EP0433780B1 - Substituierte Azolylmethylcycloalkanole und diese enthaltende Fungizide - Google Patents

Substituierte Azolylmethylcycloalkanole und diese enthaltende Fungizide Download PDF

Info

Publication number
EP0433780B1
EP0433780B1 EP90123378A EP90123378A EP0433780B1 EP 0433780 B1 EP0433780 B1 EP 0433780B1 EP 90123378 A EP90123378 A EP 90123378A EP 90123378 A EP90123378 A EP 90123378A EP 0433780 B1 EP0433780 B1 EP 0433780B1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
alkyl
general formula
represent
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90123378A
Other languages
English (en)
French (fr)
Other versions
EP0433780A1 (de
Inventor
Rainer Dr. Seele
Bernhard Dr. Zipperer
Michael Dr. Keil
Norbert Dr. Goetz
Eberhard Dr. Ammermann
Gisela Dr. Lorenz
Reiner Dr. Kober
Thomas Dr. Kuekenhoehner
Albrecht Dr. Harreus
Wilhelm Dr. Rademacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3941593A external-priority patent/DE3941593A1/de
Priority claimed from DE4020432A external-priority patent/DE4020432A1/de
Priority claimed from DE4022784A external-priority patent/DE4022784A1/de
Priority claimed from DE4029197A external-priority patent/DE4029197A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP0433780A1 publication Critical patent/EP0433780A1/de
Application granted granted Critical
Publication of EP0433780B1 publication Critical patent/EP0433780B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/22Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/34Compounds containing oxirane rings with hydrocarbon radicals, substituted by sulphur, selenium or tellurium atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/08Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/08Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/06Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems

Definitions

  • the azolylmethylcycloalkanols of the general formula I are generally obtained. in the form of racemates or as diastereomer mixtures. These isomers can be separated in a customary manner, for example on the basis of their solubility or that of their salts or else by column chromatography, and isolated in pure form. Uniform enantiomers can be obtained from such an isolated diastereomer using known methods.
  • R7 is a phenyl radical which may be monosubstituted to trisubstituted by fluorine or chlorine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Epoxy Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Steroid Compounds (AREA)

Description

  • Die vorliegende Erfindung betrifft neue Azolylmethylcycloalkanole der allgemeinen Formel I
    Figure imgb0001

    in der
  • X
    CH oder N bedeutet;
    T
    (CH₂)n, CR¹¹R¹², O oder S bedeutet,
    wobei
    n
    eine ganze Zahl von 1 bis 5 bedeutet; und
    R¹¹, R¹²
    Wasserstoff oder C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl, Dioxolanyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste ein- bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄-Alkyl, c₁-C₄-Alkoxy oder c₁-c₄-Halogenalkyl substituiert sein kann;
    R¹ und R⁵
    gleich oder verschieden sind und für Wasserstoff oder C₁-C₄-Alkyl stehen oder
    R¹ und R⁵
    gemeinsam mit dem C-Atom, dessen Substituenten sie sind, für C=CH-R⁷ oder für CH-Z-R⁷ stehen,
    wobei
    Z
    CH₂, O, S, SO, SO₂ oder N-R⁸ bedeutet,
    R⁷
    C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste ein- bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁ -C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiert sein kann; oder Tetrahydropyranyl bedeutet; wobei
    R⁷
    für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine CH-Z-R⁷-Gruppe bedeutet, zusätzlich für Wasserstoff stehen kann; und
    R⁸
    für Wasserstoff oder C₁-C₄-Alkyl steht;
    R² und R³
    jeweils für Wasserstoff oder C₁-C₄-Alkyl stehen; oder
    R² und R³
    gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine C=CH-R⁷ Gruppe, für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine C=CH-R⁷ Gruppe bedeuten;
    R⁴
    Wasserstoff oder C₁-C₄-Alkyl
    und
    R⁶,R⁹ u.R¹⁰
    Wasserstoff oder
    C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl, Dioxolanyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste ein- bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiert sein kann;
    ausgenommen Verbindungen,
    • a) in denen die Reste R¹ bis R¹² gleichzeitig Wasserstoff bedeuten,
    • b) in denen R¹ und R⁵ gemeinsam mit dem C-Atom, an das sie gebunden sind, für CH-CH₂-(4-Chlorphenyl) oder CH-O-(4-Chlorphenyl) stehen, wenn R² bis R⁴ und R⁶ bis R¹² Wasserstoff bedeuten,
    • c) in denen R¹ und R⁵ gemeinsam mit dem C-Atom,an das sie gebunden sind, für C=CH-(4-Fluorphenyl) oder für C=CH-(4-Chlorphenyl) stehen, wenn
      T
      CH₂ oder (CH₂)₂ bedeutet,
      R² und R³
      für Wasserstoff, Cyclohexyl, Phenyl oder C₁-C₄-Alkyl stehen und
      R⁴,R⁶,R⁹ und R¹⁰
      Wasserstoff bedeuten;
    sowie deren pflanzenverträgliche Säureadditionssalze und Metallkomplexe.
  • Außerdem betrifft die Erfindung ein Verfahren zur Herstellung dieser Verbindungen, fungizide und wachstumsregulatorische Mittel, welche die erfindungsgemäßen Azolylmethylcycloalkanole als wirksame Substanzen enthalten, sowie Verfahren zur Bekämpfung von Pilzen und Verfahren zur Regulierung des Pflanzenwachstums mit Hilfe dieser Verbindungen.
  • Aus der EP-A-324 646 sind azolsubstituierte Cycloalkanolderivate und ihre Verwendung als Fungizide bekannt, die als Rest -Y-R¹ eine Gruppe
    Figure imgb0002

    tragen. Weitere, teilweise fungizide, Verbindungen ähnlicher Strukturen sind der US-A 4 414 210, der JP-A 01/186 870, der EP-A-378 953 sowie J. Org. Chem. 51, 3897 (1986) zu entnehmen. Die fungiziden Wirkungen sind jedoch nicht in allen Fällen befriedigend.
  • Der Erfindung lag daher die Aufgabe zugrunde, neue Azolverbindungen mit besseren fungiziden und wachstumsregulatorischen Wirkungen bereitzustellen.
  • Demgemäß wurden die eingangs definierten Azolylmethylcycloalkanole der allgemeinen Formel I sowie deren pflanzenverträgliche Säureadditionssalze und Metallkomplexe gefunden.
  • Weiterhin wurden Verfahren zur Herstellung dieser Verbindungen, fungizide und wachstumsregulatorische Mittel, welche die erfindungsgemäßen Azolylmethylcycloalkanole als wirksame Substanzen enthalten, sowie Verfahren zur Bekämpfung von Pilzen und Verfahren zur Regulierung des Pflanzenwachstums mit Hilfe dieser Verbindungen gefunden.
  • Die Azolylmethylcycloalkanole der allgemeinen Formel I erhält man i.a. in Form von Racematen bzw. als Diastereomerengemische. Diese Isomeren lassen sich in üblicher Weise, beispielsweise aufgrund ihrer Löslichkeit oder der ihrer Salze oder auch durch Säulenchromatographie, trennen und in reiner Form isolieren. Aus einem solchen isolierten Diastereomeren kann man mit bekannten Methoden einheitliche Enantiomere erhalten.
  • Als fungizide Wirkstoffe können sowohl die einzelnen Diastereomere bzw. Enantiomere als auch deren bei der Synthese i.a. anfallenden Gemische verwendet werden.
  • Von den im folgenden angeführten, im Hinblick auf ihre fungizide Wirkung bevorzugten Verbindungen I sind diejenigen Verbindungen ausgenommen,
    • a) in denen die Reste R¹ bis R¹² gleichzeitig Wasserstoff bedeuten,
    • b) in denen R¹ und R⁵ gemeinsam mit dem C-Atom, an das sie gebunden sind, für CH-CH₂-(4-Chlorphenyl) oder CH-O-(4-Chlorphenyl) stehen, wenn R² bis R⁴ und R⁶ bis R¹² Wasserstoff bedeuten,
    • c) in denen R¹ und R⁵ gemeinsam mit dem C-Atom, an das sie gebunden sind, für C=CH-(4-Fluorphenyl) oder für C=CH-(4-Chlorphenyl) stehen, wenn
      T
      CH₂ oder (CH₂)₂ bedeutet,
      R² und R³
      für Wasserstoff, Cyclohexyl, Phenyl oder C₁- C₄-Alkyl stehen und
      R⁴,R⁶,R⁹ und R¹⁰
      Wasserstoff bedeuten;
    sowie deren pflanzenverträgliche Säureadditionssalze und Metallkomplexe.
  • Diejenigen Verbindungen I sind besonders bevorzugt, in denen R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, für eine >C=CH-Gruppe stehen.
  • Für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine >C=CH-Gruppe bedeutet, sind zusätzlich die Verbindungen bevorzugt, in denen R⁷ 4-Tetrahydropyranyl darstellt.
  • Stehen R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, für eine >CH-Z-Gruppe, sind die Verbindungen I bevorzugt, in denen Z für 0 oder S steht.
  • Für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine >CH-Z-Gruppe bedeuten, sind zusätzlich noch die erfindungsgemäßen Verbindungen der Formel I bevorzugt, in denen R⁷ ein Wasserstoffatom darstellt.
  • Weiterhin bevorzugt sind Verbindungen I, in denen R⁷ einen ggf. ein- bis dreifach durch Fluor oder Chlor substituierten Phenylrest bedeuten.
  • Bevorzugt ist ferner
    eine Verbindung I, in der X für CH steht, R¹ und R⁵ gemeinsam mit dem C-Atom, an das sie gebunden sind, für CH-S-(4-Chlorphenyl) stehen, T für CH₂ steht und R² bis R⁴ und R⁶, R⁹ und R¹⁰ Wasserstoff bedeuten,
    eine Verbindung I, in der X für CH steht, R¹ und R⁵ sowie R² und R³ jeweils gemeinsam mit dem C-Atom, an das sie gebunden sind, für C=CH-(4-Chlorphenyl) stehen, T für CH₂ steht und R⁴, R⁶, R⁹ und R¹⁰ Wasserstoff bedeuten und
    eine Verbindung I, in der X für N steht, R¹ und R⁵ sowie R² und R³ jeweils gemeinsam mit dem C-Atom, an das sie gebunden sind, für C=CH-(4-Chlorphenyl) stehen, T für CH₂ steht und R⁴, R⁶, R⁹ und R¹⁰ Wasserstoff bedeuten.
  • Die Reste R² und R³ können unabhängig voneinander gleich oder verschieden sein, sie stehen vorzugsweise jeweils für ein Wasserstoffatom oder einen n-Alkylrest mit 1 bis 4 C-Atomen, insbesondere Methyl. Für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine >CH-Z-Gruppe bedeuten, sind die erfindungsgemäßen Verbindungen I bevorzugt, bei denen die Reste R² und R³ gleich sind. Stehen R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, für eine >C=CH-Gruppe, sind insbesondere die Azolylmethylcycloalkanole I zu nennen, bei denen die Reste R² und R³ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, >C=CH-R⁷ bedeuten. Es steht dann vorzugsweise für tert.-Butyl, Phenyl, 2-Chlorphenyl, 4-Chlorphenyl, 4-Fluorphenyl, 2-Bromphenyl, 4-Bromphenyl, 2,4-Dichlorphenyl, 2-Methylphenyl, 4-Methylphenyl, 2-Methoxyphenyl, 4-Methoxyphenyl sowie 2-Trifluormethylphenyl und 4-Trifluormethylphenyl, ferner 2-Furyl, Cyclopentyl und Cyclohexyl.
  • Bevorzugt werden Azolylmethylcycloalkanole der allgemeinen Formel
    Figure imgb0003

    in welcher
    R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, für C=CH-R⁷ oder CH-Z-R⁷ stehen,
    wobei Z O, S, SO, SO₂ oder N-R⁸ bedeutet;
    R⁷
    C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁- bis C₄-Halogenalkyl substituiert sein kann, oder Tetrahydropyranyl bedeutet,
    oder, für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine >CH-Z-R⁷-Gruppe bedeuten, zusätzlich für ein Wasserstoffatom stehen kann;
    R⁸
    für Wasserstoff oder C₁-C₄-Alkyl steht;
    R² und R³
    jeweils für ein Wasserstoffatom oder eine C₁-C₄-Alkylgruppe stehen; oder, für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine >C=CH-R⁷-Gruppe bedeuten, gemeinsam mit dem C-Atom, dessen Substituenten sie sind, >C=CH-R⁷ bedeuten;
    n
    den Wert einer ganzen Zahl von 2 bis 5 annimmt;
    X
    den Rest CH oder N bedeutet;
    sowie deren pflanzenverträgliche Säureadditionssalze und Metallkomplexe.
  • Bevorzugt werden ferner Azolylethanolderivate der allgemeinen Formel I
    Figure imgb0004

    in welcher
    R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, für C=CH-R⁷ oder CH-CH₂-R⁷ stehen;
    R⁷ C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl substituiert sein kann;
    R², R³, R⁴ gleich oder verschieden sind und für Wasserstoff oder C₁-C₄-Alkyl stehen; oder,
    für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine >C=CH-R⁷-Gruppe bedeuten, zusätzlich R² und R³ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, auch >C=CH-R⁷ bedeuten,
    T den Rest CH₂, O oder S bedeutet,
    X den Rest CH oder N bedeutet,
    sowie deren pflanzenverträgliche Säureadditionssalze und Metallkomplexe.
  • Bevorzugt werden ferner Azolylmethylcycloalkanole der allgemeinen Formel I
    Figure imgb0005

    in welcher
    R¹ und R⁵
    gleich oder verschieden sind und für Wasserstoff oder C₁- bis C₄-Alkyl stehen;
    R⁶
    C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl, Dioxolanyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiert sein kann;
    X
    den Rest CH oder N bedeutet,
    sowie deren pflanzenverträglichen Säureadditionssalze und Metallkomplexe.
  • Bevorzugt werden ferner Azolylmethylcyclohexanole der allgemeinen Formel I
    Figure imgb0006

    in welcher
    Y für C=CH- oder CH-CH₂- steht;
    R⁴
    Wasserstoff oder C₁-C₄-Alkyl bedeutet,
    R⁹ bis R¹²
    Wasserstoff, C₁-C₈-Alkyl, C₃-C₆-Cycloalkyl oder Phenyl bedeutet, wobei jeder dieser Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiert sein kann,
    R⁷
    C₁-C₈-Alkyl, Phenyl, Diphenyl, Naphthyl, Heteroaryl, Benzyl oder C₃-C₆-Cycloalkyl bedeutet, wobei jeder dieser Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiert sein kann;
    X
    den Rest CH oder N bedeutet,
    sowie deren pflanzenverträgliche Säureadditionssalze und Metallkomplexe.
  • Bevorzugt sind ferner die Verbindungen der allgemeinen Formel I, in der T CH₂ bedeutet, mit der Maßgabe, daß R⁴ und R⁹ nicht beide gleichzeitig Wasserstoff bedeuten.
  • Für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine >C=CH-Gruppe bedeuten, ist der Rest R⁷ an die >CH-Gruppe gebunden. Stehen R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, für eine >CH-Z-Gruppe, so liegt eine Bindung zwischen R⁷ und Z vor.
  • Die einzelnen Reste haben beispielsweise folgende Bedeutungen:
    C₁- bis C₈-Alkyl, vorzugsweise C₁- bis C₄-Alkyl, insbesondere Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl und tert.-Butyl; von den C₁- bis C₈-Alkylresten, die mehr als 4 C-Atome aufweisen, sind als bevorzugt n-Pentyl und Neopentyl zu nennen;
    Phenyl und halogensubstituiertes Phenyl wie 2-Chlorphenyl, 3-Chlorphenyl, 4-Chlorphenyl, 2-Fluorphenyl, 3-Fluorphenyl, 4-Fluorphenyl sowie 2-Bromphenyl, 3-Bromphenyl und 4-Bromphenyl, 2,3-Dichlorphenyl, 2,4-Dichlorphenyl, 2,5-Dichlorphenyl und 2,6-Dichlorphenyl sowie 2-Chlor-4-fluorphenyl und 2-Chlor-6-fluorphenyl;
    einfach durch Nitro-, Phenoxy-, Amino- und C₁- bis C₄-Alkylgruppen substituiertes Phenyl, wie 3-Nitrophenyl, 4-Nitrophenyl, 3-Phenoxyphenyl, 4-Phenoxyphenyl, 3-Aminophenyl und 4-Aminophenyl sowie 4-Ethylphenyl, 4-Isopropylphenyl und 4-tert.-Butylphenyl;
    durch zwei oder drei der bereits erwähnten, aber verschiedenartigen Reste substituiertes Phenyl, wie 2-Chlor-6-methylphenyl;
    einfach oder zweifach durch C₁- bis C₄-Alkoxygruppen substituiertes Phenyl, wie 2-Methoxyphenyl, 3-Methoxyphenyl, 4-Methoxyphenyl, 4-tert.-Butyloxyphenyl und 2,4-Dimethoxyphenyl sowie 3,4-Dimethoxyphenyl;
    dreifach halogensubstituiertes Methylphenyl, wie 2-Trifluormethyl-, 3-Trifluormethyl- und 4-Trifluormethylphenyl;
    p-Biphenyl;
    1-Naphthyl und 2-Naphthyl;
    Heteroaryl mit 5 oder 6 Ringatomen, wobei Ringe mit 6 Atomen mit bis zu drei Stickstoffatomen, wie 2-Pyridyl, 3-Pyridyl und 4-Pyridyl insbesondere zu nennen sind, sowie Ringe mit 5 Atomen mit bevorzugt einem oder zwei der Heteroatome O, S und N, insbesondere 2-Furyl, 2-Thienyl, 3-Thienyl, 4-Oxazolyl, 4-Thiazolyl, 4-Isoxazolyl, 5-Isoxazolyl und 5-Imidazolyl;
    Benzyl; Halogenbenzyl;
    C₃- bis C₈-Cycloalkyl, vorzugsweise Cyclopentyl und Cyclohexyl.
  • Als Säureadditionssalze eignen sich die pflanzenverträglichen Salze von solchen Säuren, welche die fungizide Wirkung von 1 nicht beeinträchtigen, also z.B. die Hydrochloride, Bromide, Sulfate, Nitrate, Phosphate, Oxalate und Dodecylbenzolsulfonate. Da die Wirksamkeit der Salze jedoch auf das Kation zurückgeht, kommt es auf das Anion i.a. nicht an. Die erfindungsgemäßen Wirkstoffsalze werden zweckmäßigerweise durch Umsetzung der Azolylmethylcycloalkanole I mit geeigneten Säuren hergestellt.
  • Metallkomplexe der erfindungsgemäßen Verbindungen I oder ihrer Salze werden bevorzugt mit Metallen der 11. Hauptgruppe wie Magnesium oder Calcium, der III. und IV. Hauptgruppe wie Aluminium, Zinn oder Blei oder mit Metallen der I. bis VIII.
  • Nebengruppe gebildet, wobei die Nebengruppenelemente der 4. Periode besonders bevorzugt sind, insbesondere Kupfer, Zink, Mangan, Eisen, Kobalt und Nickel. Hierzu werden die Azolylmethylcycloalkanole I mit den entsprechenden Metallsalzen umgesetzt.
  • Die Herstellung der erfindungsgemäßen Azolylmethylcycloalkanole I erfolgt i.a. durch Umsetzung einer Verbindung der allgemeinen Formel II mit einer Verbindung der allgemeinen Formel III.
    Figure imgb0007

    Von den Verbindungen III sind diejenigen bevorzugt, in denen Me für ein Wasserstoffatom oder ein Alkalimetallatom, insbesondere Natrium oder Kalium steht.
  • Falls Me ein Wasserstoffatom bedeutet, wird zweckmäßigerweise ein Gewichtsverhältnis III:II von 2:1 bis 6:1 eingehalten, insbesondere etwa 3:1. Die Reaktion erfolgt gegebenenfalls in Gegenwart eines inerten Lösungs- oder Verdünnungsmittels, zweckmäßig unter Zusatz einer anorganischen oder organischen Base und gegebenenfalls unter Zusatz eines Reaktionsbeschleunigers. Zu den bevorzugten Lösungs- und Verdünnungsmitteln gehören Ketone wie Aceton, Methylethylketon oder Cyclohexanon, Nitrile wie Acetonitril oder Propionitril, Alkohole wie Methanol, Ethanol, Isopropanol, n-Butanol oder Glykol, Ester wie Essigsäureethylester, Essigsäuremethylester oder Essigsäurebutylester, Ether wie Tetrahydrofuran, Diethylether, Dimethoxyethan, Dioxan oder Diisopropylether, Amide wie Dimethylformamid, Dimethylacetamid oder N-Methylpyrrolidon, Sulfolan oder entsprechende Gemische.
  • Geeignete Basen, die gegebenenfalls auch als säurebindende Mittel bei der Reaktion verwendet werden können, sind beispielsweise Alkalihydroxid wie Lithium-, Natrium- oder Kaliumhydroxid, Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natrium- oder Kaliumhydrogencarbonat, Pyridin oder 4-Dimethylaminopyridin. Es können aber auch andere übliche Basen verwendet werden.
  • Als Reaktionsbeschleuniger kommen vorzugsweise Metallhalogenide wie Natriumiodid oder Kaliumiodid, quaternäre Ammoniumsalze wie Tetrabutylammoniumchlorid, -bromid oder -iodid oder Kronenether wie 12-Krone-4, 15-Krone-5, 18-Krone-6 oder Dicyclohexano-18-Krone-6 in Frage.
  • Die Umsetzung wird im allgemeinen bei Temperaturen zwischen 10 und 15O°C, insbesondere zwischen 20 und 120°C, drucklos oder unter Druck, kontinuierlich oder diskontinuierlich durchgeführt.
  • Steht Me für ein Metallatom, so wird ein Gewichtsverhältnis III:II von 1:1 bis 3:1, insbesondere 1:1 bevorzugt. Die Reaktion erfolgt gegebenenfalls in Gegenwart eines Lösungs- oder Verdünnungsmittels und gegebenenfalls unter Zusatz einer anorganischen oder organischen Base. Zu den bevorzugten Lösungs- und Verdünnungsmitteln gehören Amide wie Dimethylformamid, Diethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Hexamethylphosphortriamid, Sulfoxide wie Dimethylsulfoxid und schließlich Sulfolan.
  • Geeignete Basen, die gegebenenfalls auch als säurebindende Mittel bei der Reaktion verwendet werden können, sind beispielsweise Alkalihydride wie Lithium-, Natrium und Kaliumhydrid, Alkaliamide wie Natrium- und Kaliumamid, ferner Natrium- oder Kalium-tert.-butylat.
  • Man arbeitet im allgemeinen zwischen -10 und 120°C, vorzugsweise bei 20 bis 80°C. Bei Anwesenheit eines Lösungsmittels wird zweckmäßig beim Siedepunkt des jeweiligen Lösungsmittels gearbeitet.
  • Die Verbindungen II lassen sich nach bekannten Methoden in einfacher Weise aus den Ketonen der Formel IV
    Figure imgb0008

    herstellen, z.B. durch Umsetzung mit Trimethylsulfoniummethylsulfat (vgl. Corey, Chaykovsky, J. Am. Chem. Soc. 1962, 64, 3782).
  • Die Verbindungen IV lassen sich entsprechend allgemein bekannten Verfahren herstellen. Für den Fall, dar R¹ und R⁵ eine >CH-Z-Gruppe bedeuten, ist Cantacuzene, Tordeux, Can. J. Chem. 1976, 54 (17), 2659-2766 zu nennen; bedeuten R¹ und R⁵ eine >C=CH-Gruppe, sei auf Houben-Weyl-Müller, Methoden der organischen Chemie, Georg-Thieme Verlag, Stuttgart, 1972, Bd. V1b verwiesen.
  • Die Verbindungen der allgemeinen Formel I sowie ihre Salze und Metallkomplexe eignen sich als Fungizide bei guter Pflanzenverträglichkeit.
    Herstellungsbeispiele
  • Vorschrift A1: 2-(4-Chlorphenoxy)-cyclohexanon
  • Figure imgb0009

    Zu einer Lösung von 5,4 g (0,225 mol) Natriumhydrid (50 %ige Dispersion in Mineralöl) in 100 ml N,N-Dimethylformamid wurden 23,3 g (0,181 mol) 4-Chlorphenol gegeben. Anschließend wurden 20 g (0,151 mol) 2-Chlorcyclohexanon zugesetzt und 24 Stunden bei Raumtemperatur gerührt. Nach Zugabe von 100 ml Wasser und mehrmaliger Extraktion mit Methyl-tert.-butylether wurde die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt.
    Ausbeute: 32,9 g (97 %)
    Schmelzpunkt: 102 bis 104°C.
  • Vorschrift B1: 3-(4-Chlorphenoxy)-1-oxa-bicyclo[0,2,5]octan
  • Figure imgb0010

    Zu einer Lösung von 12,3 g (0,055 mol) 2-(4-Chlorphenoxy)-cyclohexanon in 100 ml Methylenchlorid wurden 22,7 g (0,121 mol) Trimethylsulfoniummethylsulfat und 30 g Natronlauge (konz.) gegeben. Nachdem das Reaktionsgemisch 12 bis 15 Stunden bei Raumtemperatur (20°C) gerührt worden war, wurden der Lösung 100 ml Wasser zugesetzt und die organische Phase abgetrennt. Die organische Phase wurde zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt.
    Ausbeute: 11,5 g (88 %).
  • Vorschrift B2: 3-(4-Chlorbenzyliden)-1-oxa-bicyclo(0,2,5]octan
  • Figure imgb0011

    Es wurde analog Beispiel B1 gearbeitet, wobei 23,5 g (0,108 mol) 2-(4-Chlorbenzyliden)-cyclohexanon in 100 ml Methylenchlorid, 24 g (0,128 mol) Trimethylsulfoniummethylsulfat und 50 ml Natronlauge (50 gew.-%ig) verwendet wurden.
    Ausbeute: 24 g (95 %)
  • Beispiel 1 1-(1,2,4-Triazol-1-yl-methyl)-2-(4-chlorphenoxy)-cyclohexan-1-ol (nicht erfindungsgemäß)
  • Figure imgb0012

    Eine Lösung von 3,5 g (0,051 mol) 1,2,4-Triazol in 50 ml N,N-Dimethylformamid wurde mit 3,4 g Natronlauge (50 gew.-%ig) versetzt und für 30 Minuten auf 50°C erwärmt. Anschließend wurden bei Raumtemperatur 8,0 g (0,033 mol) 3-(4-Chlorphenoxy)-1-oxa-bicyclo[0,2,5]octan, das in 20 ml N,N-Dimethylformamid gelöst war, zugetropft. Nachdem das Reaktionsgemisch 15 Stunden bei Raumtemperatur gerührt worden war, wurden der Lösung 100 ml Wasser zugesetzt und mehrmals mit Methyl-tert.-butylether ausgeschüttelt. Die isolierte organische Phase wurde zweimal mit Wasser gewaschen, daraufhin über Natriumsulfat getrocknet und eingeengt. Durch Kristallisation des Rückstandes aus Methyl-tert.-butylether/n-Hexan erhielt man das Produkt als 2:1 Diastereomerengemisch.
    Ausbeute: 6,5 g (63 %)
    Schmelzpunkt: 120 bis 122°C.
  • Beispiel 2 1-(1, 2, 4-Triazol-1-yl-methyl)-2-(4-chlorphenyliden)-cyclohexan-1-ol (nicht erfindungsgemäß)
  • Figure imgb0013

    Es wurde analog Beispiel C1 eine Lösung von 6,2 g (0,091 mol) 1,2,4-Triazol in 100 ml N,N-Dimethylformamid mit 6,8 g Natronlauge (50 gew.-%ig) versetzt und für 30 Minuten auf 50°C erwärmt. Nachdem das Reaktionsgemisch auf Raumtemperatur gekühlt worden war, wurden der Lösung 10,5 g (0,045 mol) 3-(4-Chlorbenzyliden)-1-oxa-bicyclo[0,2,5]octan, das in 50 ml N,N-Dimethylformamid gelöst war, zugetropft und 12 Stunden bei Raumtemperatur gerührt. Anschließend wurden 100 ml Wasser zugegeben und mehrmals mit Methyl-tert.-butylether extrahiert und die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt.
    Ausbeute: 10,5 g (77 %).
  • Entsprechend den Beispielen 1 bzw. 2 können die in den Tabellen 1 bzw. 2 aufgeführten Verbindungen hergestellt werden.
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
  • Vorschrift B3 2-(4-Chlorbenzyliden)-spiro-(trans-decalin-1,2-oxiran)
  • Figure imgb0035

    Zu einer Lösung von 30,2 g (0,11 mol) 2-(4-Chlorbenzyliden)-decalon (1) in 200 ml Methylenchlorid wurden 45,5 g (0,24 mol) Trimethylsulfoniummethylsulfat und 42 ml Natronlauge (konz.) gegeben. Nachdem das Reaktionsgemisch 12 Stunden bei Raumtemperatur (20°C) gerührt worden war, wurden der Lösung 100 ml Wasser zugesetzt und die organische Phase abgetrennt. Die organische Phase wurde zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt.
    Ausbeute: 29 g (91 %)
    Schmelzpunkt: 102 bis 105°C
  • Beispiel 3 1-(1,2,4-Triazol-1-ylmethyl)-2-(4-chlorbenzyliden)-decan-1-ol (nicht erfindungsgemäß)
  • Figure imgb0036

    Eine Lösung von 6,9 g (0,1 mol) 1,2,4-Triazol in 50 ml N,N-Dimethylformamid wurde mit 5,2 ml Natronlauge (50 gew.-%ig) versetzt und für 30 Minuten auf 50°C erwärmt. Anschließend wurden bei Raumtemperatur 14,4 g (0,05 mol) 2∼(4∼chlorbenzyliden)∼spiro∼(trans-decalin-1,2-oxiran), das in 30 ml N,N-Dimethylformamid gelöst war, zugetropft. Nachdem das Reaktionsgemisch 15 Stunden bei Raumtemperatur gerührt worden war, wurden der Lösung 100 ml Wasser zugesetzt und mehrmals mit Methyl-tert.-butylether ausgeschüttelt. Die isolierte organische Phase wurde zweimal mit Wasser gewaschen, daraufhin über Natriumsulfat getrocknet und eingeengt. Durch Kristallisation des Rückstandes aus Methyl-tert.butylether/n-Hexan erhielt man das Produkt als Enantiomerengemisch.
    Ausbeute: 13,3 g (63 %)
    Schmelzpunkt: 180 bis 186°C
    Entsprechend Beispiel 3 können die in Tabelle 3 aufgeführten Verbindungen hergestellt werden.
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
    Figure imgb0042
    Figure imgb0043
  • Vorschrift B4 4-(4-Chlorphenyl)-1-oxa-bicyclo(0,2,5)octan
  • Figure imgb0044

    Zu einer Lösung von 30 g (0,14 mol) 3-(4-Chlorphenyl)-cyclohexanon in 100 ml Methylenchlorid wurden 54,4 g (0,30 mol) Trimethylsulfoniummethylsulfat und 50 ml Natronlauge (50 %) gegeben. Nachdem das Reaktionsgemisch 12 Stunden bei Raumtemperatur (20°C) gerührt worden war, wurden der Lösung 100 ml Wasser zugesetzt und die organische Phase abgetrennt. Die organische Phase wurde zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt.
    Ausbeute: 28,2 g (91 %)
  • Beispiel 4 1-(1,2,4-Triazol-1-yl-methyl)-3-(4-chlorphenyl)-cyclohexan-1-ol (Verbindung Nr. 4.1, Tabelle 4)
  • Figure imgb0045

    Eine Lösung von 11,3 g (0,16 mol) Triazol in 100 ml N,N-Dimethylformamid wurde mit 12,4 g Natronlauge (50 gew.-%ig) versetzt und für 30 Minuten auf 50°C erwärmt. Anschließend wurden bei Raumtemperatur 18,2 g (0,08 mol) 4-(4-Chlorphenyl)-1-oxa-bicyclo[0,2,5]octan, das in 20 ml N,N-Dimethylformamid gelöst war, zugetropft. Nachdem das Reaktionsgemisch 15 Stunden bei Raumtemperatur gerührt worden war, wurden der Lösung 100 ml Wasser zugesetzt und mehrmals mit Methyl-tert.-butylether ausgeschüttelt. Die organische Phase wurde zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Durch Kristallisation des Rückstandes aus Methyltert.-butylether/n-Hexan erhielt man das Produkt als 2:1-Diastereomerengemisch.
    Ausbeute: 20,3 g (87 %)
    Schmelzpunkt: 128 bis 130°C.
  • Entsprechend Beispiel 4 können die in der Tabelle 4 aufgeführten Verbindungen hergestellt werden.
    Figure imgb0046
    Figure imgb0047
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
  • Vorschrift A2 2-(4-Chlorbenzyliden)-3,5,5-trimethyl-cyclohexanon
  • Figure imgb0053

    Zu einer Lösung von 763 g (5,45 mol) 3,3,5-Trimethyl-cyclohexanon und 140,5 g (1 mol) 4-Chlorbenzaldehyd werden 10 g Bortrioxyd gegeben und bei 190°C Reaktionstemperatur über 5 Stunden lang Wasser ausgekreist. Bei der anschließenden Destillation des Reaktionsgemisches werden bei 0,2 mbar und 168°c Übergangstemperatur 181 g (69 %) 2-(4-Chlorbenzyliden)-3,5,5-trimethylcyclohexanon erhalten.
  • Vorschrift B5 3-(4-Chlorbenzyliden)-4,6,6-trimethyl-1-oxa-bicyclo(0,2,5)octan
  • Figure imgb0054

    Zu einer Lösung von 40 g (0,15 mol) 2-(4-Chlorbenzyliden)-3,5,5-trimethyl-cyclohexanon in 200 ml Methylenchlorid werden 63 g (0,335 mol) Trimethylsulfoniummethylsulfat und 70 g Natronlauge (konz.) gegeben. Nachdem das Reaktionsgemisch 12 bis 15 Stunden bei Raumtemperatur (20°C) gerührt worden war, werden der Lösung 200 ml Wasser zugesetzt und die organische Phase abgetrennt. Die organische Phase wird zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt.
    Ausbeute: 37,4 g (89 %)
  • Beispiel 5 1-(1,2,4,Triazol-1-yl-methyl)-2-(4-chlorbenzyliden)-3,5,5-trimethyl-cyclohexan∼1∼ol
  • Figure imgb0055

    Eine Lösung von 8,8 g (0,128 mol) 1,2,4-Triazol in 100 ml N,N-Dimethylformamid wurde mit 9,8 g Natronlauge (50 gew.-%ig) versetzt und für 30 Minuten auf 50°c erwärmt. Anschließend wurden bei Raumtemperatur (20°c) 27,1 g (0,098 mol) 3∼(4∼Chlorbenzyliden)∼4,6,6∼trimethyl∼1∼oxabicyclo[0,2,5]octan, das in 50 ml N,N∼Dimethylformamid gelöst war, zugetropft und 12 Stunden bei Raumtemperatur gerührt. Anschließend wurden 200 ml Wasser zugegeben und mehrmals mit Methyl-tert.-butylether extrahiert und die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt.
    Ausbeute: 4,0 g (12 %)
    Schmelzpunkt: 88-90°c
    Entsprechend Beispiel 5 können die in der Tabelle 5 aufgeführten Verbindungen hergestellt werden.
    Figure imgb0056
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
    Figure imgb0062
  • Die Azolylmethylcycloalkanole zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können als Blatt- und Bodenfungizide eingesetzt werden.
  • Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.
  • Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:
    Erysiphe graminis (echter Mehltau) in Getreide,
    Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
    Podosphaera leucotricha an Äpfeln,
    Uncinula necator an Reben,
    Puccinia-Arten an Getreide,
    Rhizoctonia-Arten an Baumwolle und Rasen,
    Ustilago-Arten an Getreide und Zuckerrohr,
    Venturia inaequalis (Schorf) an Äpfeln,
    Helminthosporium-Arten an Getreide,
    Septoria nodorum an Weizen,
    Botrytis cinerea (Grauschimmel) an Erdbeeren, Reben,
    Cercospora arachidicola an Erdnüssen,
    Pseudocercosporella herpotrichoides an Weizen, Gerste,
    Pyricularia oryzae an Reis,
    Phytophthora infestans an Kartoffeln und Tomaten,
    Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
    Plasmopara viticola an Reben,
    Alternaria-Arten an Gemüse und Obst.
  • Die Verbindungen werden angewendet, indem man die Pflanzen mit den Wirkstoffen besprüht oder bestäubt oder die Samen der Pflanzen mit den Wirkstoffen behandelt. Die Anwendung erfolgt vor oder nach der Infektion der Pflanzen oder Samen durch die Pilze.
  • Sie können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollen in jedem Fall eine feine und gleichmäßige Verteilung des Azolylmethylcycloalkanols gewährleisten. Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-, Sulfitablaugen und Methylcellulose.
  • Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.% Wirkstoff.
  • Die Aufwandmengen liegen je nach Art des gewünschten Effektes zwischen 0,02 und 3 kg Wirkstoff pro ha. Die neuen Verbindungen können auch im Materialschutz (Holzschutz) eingesetzt werden, z.B. gegen Paecilomyces variotii.
  • Die Mittel bzw. die daraus hergestellten gebrauchsfertigen Zubereitungen wie Lösungen, Emulsionen, Suspensionen, Pulver, Stäube, Pasten oder Granulate werden in bekannter Weise angewendet, beispielsweise durch Versprühen, Vernebeln, Verstäuben, Verstreuen, Beizen oder Gießen.
  • Beispiele für solche Zubereitungen sind:
    • I. eine Lösung aus 90 Gew.-Teilen einer erfindungsgemäßen Verbindung und 10 Gew.-Teilen N-Methyl-α-pyrrolidon, die zur Anwendung in Form kleinster Tropfen geeignet ist;
    • II. eine Mischung aus 20 Gew.-Teilen einer erfindungsgemäßen Verbindung, 80 Gew.-Teilen Xylol,10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl; durch feines Verteilen der Lösung in Wasser erhält man eine Dispersion.
    • III. eine wäßrige Dispersion aus 20 Gew.-Teilen einer erfindungsgemäßen Verbindung, 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;
    • IV. eine wäßrige Dispersion aus 20 Gew.-Teilen einer erfindungsgemäßen Verbindung, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;
    • V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen einer erfindungsgemäßen Verbindung, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel; durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe;
    • VI. eine innige Mischung aus 3 Gew.-Teilen einer erfindungsgemäßen Verbindung und 97 Gew.-Teilen feinteiligem Kaolin; dieses Stäubemittel enthält 3 Gew.-% Wirkstoff;
    • VII. eine innige Mischung aus 30 Gew.-Teilen einer erfindungsgemäßen Verbindung, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde; diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;
    • VIII. eine stabile wäßrige Dispersion aus 40 Gew.-Teilen einer erfindungsgemäßen Verbindung, 10 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann;
    • IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen einer erfindungsgemäßen Verbindung, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates und 68 Gew.-Teilen eines paraffinischen Mineralöls.
  • Die erfindungsgemäßen Mittel können in diesen Anwendungsformen auch zusammen mit anderen Wirkstoffen vorliegen, z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln.
  • Die Azolylmethylcycloalkanole der Formel I können praktisch alle Entwicklungsstadien einer Pflanze verschiedenartig beeinflussen und werden deshalb als Wachstumsregulatoren eingesetzt. Die Wirkungsvielfalt der Pflanzenwachstumsregulatoren hängt ab vor allem
    • a) von der Pflanzenart und -sorte,
    • b) von dem Zeitpunkt der Applikation, bezogen auf das Entwicklungsstadium der Pflanze und von der Jahreszeit,
    • c) von dem Applikationsort und -verfahren (Samenbeize, Bodenbehandlung oder Blattapplikation)
    • d) von klimatischen Faktoren, z.B. Temperatur, Niederschlagsmenge, außerdem auch Tageslänge und Lichtintensität
    • e) von der Bodenbeschaffenheit (einschließlich Düngung),
    • f) von der Formulierung bzw. Anwendungsform des Wirkstoffs und schließlich
    • g) von den angewendeten Konzentrationen der aktiven Substanz.
  • Aus der Reihe der verschiedenartigen Anwendungsmöglichkeiten der erfindungsgemäßen Pflanzenwachstumsregulatoren im Pflanzenanbau, werden einige nachstehend erwähnt.
    • A. Mit den erfindungsgemäß verwendbaren Verbindungen läßt sich das vegetative Wachstum der Pflanzen stark hemmen, was sich insbesondere in einer Reduzierung des Längenwachstums äußert. Die behandelten Pflanzen weisen demgemäß einen gedrungenen Wuchs auf; außerdem ist eine dunklere Blattfärbung zu beobachten.
      Als vorteilhaft für die Praxis erweist sich z.B. die Verringerung des Grasbewuchses an Straßenrändern, Hecken, Kanalböschungen und auf Rasenflächen wie Park-, Sport- und Obstanlagen, Zierrasen und Flugplätzen, so daß der arbeits- und kostenaufwendige Rasenschnitt reduziert werden kann.
      Von wirtschaftlichem Interesse ist auch die Erhöhung der Standfestigkeit von lageranfälligen Kulturen wie Getreide, Mais, Reis, Sonnenblumen und Soja. Die dabei verursachte Halmverkürzung und Halmverstärkung verringern oder beseitigen die Gefahr des "Lagerns" (des Umknickens) von Pflanzen unter ungünstigen Witterungsbedingungen vor der Ernte.
      Wichtig ist auch die Anwendung von Wachstumsregulatoren zur Hemmung des Längenwachstums und zur zeitlichen Veränderung des Reifeverlaufs bei Baumwolle. Damit wird ein vollständig mechanisiertes Beernten dieser wichtigen Kulturpflanze ermöglicht.
      Durch Anwendung von Wachstumsregulatoren kann auch die seitliche Verzweigung der Pflanzen vermehrt oder gehemmt werden. Daran besteht Interesse, wenn z.B. bei Tabakpflanzen die Ausbildung von Seitentrieben (Geiztrieben) zugunsten des Blattwachstums gehemmt werden soll.
      Mit Wachstumsregulatoren läßt sich beispielsweise bei Winterraps auch die Frostresistenz erheblich erhöhen. Dabei werden einerseits das Längenwachstum und die Entwicklung einer zu üppigen (und dadurch besonders frostanfälligen) Blatt- bzw. Pflanzenmasse gehemmt. Andererseits werden die jungen Rapspflanzen nach der Aussaat und vor dem Einsetzen der Winterfröste trotz günstiger Wachstumsbedingungen im vegetativen Entwicklungsstadium zurückgehalten. Dadurch wird auch die Frostgefährdung solcher Pflanzen beseitigt, die zum vorzeitigen Abbau der Blühhemmung und zum Übergang in die generativen Phase neigen. Auch bei anderen Kulturen, z.B. Wintergetreide ist es vorteilhaft, wenn die Bestände durch Behandlung mit erfindungsgemäßen Verbindungen im Herbst zwar gut bestockt werden, aber nicht zu üppig in den Winter hineingehen. Dadurch kann der erhöhten Frostempfindlichkeit und - wegen der relativ geringen Blatt- bzw. Pflanzenmasse - dem Befall mit verschiedenen Krankheiten (z.B. Pilzkrankheit) vorgebeugt werden. Die Hemmung des vegetativen Wachstums ermöglicht außerdem bei vielen Kulturpflanzen eine dichtere Bepflanzung des Bodens, so daß ein Mehrertrag, bezogen auf die Bodenfläche, erzielt werden kann.
    • B. Mit den neuen Mitteln lassen sich Mehrerträge sowohl an Pflanzenteilen als auch an Pflanzeninhaltsstoffen erzielen. So ist es beispielsweise möglich, das Wachstum größerer Mengen an Knospen, Blüten, Blättern, Früchten, Samenkörnern, Wurzeln und Knollen zu induzieren, den Gehalt an Zucker in Zuckerrüben, Zuckerrohr sowie Zitrusfrüchten zu erhöhen, den Proteingehalt in Getreide oder Soja zu steigern oder Gummibäume zum vermehrten Latexfluß zu stimulieren.
      Dabei können die Azolylmethylcycloalkanole der Formel I Ertragssteigerungen durch Eingriffe in den pflanzlichen Stoffwechsel bzw. durch Förderung oder Hemmung des vegetativen und/oder des generativen Wachstums verursachen.
    • C. Mit Pflanzenwachstumsregulatoren lassen sich schließlich sowohl eine Verkürzung bzw. Verlängerung der Entwicklungsstadien als auch eine Beschleunigung bzw. Verzögerung der Reife der geernteten Pflanzenteile vor oder nach der Ernte erreichen.
      Von wirtschaftlichem Interesse ist beispielsweise die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Zitrusfrüchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbildung von Trenngewebe zwischen Frucht- bzw. Blatt- und Sproßteil der Pflanze ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen wesentlich.
    • D. Mit Wachstumsregulatoren kann weiterhin der Wasserverbrauch von Pflanzen reduziert werden. Dies ist besonders wichtig für landwirtschaftliche Nutzflächen, die unter einem hohen Kostenaufwand künstlich bewässert werden müssen, z.B. in ariden oder semiariden Gebieten. Durch den Einsatz der erfindungsgemäßen Substanzen läßt sich die Intensität der Bewässerung reduzieren und damit eine kostengünstigere Bewirtschaftung durchführen. Unter dem Einfluß von Wachstumsregulatoren kommt es zu einer besseren Ausnutzung des vorhandenen Wassers, weil u.a.
      • die Öffnungsweite der Stomata reduziert wird
      • eine dickere Epidermis und Cuticula ausgebildet werden
      • die Durchwurzelung des Bodens verbessert wird
      • das Mikroklima im Pflanzenbestand durch einen kompakteren Wuchs günstig beeinflußt wird.
  • Die erfindungsgemäß zu verwendenden Wirkstoffe können den Kulturpflanzen sowohl vom Samen her (als Saatgutbeizmittel) als auch über den Boden, d.h. durch die Wurzel sowie über das Blatt zugeführt werden.
  • Infolge der hohen Pflanzenverträglichkeit kann die Aufwandmenge stark variiert werden.
  • Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g je Kilogramm Saatgut, vorzugsweise 0,01 bis 10 g, benötigt.
  • Für die Blatt- und Bodenbehandlung sind im allgemeinen Gaben von 0,01 bis 10 kg/ha, bevorzugt 0,05 bis 3 kg/ha, als ausreichend zu betrachten.
  • Die Formulierungen bzw. die daraus hergestellten gebrauchsfertigen Zubereitungen, wie Lösungen, Emulsionen, Suspensionen, Pulver, Stäube, Pasten oder Granulate werden in bekannter Weise angewendet, beispielsweise im Vorauflaufverfahren, im Nachauflaufverfahren oder als Beizmittel.
  • Anwendungsbeispiel
  • Als Vergleichswirkstoff A wurde 1-(1,2,4-Triazol-1-yl-methyl)-2-(4-chlorbenzyl)-cyclohexan-1-ol gewählt, das aus der EP 324 646 bekannt ist.
  • Wirksamkeit gegen Pyrenophora teres
  • Gerstenkeimlinge der Sorte "Igri" wurden im Zweiblattstadium mit wäßrigen Suspensionen, die 80 % Wirkstoff und 20 % Emulgator in der Trockensubstanz enthielten, tropfnaß gespritzt. Nach 24 Stunden wurden die Pflanzen mit einer Sporensuspension des Pilzes Pyrenophora teres inokuliert und für 48 Stunden in eine Klimakammer mit hoher Luftfeuchtigkeit bei 18°C gestellt. Anschließend wurden die Pflanzen im Gewächshaus bei 20 bis 22°C und 70 % relativer Luftfeuchtigkeit für weitere 5 Tage kultiviert. Dann wurde das Ausmaß der Symptomentwicklung ermittelt.
    Bonitur: Angabe der befallenen Blattfläche in %
    Wirkstoff aus Bsp. Befall der Blätter nach Applikation von 0,05 %iger wäßriger Wirkstoffaufbereitung
    1.51 0 0
    2.2 1 5
    2.3 1 5
    Vergleichswirkstoff A 3 25
    Unbehandelt 4-5 65

Claims (10)

  1. Azolylmethylcycloalkanole der allgemeinen Formel I
    Figure imgb0063
    in der
    X   CH oder N bedeutet;
    T   (CH₂)n, CR¹¹R¹², O oder S bedeutet,
    wobei
    n   eine ganze Zahl von 1 bis 5 bedeutet; und
    R¹¹, R¹²   Wasserstoff oder C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl, Dioxolanyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste ein- bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄- Alkyl, c₁-C₄-Alkoxy oder c₁-c₄-Halogenalkyl substituiert sein kann;
    R¹ und R⁵   gleich oder verschieden sind und für Wasserstoff oder C₁-C₄-Alkyl stehen oder
    R¹ und R⁵   gemeinsam mit dem C-Atom, dessen Substituenten sie sind, für C=CH-R⁷ oder für CH-Z-R⁷ stehen, wobei
    Z   CH₂, O, S, SO, SO₂ oder N-R⁸ bedeutet,
    R⁷   C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste ein- bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁ -C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiert sein kann; oder Tetrahydropyranyl bedeutet; wobei
    R⁷   für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine CH-Z-R⁷-Gruppe bedeutet, zusätzlich für Wasserstoff stehen kann; und
    R⁸   für Wasserstoff oder C₁-C₄-Alkyl steht;
    R² und R³   jeweils für Wasserstoff oder C₁-C₄-Alkyl stehen; oder
    R² und R³   gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine C=CH-R⁷ Gruppe, für den Fall, daß R¹ und R⁵ gemeinsam mit dem C-Atom, dessen Substituenten sie sind, eine C=CH-R⁷ Gruppe bedeuten;
    R⁴   Wasserstoff oder C₁-C₄-Alkyl
    und
    R⁶,R⁹ u.R¹⁰   Wasserstoff oder
    C₁-C₈-Alkyl, Phenyl, Biphenyl, Naphthyl, Heteroaryl, Benzyl, Dioxolanyl oder C₃-C₈-Cycloalkyl bedeutet, wobei jeder dieser Reste ein- bis dreifach durch Halogen, Nitro, Phenoxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiert sein kann;
    ausgenommen Verbindungen,
    a) in denen die Reste R¹ bis R¹² gleichzeitig Wasserstoff bedeuten,
    b) in denen R¹ und R⁵ gemeinsam mit dem C-Atom, an das sie gebunden sind, für CH-CH₂-(4-Chlorphenyl) oder CH-O-(4-Chlorphenyl) stehen, wenn R² bis R⁴ und R⁶ bis R¹² Wasserstoff bedeuten,
    c) in denen R¹ und R⁵ gemeinsam mit dem C-Atom, an das sie gebunden sind, für C=CH-(4-Fluorphenyl) oder für C=CH-(4-Chlorphenyl) stehen, wenn
    T   CH₂ oder (CH₂)₂ bedeutet,
    R² und R³   für Wasserstoff, Cyclohexyl, Phenyl oder C₁- C₄-Alkyl stehen und
    R⁴,R⁶,R⁹ und R¹⁰   Wasserstoff bedeuten;
    sowie deren pflanzenverträgliche Säureadditionssalze und Metallkomplexe.
  2. Azolylmethylcycloalkanole der allgemeinen Formel I gemäß Anspruch 1, in der R⁷ einen ggf. ein- bis dreifach durch Fluor oder Chlor substituierten Phenylrest bedeutet.
  3. Verbindung der allgemeinen Formel I gemäß Anspruch 1, in der X für CH steht, R¹ und R⁵ gemeinsam mit dem C-Atom an das sie gebunden sind, für CH-S-(4-Chlorphenyl) stehen, T für CH₂ steht und R² bis R⁴ und R⁶, R⁹ und R¹⁰ Wasserstoff bedeuten.
  4. Verbindung der allgemeinen Formel I gemäß Anspruch 1, in der X für CH steht, R¹ und R⁵ sowie R² und R³ jeweils gemeinsam mit dem C-Atom, an das sie gebunden sind, für C=CH-(4-Chlorphenyl) stehen, T für CH₂ steht und R⁴, R⁶, R⁹ und R¹⁰ Wasserstoff bedeuten.
  5. Verbindung der allgemeinen Formel I gemäß Anspruch 1, in der X für N steht, R¹ und R⁵ sowie R² und R³ jeweils gemeinsam mit dem C-Atom, an das sie gebunden sind für C=CH-(4-Chlorphenyl) stehen, T für CH₂ steht und R⁴, R⁶, R⁹ und R¹⁰ Wasserstoff bedeuten.
  6. Verfahren zur Herstellung von Azolylmethylcycloalkanolen der allgemeinen Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen Formel II
    Figure imgb0064
    mit einer Verbindung der allgemeinen Formel III
    Figure imgb0065
    in der Me für ein Wasserstoff- oder ein Metallatom steht, umsetzt und die so erhaltenen Verbindungen ggf. mit pflanzenverträglichen Säuren in ihre Salze oder in ihre Metallkomplexe überführt.
  7. Fungizides Mittel enthaltend einen Trägerstoff und eine fungizid wirksame Menge eines Azolylmethylcycloalkanols der allgemeinen Formel I gemäß Anspruch 1.
  8. Verfahren zur Bekämpfung von Pilzen, dadurch gekennzeichnet, daß man eine fungizid wirksame Menge eines Azolylmethylcycloalkanols der allgemeinen Formel I gemäß Anspruch 1 auf Pilze oder durch Pilzbefall bedrohte Materialien, Flächen (ausgenommen am tierischen oder menschlichen Körper), Pflanzen oder Saatgüter einwirken läßt.
  9. Mittel zur Regulierung des Pflanzenwachstums, enthaltend einen Trägerstoff und eine regulatorisch wirksame Menge eines Azolylmethylcycloalkanols der allgemeinen Formel I gemäß Anspruch 1.
  10. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man eine regulatorisch wirksame Menge eines Azolylmethylcycloalkanols der allgemeinen Formel I gemäß Anspruch 1 auf Kulturpflanzen oder deren Lebensraum einwirken läßt.
EP90123378A 1989-12-16 1990-12-06 Substituierte Azolylmethylcycloalkanole und diese enthaltende Fungizide Expired - Lifetime EP0433780B1 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE3941593 1989-12-16
DE3941593A DE3941593A1 (de) 1989-12-16 1989-12-16 Azolylmethylcycloalkanole
DE4020432A DE4020432A1 (de) 1990-06-27 1990-06-27 Neue azolylethanolderivate und diese enthaltende pflanzenschutzmittel
DE4020432 1990-06-27
DE4022784A DE4022784A1 (de) 1990-07-18 1990-07-18 Azolylmethylcycloalkanole und diese enthaltende pflanzenschutzmittel
DE4022784 1990-07-18
DE4029197A DE4029197A1 (de) 1990-09-14 1990-09-14 Substituierte azolylmethylcyclohexanole und diese enthaltende fungizide
DE4029197 1990-09-14

Publications (2)

Publication Number Publication Date
EP0433780A1 EP0433780A1 (de) 1991-06-26
EP0433780B1 true EP0433780B1 (de) 1996-04-03

Family

ID=27434812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123378A Expired - Lifetime EP0433780B1 (de) 1989-12-16 1990-12-06 Substituierte Azolylmethylcycloalkanole und diese enthaltende Fungizide

Country Status (12)

Country Link
EP (1) EP0433780B1 (de)
JP (1) JPH03197464A (de)
KR (1) KR0163185B1 (de)
AT (1) ATE136301T1 (de)
AU (1) AU652926B2 (de)
CA (1) CA2032285A1 (de)
DE (1) DE59010258D1 (de)
DK (1) DK0433780T3 (de)
ES (1) ES2085877T3 (de)
GR (1) GR3019879T3 (de)
HU (1) HU208612B (de)
IL (1) IL96681A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730490C1 (ru) * 2019-11-21 2020-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Замещенные 4-(азол-1-илметил)-1,6-бисфенилдиспиро[2.1.2.3]декан-4-олы, способ их получения и фунгицидная композиция на их основе

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4034337A1 (de) * 1990-10-29 1992-04-30 Basf Ag Azolylmethylcyclohexanole und diese enthaltende fungizide
EP0524439A1 (de) * 1991-07-24 1993-01-27 F.Hoffmann-La Roche & Co. Aktiengesellschaft Cyclohexan- und Tetrahydropyranderivate und diese Derivate enthaltende, antifungale Zusammensetzungen
US5449785A (en) * 1991-07-24 1995-09-12 Hoffmann-La Roche Inc. Cyclohexane derivatives
US5571831A (en) * 1992-02-15 1996-11-05 Kureha Chemical Industry Co., Ltd. Imidazole derivative, and pharmaceutical composition
AU658488B2 (en) * 1992-02-15 1995-04-13 Kureha Chemical Industry Co., Ltd. Novel azole derivative, production thereof and pharmaceutical composition
US5547973A (en) * 1992-02-15 1996-08-20 Kureha Chemical Industry Co., Ltd. Method of inhibiting aromatase
FR2690441A1 (fr) * 1992-04-08 1993-10-29 Rhone Poulenc Agrochimie Nouveaux dérivés triazole et imidazole fongicides.
FR2704388B1 (fr) * 1993-04-27 1995-06-09 Rhone Poulenc Agrochimie Procede pour ameliorer la vigueur et ou la sante des vegetaux tels que les cereales par action d'un derive de type triazole.
DE4425949A1 (de) * 1994-07-21 1996-01-25 Bayer Ag Azolylmethylcyclopentanol-Derivate als Mikrobizide
DE4425948A1 (de) * 1994-07-21 1996-01-25 Bayer Ag Azolylmethyl-substituierte Cycloalkanole oder Mikrobzide
US5506250A (en) * 1994-11-14 1996-04-09 Rhone-Poulenc Inc. Method of treating turf
DE19520096A1 (de) * 1995-06-01 1996-12-05 Bayer Ag Cycloalkan-benzyliden-Derivate
DE60121986T2 (de) 2000-10-02 2007-07-26 Emory University Triptpolidanaloge zur verendung in der behandlung von autoimmunbedingten und entzündlichen erkrankungen
WO2010122170A1 (en) * 2009-04-24 2010-10-28 Basf Se 5-mercapto- [1,2,4] triazolylmethyl-cyclopentanol compounds and their agricultural and pharmaceuti al uses
WO2010122171A1 (en) * 2009-04-24 2010-10-28 Basf Se 5-heteroarylmethyl-i- (b-mercapto- [1,2, 4 -triazolylmethyl) -cyclopentanol as fungicides
TW201041514A (en) * 2009-04-24 2010-12-01 Basf Se Triazole compounds carrying a sulfur substituent II
AR076428A1 (es) * 2009-04-24 2011-06-08 Basf Se Compuestos de triazol que llevan un sustituyente de azufre iii
WO2010122167A1 (en) * 2009-04-24 2010-10-28 Basf Se 5 -mercapto- [1, 2, 4] triazolylmethyl-cyclopentanol compounds and their agricultural and pharmaceutical uses
WO2014095249A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746256A1 (de) 2012-12-19 2014-06-25 Basf Se Fungizidimidazolyl- und -triazolylverbindungen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414210A (en) * 1979-10-02 1983-11-08 Rohm And Haas Company 2-Hydroxyarylethyltriazole fungicides
FR2472559A1 (fr) * 1979-12-31 1981-07-03 Cerm Cent Europ Rech Mauvernay Derives du 1-aminomethyl 2-phenoxy cyclohexanol, procede d'obtention, application en therapeutique et compositions les contenant
EP0052425A3 (de) * 1980-11-13 1982-08-11 Imperial Chemical Industries Plc Triazol- und Imidazol-Verbindungen, Verfahren zu ihrer Herstellung, ihre Verwendung als Pflanzenfungizide und diese Verbindungen enthaltende Zusammensetzungen
DE3617071A1 (de) * 1985-06-05 1986-12-11 Merck Patent Gmbh, 6100 Darmstadt Cyclohexanderivate
DE3630614A1 (de) * 1986-09-09 1988-03-17 Basf Ag Verfahren zur herstellung von 4-formyltetrahydropyranen und neue 4-formyltetrahydropyrane
JPH0625140B2 (ja) * 1986-11-10 1994-04-06 呉羽化学工業株式会社 新規アゾール誘導体、その製造方法及び該誘導体の農園芸用薬剤
JPH0819108B2 (ja) * 1986-12-22 1996-02-28 呉羽化学工業株式会社 新規アゾ−ル誘導体、その製造法及び該誘導体を活性成分として含有する農園芸用殺菌剤
JPH0739396B2 (ja) * 1988-01-14 1995-05-01 呉羽化学工業株式会社 新規アゾール置換シクロアルカノール誘導体、その製造法及び該誘導体の農園芸用殺菌剤としての利用
EP0374509B1 (de) * 1988-12-21 1994-01-05 Firmenich Sa 4,4,5,8-Tetramethyl-1-oxaspiro(2.5)octan, Verfahren zu seiner Herstellung und seine Verwendung als Ausgangsprodukt in der Herstellung von 2,2,3,6-Tetramethyl-cyclohexan-carboxaldehyd
CA2006309C (fr) * 1988-12-29 2001-12-18 Jean Hutt Azolylmethylcyclopentane benzylidene fongicide
DE3902031A1 (de) * 1989-01-25 1990-07-26 Hoechst Ag Substituierte azolylmethylcycloalkan-derivate, ihre herstellung und verwendung sowie diese enthaltende arzneimittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE CHEMICAL SOCIETY - PERKIN TRANSACTIONS I, 1990; A.L. BECK et al., Seiten 689-693 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730490C1 (ru) * 2019-11-21 2020-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Замещенные 4-(азол-1-илметил)-1,6-бисфенилдиспиро[2.1.2.3]декан-4-олы, способ их получения и фунгицидная композиция на их основе

Also Published As

Publication number Publication date
ATE136301T1 (de) 1996-04-15
CA2032285A1 (en) 1991-06-17
GR3019879T3 (en) 1996-08-31
AU6809390A (en) 1991-06-20
HUT55956A (en) 1991-07-29
AU652926B2 (en) 1994-09-15
JPH03197464A (ja) 1991-08-28
KR0163185B1 (ko) 1998-12-01
DE59010258D1 (de) 1996-05-09
KR910011806A (ko) 1991-08-07
ES2085877T3 (es) 1996-06-16
IL96681A (en) 1995-12-08
HU908283D0 (en) 1991-06-28
EP0433780A1 (de) 1991-06-26
DK0433780T3 (da) 1996-05-13
HU208612B (en) 1993-12-28
IL96681A0 (en) 1991-09-16

Similar Documents

Publication Publication Date Title
EP0433780B1 (de) Substituierte Azolylmethylcycloalkanole und diese enthaltende Fungizide
EP0087148B1 (de) 1-Hydroxyethyl-azol-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Pflanzenwachstumsregulatoren und Fungizide
EP0180136B1 (de) Substituierte Azolylmethyl-cyclopropyl-carbinol-Derivate
EP0084834B1 (de) Substituierte 1-Hydroxyalkyl-azolyl-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide und Pflanzenwachstumsregulatoren
EP0315850B1 (de) Verfahren zur Beeinflussung des Pflanzenwachstums durch Azolylmethyloxirane
EP0455052B1 (de) 5-(1,2,4-Triazol-1-ylmethyl)-Isoxazolin
EP0079006B1 (de) Azolyl-alkenone und -ole, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Pflanzenwachstumsregulatoren und Fungizide
EP0044993A2 (de) Triazolylpropenol-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Pflanzenwachstumsregulatoren und Fungizide
DD205812A5 (de) Pflanzenwachstumsregulierende und fungizide mittel
DE2845254A1 (de) Gamma -azolylverbindungen
EP0311892B1 (de) Subtituierte Azolylmethylcarbinole
EP0390022A2 (de) Azolylethylcyclopropane, Verfahren zu ihrer Herstellung und ihre Verwendung als pflanzenschutzmittel
EP0086901B1 (de) Azolyl-thioether-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide und Pflanzenwachstumsregulatoren
EP0059894A1 (de) Triazolylalkyl-thioether, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Pflanzenwachstumsregulatoren und Fungizide
EP0229642B1 (de) Azolverbindungen und diese enthaltende Fungizide und Wachstumsregulatoren
EP0005754A1 (de) Mittel und Verfahren zur Regulierung des Pflanzenwachstums
EP0363766B1 (de) Azolylmethylcyclopropane und ihre Verwendung als Pflanzenschutzmittel
EP0483616B1 (de) Azolylmethylspiro-2.5-octanole und diese enthaltende Fungizide
EP0394843B1 (de) 1-Halogenvinyl-azole und diese enthaltende Fungizide und Wachstumsregulatoren
DE3941593A1 (de) Azolylmethylcycloalkanole
EP0407877B1 (de) 1,2-Dihalogenazolylethanderivate und diese enthaltende Pflanzenschutzmittel
EP0427059A2 (de) N-Oxo-Azolylmethyloxirane und diese enthaltende Fungizide und Bioregulatoren
EP0397005A2 (de) Azolylethanderivate und diese enthaltende Fungizide und Wachstumsregulatoren
EP0230268A2 (de) Halogenierte Azolverbindungen und diese enthaltende Fungizide
EP0420020A2 (de) Vinylazole und ihre Verwendung als Pflanzenschutzmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 19930826

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 136301

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59010258

Country of ref document: DE

Date of ref document: 19960509

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960510

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2085877

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3019879

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031203

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031204

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031205

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031210

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20031211

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20031216

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20031222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031223

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031230

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040212

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041206

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041207

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20050202

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050704

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041206

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041207

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20041231