennung von Substanzen
DE4419596C1 (de) * 1994-06-03 1995-06-01 Gerstel Gmbh Thermodesorptionseinrichtung für einen Gaschromatographen
DE19713205C1 (de) * 1997-03-28 1998-05-20 Gerstel Gmbh Verfahren und Einrichtung zur Probenaufbereitung für die Gaschromatographie
ES2229668T3 (es) * 1998-01-29 2005-04-16 Smart Nose S.A. Dispositivo para la calificacion de productos que contienen substancias volatiles.
GB0210737D0 (en) * 2002-05-10 2002-06-19 Mw Encap Ltd Dispensing nozzle
DE102008037416B3 (de) * 2008-10-06 2010-03-11 Joint Analytical Systems Gmbh Transfereinheit für Analysengeräte
US10324069B2 (en) * 2017-02-24 2019-06-18 Valco Instruments Company, L.P. Chromatographic system temperature control system
US11709004B2 (en) 2020-12-16 2023-07-25 Lennox Industries Inc. Method and a system for preventing a freeze event using refrigerant temperature

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859209A (en) * 1973-08-14 1975-01-07 California Inst Of Techn System for and method of extract concentration and direct injection into a chromatographic instrument
EP0140020B1 (de) * 1983-09-09 1988-12-07 CARLO ERBA STRUMENTAZIONE S.p.A. Mehrzweck-Direkteingabevorrichtung in Säulen
DE3717456C1 (de) * 1987-05-23 1988-07-21 Eberhard Gerstel Gaschromatograph und Verfahren zur gaschromatographischen Trennung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035409B4 (de) * 2000-07-19 2008-09-25 Stefan Strathmann Differentielle Thermodesorption für Gassensorsysteme

Also Published As

Publication number Publication date
ES2054387T3 (es) 1994-08-01
EP0451566A2 (de) 1991-10-16
DE59101698D1 (de) 1994-06-30
EP0451566A3 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
DE2524703C2 (de) Verfahren und Vorrichtung zum Überwachen der Octanzahl eines Benzinstromes
EP0451566B1 (de) Verfahren und Vorrichtung zur gaschromatographischen Trennung
DE10152657B4 (de) Mehrschichtgaschromatograph
DE19653406C1 (de) Verfahren zum Aufgeben von gaschromatographisch zu untersuchenden Proben und Probenaufnahmerohr
DE2620756C3 (de) Probeninjektionsvorrichtung für die Prozeß-Gaschromatographie mit Kapillarsäulen und Betriebsverfahren für eine solche Vorrichtung
DE69633496T2 (de) Verfahren und Vorrichtung zur Injektion von flüssigen Proben in einen Gaschromatographen
DE3738327A1 (de) Verfahren zur gaschromatographischen analyse von gemischen fluessiger stoffe und gaschromatograph fuer seine durchfuehrung
DE602004011795T2 (de) Verfahren zur einführung von standardgas in ein probengefäss
DE2806123C2 (de) Umschalteinrichtung mit einem Verzweigungsstück zwischen zwei gaschromatographischen Trennsäulen
EP0887643B1 (de) Verfahren zur Bestimmung eines Wasserinhaltsstoffes
DE1138257B (de) Vorrichtung zur Probenahme verfluessigter Gase zwecks analytischer Ermittlung ihrer Zusammensetzung
DE19713205C1 (de) Verfahren und Einrichtung zur Probenaufbereitung für die Gaschromatographie
EP2394158B1 (de) Vorrichtung und verfahren zum aufbereiten von proben für die gaschromatografie
DE4316375C1 (de) Verfahren zur gaschromatographischen Trennung von Substanzen
DE1212317B (de) Regelanordnung zur Konstanthaltung der Stroemungsgeschwindigkeit des am Ende der temperaturprogrammierten Kolonne eines Gaschromatographen austretenden Gasstromes und zur Programmierung des Eingangsdruckes der Kolonne
DE69938021T2 (de) Verfahren und Vorrichtung für die Einführung von großen Proben in Kapillarsäulen für die Gaschromatographie
DE69635013T2 (de) Verfahren und Vorrichtung zur Zerlegung einer Probe in ihre individuellen Bestandteile in einer Kapilarröhre einer Gaschromatographieanalysevorrichtung
DE4011350A1 (de) Verfahren und vorrichtung zur gaschromatographischen trennung
EP3362788A1 (de) Kontinuierliche und trennende gasanalyse
DE4027009A1 (de) Verfahren und vorrichtung zur gaschromatographischen trennung
DE1619922C2 (de) Verfahren zum Trennen, Fixieren und Eluieren von Komponenten einer Probe
DE1907318A1 (de) Verfahren zur UEberfuehrung einer zu analysierenden Probe in die Gaschromatographenkolonne sowie das dazu benoetigte Vorkolonnensystem
DE3929021A1 (de) Verfahren zur gaschromatografischen analyse von stoffgemischen und einrichtung zu dessen verwirklichung
DE2149508A1 (de) Verfahren und vorrichtung zum trennen, anreichern und analysieren von stoffen bzw. stoffspuren
DE3729891A1 (de) Einrichtung zum ueberfuehren von fluechtigen, in wasser geloesten stoffen in die gasphase zwecks analyse mit einem gaschromatographischen verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19921217

17Q First examination report despatched

Effective date: 19931005

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 59101698

Country of ref document: DE

Date of ref document: 19940630

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940602

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2054387

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960321

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970214

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100324

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100525

Year of fee payment: 20

Ref country code: NL

Payment date: 20100330

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59101698

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20110321

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110321