EP0424423A1 - Dispositif pour fixer une nappe de tissu souple sur un nouvel axe d'enroulement vide. - Google Patents

Dispositif pour fixer une nappe de tissu souple sur un nouvel axe d'enroulement vide.

Info

Publication number
EP0424423A1
EP0424423A1 EP89907705A EP89907705A EP0424423A1 EP 0424423 A1 EP0424423 A1 EP 0424423A1 EP 89907705 A EP89907705 A EP 89907705A EP 89907705 A EP89907705 A EP 89907705A EP 0424423 A1 EP0424423 A1 EP 0424423A1
Authority
EP
European Patent Office
Prior art keywords
guide
web
roller
feed roller
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89907705A
Other languages
German (de)
English (en)
Other versions
EP0424423B1 (fr
Inventor
Heinrich Schnell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25869937&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0424423(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to AT89907705T priority Critical patent/ATE95801T1/de
Publication of EP0424423A1 publication Critical patent/EP0424423A1/fr
Application granted granted Critical
Publication of EP0424423B1 publication Critical patent/EP0424423B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/2238The web roll being driven by a winding mechanism of the nip or tangential drive type
    • B65H19/2246The web roll being driven by a winding mechanism of the nip or tangential drive type and the roll being supported on two rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/28Attaching the leading end of the web to the replacement web-roll core or spindle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/417Handling or changing web rolls
    • B65H2301/418Changing web roll
    • B65H2301/4181Core or mandrel supply
    • B65H2301/41814Core or mandrel supply by container storing cores and feeding through wedge-shaped slot or elongated channel

Definitions

  • the invention relates to a device for winding a new empty winding core to replace a full roll, with a continuous, uninterrupted via a feed roller, flexible web of material, which is in the winding position is center distance from the full roll, with a tube feeder through which e ,
  • a new empty sleeve in the winding position is brought into circumferential contact and drive contact with the feed roller, in which it is partially wrapped around by the web stretched between the feed roller and the full roll, with a piecing guide on which a roller loosely parallel to the feed roller is rotatably supported and the side facing away from the empty core, the web stretched over an intermediate space in its advancing direction, the web is entrained in the direction of rotation of the empty winding core, thereby increasing the wrap angle of the web of the new winding core will be up to more than 180 degrees, with a knife through which the web stretched over the space between the roller and the full sleeve is cut and with means by which the new cut of the web while continuing to wrap the empty slee
  • the web can be woven or knitted fabrics, cloths and the like, as well as lattice-like plastic fabrics and foams.
  • a turning racket is provided, around the front edge of which the beginning of the new web is turned over.
  • the turning racket is then knocked into the gap between the feed roller and the new empty sleeve to be wound with the cover of the web.
  • the beginning of the web is driven into the nip by the turning racket, with the folding edge formed by the envelope leading up to the entrainment between the feed roller and the new sleeve. Once this has been done, the turning racket is slid out of the envelope of the material web and thus also out of the gap.
  • the turning racket offers an inevitable guidance of the start of the new web until it is clamped and pulled at the end of the gap between the feed roller and the empty sleeve.
  • the invention has for its object to simplify a device of the type mentioned, in particular so that it slightly different qualities visibly flexibility, strength and the like, which can be adapted to processed webs.
  • the invention is characterized in that a guide plate is arranged on the attachment guide, which extends over the entire width of the roller and at a radial distance from the circumference of the roller and over a portion of the circumference of the roller that the guide plate is at its in the feed direction front end has a front edge that extends axially parallel to the feed roller that the guide plate outside a guide surface for the has a new cut of the web on which this flac spreads space and can slide and that in the end position of the feed movement of the piecing guide the empty sleeve is wrapped by the web with a wrap angle of at least 240 degrees and the front edge of the guide plate with a radial distance to the circumference the empty sleeve and with a radial distance to the circumference of the feed roller, which is 0.3 to 2 times, preferably 0.7 to 1.3 times, the diameter of the roller.
  • the invention takes advantage of the fact that it is not necessary for si cheren precise guidance of the new web in the gap between the feed roller and the new sleeve, the web on the last piece of the feed movement, as in the known device, zwangs ⁇ to run in heat.
  • the beginning of the new web which is kept ready on the guide plate, slides over the guide plate and thereby comes into contact with the web sections which lie over the peripheral sections of the feed roller and the sleeve which delimit the gap.
  • the beginning of the new web which initially spans the gap, is drawn into the gap by the rotation of the feed roller and the sleeve, forming a fold.
  • the turning racket which in the known device described at the outset has driven the beginning of the web into the gap, is no longer required. This also eliminates the very complex, rapidly moving drive parts for this turning racket. Only one guide plate is required, which, on the other hand, has to be of simple design and moved slowly.
  • the new web section slides under the influence of its weight, and also of the decreasing tension, into the gap as soon as it is cut off.
  • This sliding movement can be due to the flexibility and weight, and the other quality activities of the processing web are coordinated by appropriate design and arrangement of the guide plate in its winding position. It is important that the material web can be inserted in the desired manner by a sufficient distance at the front edge of the guide plate. Instead, it is necessary for a corresponding adaptation in the known device described at the outset to convert or convert the turning racket and its drive means.
  • the guide plate in its winding position which it assumes in the creation of the feed movement of the drive guide, in relation to its guide surface obliquely downwards into the gap between the feed roller and the new sleeve, is directed.
  • the desired pull-in movement for the new web section is favored in that the guide plate in its winding position, which it assumes in the end position of the feed movement of the piecing guide, with respect to its guide surface, obliquely downwards into the gap between the pull-in roller, which is open at the top and the new sleeve is directed.
  • FIG. 1 various functional parts of a first exemplary embodiment of a winding device
  • Figure 10 shows the partial view according to arrow X from
  • FIG. 11 shows parts of a second exemplary embodiment of the representation corresponding to FIG. 4,
  • FIG. 12 shows the parts from FIG. 11 in a succession to the functional position
  • FIG. 13 shows parts of the second exemplary embodiment in the side view corresponding to arrow XIII
  • FIG. 14 shows parts of a third exemplary embodiment in the view corresponding to FIG. 1,
  • FIG. 15 shows the parts from FIG. 14 in a subsequent functional position
  • Figure 16 shows parts of a fourth embodiment in the view corresponding to Figure 3 shortly before cutting
  • FIG. 17 shows the parts from FIG. 16 in a succession to the functional position
  • the 10 is fed continuously termed flexible web of material, which can consist of different materials, for example cloths made of knitted or woven fabric.
  • the feed roller 1 and the friction roller 2 are axially parallel to each other, have the same diameter and are driven at different circumferential speeds and in the same sense by the gears with control motors located thereon.
  • the feed roller 1 is pivotally mounted on support arms 104 A, B on the continuous shaft 89.
  • the two end positions of the support arm are shown in FIGS. 1 and 8.
  • a sleeve magazine 85 A, B is arranged non-rotatably, but axially displaceably with the aid of the bearing 90 A, B on the rotatably mounted hollow shaft 89.
  • FIG. 3 shows a functional position following that of FIG. 2, in which the parts shown are advanced in order to prepare for cutting through the web 10, this section is called the functional section 38.
  • a cross cutter 40 is arranged below this functional section.
  • the polygons are driven by a motor via a drive belt.
  • the polygon knives rotate in opposite directions.
  • the Cross cutter is shown in Figure 1 in an inactive rest position set down.
  • the cross cutter is drawn in its raised cutting position, in which it cuts the stretched fabric web 10 in the function section 38 with the cutting edges of its polygonal knife 41.
  • a curve guide 36 A, B is designed so that the circular path 70 A B extends from the center of the sleeve guide 48 A, B in a radius of 78 in a range of approximately z o degrees.
  • the cover plate 5 A, B according to Figure Q ⁇ .9l _> + ⁇ Q is designed so that a bearing tread groove 129 A, B for receiving the bearings 27 A, B and 28 A, B is available, which in connection with the support arm 104 A. , B connected together represents a groove.
  • On the opposite side of the support arm 104 A, B is a toothed segment arch 6 A, B of about 120 degrees, also in radius 78, fixedly arranged.
  • a cylinder 33 A, B is pivotally suspended on the cylinder holder 37 A, B, which is attached to the machine frame 99.
  • the piston rod 34 A, B with the pivot bearing 35 A, B mounted on it can be used to actuate the attachment guide 8. the bolts 29 A, B are plugged in and move them.
  • the attachment guide 8 is integrated on the support arm 104 A, B, which is forcibly moved parallel to the hollow shaft by means of cylinders 33 A, B in the curve guide 36 A, B in the radius 78 by approximately 2 ° degrees.
  • the movement of the attachment guide 8 is achieved in that a link 23 A, B with a permanently attached bolt 29 A, B with a ball bearing 27 A, B located thereon forcibly runs in the bearing tread groove. So that the link 23 A, B is guided in parallel in the groove 129 A, B, the link 23 A, B is placed on the shaft 5, mounted in the bearing 24 A, B, secured by a and subsequent fixed ball bearing 28 A, B, executed. On the .
  • “Shaft ⁇ 5 is rotatably connected to a rocker arm 13 A, to which a spacer tube 14 connects and, on the opposite side, is also torsionally rigidly connected to the rocker arm 13 B.
  • a spacer shaft 15 which is in the bearings 16 A, B, 2.
  • A, B and 28 A, B is mounted and has a gear wheel 7 A, B, secured by a pin 30 A, B at the shaft ends.
  • the gear wheel 7 A, B meshes in the toothed segment arch 6 A, B and synchronizes the rotation of the attachment guide 8 via the spacer shaft 15.
  • the rocker arm 13 A, B connected to the shaft A5., Is rotatably mounted axially and is spring-loaded by means of a tension spring 19 A, B on the one hand on a spring bolt zen 20 A, B, attached to the handlebar 23 A, B and to a spring bolt 21 A, B, attached to the rocker arm 13 A, B, pulled in the direction of the feed roller 1.
  • a guide plate 9 is on the rocker arm 13 A, B. arranged torsionally rigid and underneath is the roller 11.
  • the roller 11 is rotatably supported and is held by the bolt 12 A, B
  • the attachment guide 8 is shown in FIGS. 1 to 10.
  • the attachment guide 8 is moved up and down with the aid of the cylinder 33 A, B and by moving the support arm 104 A, B back and forth at the pivot point on the hollow shaft 89 in the curve guide 36 A, B.
  • the sleeve feeder 46 A, B is pivotally mounted on the support arm 104 A, B.
  • the sleeve feeder 46 A, B is assigned a hollow shaft 49 which is mounted coaxially and rotatably.
  • the laying arm 47 A, B is arranged on the hollow shaft 49 in a torsionally rigid but axially displaceable manner.
  • the pivoting movement of the sleeve feeder 46 is carried out up and down with the aid of a cylinder.
  • the sleeve feeder 46 A, B is shown in FIG. 1 and in the other end position of the swivel movement in FIG. 2.
  • a sleeve receiver 48 A, B. is arranged at the free end of the laying arm 47 A, B.
  • the sleeve 50 As shown in FIG. 1, is located between the feed roller 1 and the friction roller, the sleeve is released again by retracting the cylinders.
  • a sleeve guide 55 is arranged above the friction roller 2.
  • the sleeve guide consists of an elongated guide rail, which is pivotally mounted at its upper end in a flange bearing.
  • the flange bearing is fixed to the machine frame.
  • the pivoting movement of the guide rails is effected by a double cylinder.
  • FIG. 1 shows the sleeve guide 55 in the winding position.
  • the described shafts and axes of rotary bearings extend parallel to one another, that is to say parallel to the axes of the feed roller 1 and the friction roller 2 or perpendicular to the drawing planes of FIGS. 1 to 8.
  • the bale 180 is almost completely wound up.
  • the sleeve 179 of this bale is guided in the sleeve feeder 55, the guide plate 56 A, B following the increasing diameter of the bale 180 in the guide rail 57 A, B and 58 A, B has slid upward.
  • the bale is supported at the bottom on the feed roller 1 and the friction roller 2 and is driven in rotation by these and pulls the flexible web 10.
  • the support arm 104 A, B is, in relation to FIG. 1, in its operating position in which the winding is carried out.
  • the wrapping hardness of the bale 180 can also be determined with the aid of the friction roller 2.
  • the attachment guide 8 as well as the cross cutter 40 and the sleeve feeder 46 have no function at rest in the operating position shown in FIG. 1.
  • a control command is issued, which subsequently triggers the processes to be described.
  • the support plate 104 A, B pivots with the feed roller 1 and the sleeve feeder 46 into the winding position shown in FIG.
  • the attachment leader 8 is forcedly supported against the.
  • Zy ⁇ cylinder 33 A, B in its preparation at the end of the straight section of the curve guide 36 A, B and thus at the beginning of the circular path 70 A, B advanced.
  • the sleeve feeder 46 grips a new sleeve 50 and presses it into the functional section 38 against the feed roller 1.
  • the sleeve 50 thus comes into circumferential contact with the feed roller 1 with the interposition of the flexible web 10.
  • the attachment guide 8 is now in its position shown in FIG. 4.
  • the piecing guide 8 now presses the roller 11 with the flexible web 10 under the action of the tension spring 19 against the lower circumferential half of the sleeve 50.
  • the piecing guide 8 is now ready, while the flexible web 10 continues without the guide plate 9 to touch, is continued in the direction of the friction roller 2.
  • the cross cutter 40 With the "cutting" signal, the cross cutter 40 is brought into the cutting position of the direction of movement 65 and cuts the functional section 38 of the flexible web 10, shown in FIG. 4.
  • Equal- the attachment guide 8 is moved on the circular path 70 in the direction of movement 68 with the aid of the cylinder 33 A, B.
  • the new section 66 that is to say the beginning of the new web, falls on the guide plate 9 after cutting and remains thereon.
  • the guide plate 9, which is arranged on the attachment guide 8, extends over the entire width of the roller 11, namely with a radial distance 4 from the periphery of the roller and over a partial region
  • the piston rod 34 now carries out a stroke, as a result of which the attachment guide 8 is displaced along the circular path 70 A, B into its winding position at the end of this circular path.
  • the roller 11 rolls over the sleeve 50 with the textile web 10 in between, pressed on by the spring force of the tension spring 19, and against the upper sleeve half.
  • the guide plate 9 with the web section 69 lying thereon is simultaneously brought into the upper region with the aid of the attachment guide 8, as shown in FIG. In the upper position of the attachment guide 8, there is a brief stoppage of the goods transport in this area while the sleeve 50 is being rolled over.
  • the guide plate 9 has at its front end in the feed direction a front edge 3 which extends axially parallel to the feed roller.
  • the guide plate has a guide surface 31 on the outside, on which the new section 66 of the web 10 is spread out flat and can slide.
  • the empty sleeve 50 is wrapped in the web with a wrap angle 32 of at least 240 ° and the front edge 3 of the guide plate extends with a radial distance 45 to the circumference of the empty sleeve and with a radial distance 44 to the circumference of the Feed roller.
  • the two distances 44 and 45 each make 0.3 to 2 times, preferably 0.7 to 1, 3 times the Diameter 39 of the roller 11.
  • the guide plate 9 is in its winding position, with respect to the guide surface 31, directed obliquely downward into the upwardly open gap 67 which is formed between the feed roller and the new sleeve.
  • the angular orientation of the guide plate, the slidability of its guide surface and the sizes of the spacings 44 and 45 can be varied in order to adapt the function to different qualities of the processed web. The adaptation takes place by exchanging the guide plate or changing its assembly.
  • the roller 11 standing on the apex of the sleeve 50 now conveys the flexible web 10 standing according to FIG. 5 in the web section 72 further downwards in the direction 76 on the sleeve surface in the direction of the gap 67.
  • the web section 72 now meets. the flexible web 10 guided on the feed roller 1 and forms a web support 73 as shown in FIG. 6 for a short time.
  • the surface friction between the web support 73 and the flexible web 10 leads to the formation of a fold 178 in this functional position which is drawn in between the web 10 at the periphery of the feed roller 1 and the sleeve 50, so that the new starting section, which is created by the cutting process and is referred to as web section 69, runs in direction 77 into the gap 67 as fold 79, as shown in FIG.
  • the new web section 69 is now wrapped together with the flexible web 10 un fixed by gluing to the sleeve 50.
  • the curve guide 311 is assigned a guide curve 300 which follows the circular path 309 in the radius 307 at the guide distance and is fastened to the cover plate 312.
  • a rocker arm 303 is fixedly connected to the hollow shaft 313, to which a spacer tube 314 connects and is likewise connected to the rocker arm 303 in a torsionally rigid manner on the opposite side.
  • a pressure roller 304 attached by means of bolt 305, which rests on the closing curve 302 of the guide curve 300 and holds the roller 315 functionally in this position, the tension spring 316 pulling against it, as shown in FIG. 11 .
  • the roller 315 is in operation, the pressure roller 304 being guided outward in the direction 308 via the opening curve 301 and the rocking lever 303 passing in the direction of movement 306 by means of spring force by spring 316.
  • a guide plate 318 is arranged on the handlebar 317 in a torsionally rigid manner.
  • the support arm 320 now pivots together with the attachment guide 310 into its wrap position shown in FIG.
  • the piecing guide is free with the roller 315 under the flexible web 321, pressed by spring force with the aid of the tension spring 316 against the closing curve 302 by means of the pressure roller 304.
  • the piecing guide 310 is now in the waiting position, while the flexible web 321 continues without the guide plate touch, continues in the direction of the friction roller 322.
  • the cross cutter 324 With the "cutting" signal, the cross cutter 324 is brought into the cutting position of the direction of movement 323 and cuts the functional section of the flexible material web 321.
  • the attachment guide 310 is moved on the circular path 309 in the direction of movement 306 with the aid of the cylinder 325. After cutting, the web end 326 falls on the guide plate 318 and remains thereon.
  • the guide plate 318 now lifts the flexible web 321 without touching the sleeve 327, around the latter up to the apex of the same.
  • the roller 315 moves on the upper sleeve half after the rocking lever 303 has run over the guide curve 300, its closing curve 302 to the opening curve 301 in the direction 306 and presses the intermediate textile web 321 by spring force in radius 307 on the upper half of the sleeve.
  • This position is shown in Figure 12.
  • the guide plate 318 with the web section 328 lying thereon is simultaneously brought into the upper region with the aid of the attachment guide 310, corresponding to FIG. 5.
  • In the upper position of the attachment guide 310 there is a brief stoppage of the goods transport while the sleeve 327 is being pivoted.
  • the textile web is held taut in the web section 329 until the pivoting movement stops.
  • the roller 315 which is now extended at the apex of the sleeve 327, now conveys the web 321 standing in FIG. 5 in the web section 329 further in the direction 331 on the sleeve surface downwards in the direction of the feed roller 330.
  • FIGS. 14 and 15 differs from the first exemplary embodiment from FIGS. 1 to 10 primarily in that the pivot point of the support arm 405 is plugged onto the hollow shaft 404 below the feed roller 402, together with the connecting flange 413 , is arranged. Corresponding parts are designated in FIGS. 14 and 15 with the same reference number as in FIGS. 1 to 10, but increased by 400.
  • a turner 503 is seated in a rotationally fixed manner on a rotatable hollow shaft 526.
  • the turner 503 is mounted coaxially to the hollow shaft 526.
  • the turner 503 has a lever arm 504 which is connected in a rotationally fixed manner to the bush 505 and on which a plate holder 513 is pivotally mounted on the lever arm 504 and is pivotally suspended on a cylinder 516.
  • the plate holder 513 extends with its guide plate 512 located thereon across the entire width of the web.
  • the guide rollers 508 and 509 • are rotatably mounted by bolts 510 and 511 to the rocker arm.
  • the plate holder 513 after the severing of the web through to the holder 519, which is attached to the lever arm 504, the cylinder 516, actuated via the piston rod 518 thereof with the pivot arm 517 located thereon, is actuated into the braking position.
  • the flexible web 500 is guided around the sleeve 520 via the feed roller 501.
  • the two guide rollers 508 and 509 rest on the circumference of the sleeve 520 with the interposition of the flexible web 500.
  • the plate holder 513 is simultaneously moved obliquely upward by approximately 90 ° and the braking function of the guide plate 512 is effective, so that the section end 525 remains and the web section 521 between the guide plate 512 and the guide roller 509 in the direction rolls further to the feed roller 501 over the sleeve 520 and at the same time forms a friction surface 524, so that it is drawn in between the flexible web and the sleeve 520 and the web section 525 is also wrapped.
  • the guide plate in the other exemplary embodiments also has a leading edge 343, 443, 543 which extends axially parallel to the associated feed roller.
  • the outside of the guide plate has a guide surface 344, 444, 544 for the new cut of the material web, on which this is spread out flat. det and can also slide.
  • the empty sleeve is wrapped around the material web with a wrap angle of at least 240 °.
  • the front edge of the guide plate has a radial distance 345, 445, 545 to the circumference of the empty sleeve and a radial distance 346, 446, 546 to the circumference of the feed roller, which is 0.3 to 2 times, preferably that 0.7 to 1.3 times the diameter 347, 447, 547 of the roller.
  • the guide plate 318, 422, 512 is directed obliquely downward relative to its guide surface into the gap 348, 448, 548 between the feed roller and the new sleeve.

Landscapes

  • Replacement Of Web Rolls (AREA)

Abstract

Dans un dispositif pour enrouler sur des axes d'enroulement individuels amenés séquentiellement des nappes de tissu issues d'une alimentation, la section de départ (66) d'une nouvelle nappe est maintenue prête sur une plaque de guidage d'où elle glisse dans la fente (67) ouverte vers le haut entre le nouveau manchon vide (50) et un rouleau d'alimentation (1) se trouvant en contact périphérique avec ce dernier, est repliée puis tirée vers l'avant sur le manchon avec le bord du pli qui sert de départ à la nappe de dessous.
EP89907705A 1988-07-09 1989-07-04 Dispositif pour fixer une nappe de tissu souple sur un nouvel axe d'enroulement vide Expired - Lifetime EP0424423B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89907705T ATE95801T1 (de) 1988-07-09 1989-07-04 Vorrichtung zum anwickeln eines neuen leeren wickelkerns zu einer flexiblen warenbahn.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3823311 1988-07-09
DE3823311 1988-07-09
DE3901305 1989-01-18
DE3901305 1989-01-18

Publications (2)

Publication Number Publication Date
EP0424423A1 true EP0424423A1 (fr) 1991-05-02
EP0424423B1 EP0424423B1 (fr) 1993-10-13

Family

ID=25869937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89907705A Expired - Lifetime EP0424423B1 (fr) 1988-07-09 1989-07-04 Dispositif pour fixer une nappe de tissu souple sur un nouvel axe d'enroulement vide

Country Status (5)

Country Link
US (1) US5301890A (fr)
EP (1) EP0424423B1 (fr)
AU (1) AU3855489A (fr)
DE (1) DE58905920D1 (fr)
WO (1) WO1990000513A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321406A2 (fr) * 2001-12-12 2003-06-25 Brückner Trockentechnik GmbH & Co. KG Dispositif pour enrouler une bande

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI91383C (fi) * 1990-10-26 1997-01-22 Valmet Paper Machinery Inc Menetelmä kiinnirullauksessa
US5248107A (en) * 1991-03-05 1993-09-28 Fuji Photo Film Co., Ltd. Web winder for winding up web on core and method of automatically wrapping leading end portion of web around core
DE59601079D1 (de) * 1995-03-29 1999-02-11 Heinrich Schnell Vorrichtung zur aufnahme oder übernahme von stangenlosen wickelkernen
WO1999003615A1 (fr) * 1997-07-15 1999-01-28 Kaiser Aluminum & Chemical Corporation Transfert de bande a grande vitesse dans une installation de traitement de bande en continu
IT1398724B1 (it) * 2010-03-16 2013-03-18 Celli Paper S P A A "macchina e metodo per l'avvolgimento di bobine di materiale nastriforme"
US9056742B2 (en) * 2011-09-19 2015-06-16 The Procter & Gamble Company Process for initiating a web winding process
CN102530615B (zh) * 2012-02-07 2014-11-26 广东金明精机股份有限公司 薄膜收卷装置的换卷机构
US9187285B2 (en) * 2012-11-19 2015-11-17 Valmet Technologies, Inc. Slitter-winder of a fiber production line
CN110877834A (zh) * 2018-09-06 2020-03-13 滁州蓝疆自动化设备科技有限公司 抚料机构及含其的分卷设备
CN113968497B (zh) * 2021-09-10 2024-04-26 浙江鸿燕新材料有限公司 验布收卷装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361264A (en) * 1944-03-06 1944-10-24 Paper Converting Machine Co Rewinding machine
US3049311A (en) * 1959-10-22 1962-08-14 Birch Brothers Inc Apparatus for web winding
US3162393A (en) * 1961-01-17 1964-12-22 Cameron Machine Co Tucking means for a web-winding machine
US3345010A (en) * 1965-08-09 1967-10-03 Frank W Egan & Company Winder roll ejector
US3817467A (en) * 1969-06-11 1974-06-18 J Dambroth Device for continuous winding of continuously running webs of material
DE2037006C3 (de) * 1970-07-25 1986-10-02 Hergeth Hollingsworth GmbH, 4408 Dülmen Vorrichtung zum Zuführen und Einlegen von stangen- oder rohrförmigen Wickelkernen einer Tragwalzen-Wickelmaschine beim Wickelwechsel
US3794256A (en) * 1971-11-17 1974-02-26 Du Pont Process of transferring a traveling web from a pull roll to an empty core
CH567999A5 (en) * 1973-06-15 1975-10-15 Oerlikon Buehrle Ag Winding machine cutting device - has guide attached to knife blade able to cut web against sleeve
DE2425454A1 (de) * 1974-05-25 1975-12-04 Artos Meier Windhorst Kg Mehrwalzenwickler zum kontinuierlichen aufwickeln laufender warenbahnen
US4000863A (en) * 1975-06-13 1977-01-04 Birch Brothers Southern, Inc. Winding apparatus with wrapping arrangement
DD139243B1 (de) * 1978-10-13 1980-12-24 Gotthard Thalheim Vorrichtung zum anwickeln von auf der wickelhuelse getrennten warenbahnen
DE2918821A1 (de) * 1979-05-10 1980-11-20 Heinrich Schnell Vorrichtung zur herstellung von festen teppich-, vlies-, filz- und triko-bobinen
AT373220B (de) * 1979-07-27 1983-12-27 Voith Gmbh J M Doppeltragwalzenroller zum aufwickeln von materialbahnen
JPS59186855A (ja) * 1983-04-04 1984-10-23 Kataoka Kikai Seisakusho:Kk シ−ト巻取り再開装置
US4512528A (en) * 1983-05-02 1985-04-23 Kuhn Klaus G Device for exchanging a winding mandrel
DE8423786U1 (de) * 1984-08-10 1986-02-20 Schnell, Heinrich, 6930 Eberbach Vorrichtung zum Aufwickeln einer kontinuierlich zugeführten, flexiblen Warenbahn
DE3630572A1 (de) * 1986-09-09 1988-03-10 Reifenhaeuser Masch Vorrichtung zum anwickeln einer folienbahn, insbes. einer kunststoffolienbahn
IT1230585B (it) * 1988-10-21 1991-10-28 Alberto Consani S P A D Ribobinatrice funzionante a velocita' costante e relativo dispositivo tagliante.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9000513A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321406A2 (fr) * 2001-12-12 2003-06-25 Brückner Trockentechnik GmbH & Co. KG Dispositif pour enrouler une bande
EP1321406A3 (fr) * 2001-12-12 2004-10-27 Brückner Trockentechnik GmbH & Co. KG Dispositif pour enrouler une bande

Also Published As

Publication number Publication date
AU3855489A (en) 1990-02-05
DE58905920D1 (de) 1993-11-18
WO1990000513A1 (fr) 1990-01-25
EP0424423B1 (fr) 1993-10-13
US5301890A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
DE69520813T2 (de) Verfahren und Vorrichtung zum Wickeln von Kernlosen Rollen
DE69702485T2 (de) Umwickler mit befestiger für das wickelende
DE60012144T2 (de) Bahnwickler mit abtrenn- und übergabevoriichtung
DE3217628A1 (de) Verfahren und vorrichtung zum aufwickeln einer papierbahn oder dergl. werkstoff
DE3423987C2 (fr)
DE3737503A1 (de) Rollenschneidemaschine
DE3424567A1 (de) Grossballenpresse
DE1532830B1 (de) Verfahren und Maschine zum fortlaufenden Herstellen von Tragtaschen
EP0424423A1 (fr) Dispositif pour fixer une nappe de tissu souple sur un nouvel axe d'enroulement vide.
DE2947628A1 (de) Automatische einrichtung zur bildung von geweberollen
DE2720019B2 (de) Nähmaschine zum automatischen Nähen von Werkstücken
DE2844519C2 (fr)
EP0191809B1 (fr) Dispositif d'enroulement d'articles en bandes
DE69708653T2 (de) Quertrennvorrichtung für eine wickelmaschine
DE1461239A1 (de) Vorrichtung zum Schneiden und zum Festlegen einer Schnittkante von bandfoermigem Material
DE3919882A1 (de) Vorrichtung zum anwickeln eines neuen leeren wickelkerns zu einer flexiblen warenbahn
DE1561434C3 (de) Verfahren zum fortlaufenden Herstellen von Tragtaschen oder -beuteln mit zwei Traggriffen und Maschine zum Ausüben des Verfahrens
DE2243504C2 (de) Vorrichtung zum fortlaufenden Aufwickeln einer Folienbahn auf Wickelhülsen
DE3008739A1 (de) Baenderzusammenklebmaschine, insbesondere fuer in kassetten zu ladende magnetbaender
DE19626041A1 (de) Verpackungsvorrichtung und Verpackungsverfahren
EP0805773B1 (fr) Dispositif d'application d'une bande de matiere sur un mandrin d'enroulage
DE583190C (de) Maschine zum Zerteilen eines fortlaufend gefuehrten Schlauches aus Papier
DE1786472B2 (de) Verfahren und Vorrichtung zum Etikettieren von Aufgußbeuteln
DE3204049A1 (de) Verfahren zum trennen einer bahn bei einer wickelmaschine und trennvorrichtung zur durchfuehrung des verfahrens
DE19963959C1 (de) Vorrichtung zum Abrollen und Trennen von Klebeband

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19921104

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931013

REF Corresponds to:

Ref document number: 95801

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58905920

Country of ref document: DE

Date of ref document: 19931118

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940128

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: A. MONTFORTS TEXTILMASCHINEN GMBH & CO

Effective date: 19940709

EAL Se: european patent in force in sweden

Ref document number: 89907705.1

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19950324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990624

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990709

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

BERE Be: lapsed

Owner name: SCHNELL HEINRICH

Effective date: 20000731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

Ref country code: FR

Ref legal event code: D3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030224

Year of fee payment: 14

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040705

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040707

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040708

Year of fee payment: 16

Ref country code: CH

Payment date: 20040708

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050704

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331