EP0417717A2 - Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung - Google Patents

Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0417717A2
EP0417717A2 EP90117454A EP90117454A EP0417717A2 EP 0417717 A2 EP0417717 A2 EP 0417717A2 EP 90117454 A EP90117454 A EP 90117454A EP 90117454 A EP90117454 A EP 90117454A EP 0417717 A2 EP0417717 A2 EP 0417717A2
Authority
EP
European Patent Office
Prior art keywords
polyester
filaments
fibers
polycarbodiimide
carbodiimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90117454A
Other languages
English (en)
French (fr)
Other versions
EP0417717A3 (en
EP0417717B1 (de
Inventor
Gottfried Dr. Wick
Erhard Dr. Krüger
Herbert Zeitler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Manville
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6389507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0417717(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0417717A2 publication Critical patent/EP0417717A2/de
Publication of EP0417717A3 publication Critical patent/EP0417717A3/de
Application granted granted Critical
Publication of EP0417717B1 publication Critical patent/EP0417717B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Definitions

  • the invention relates to synthetic fibers made of polyesters, preferably polyester monofilaments, which have been stabilized against the thermal and in particular hydrolytic degradation by the addition of a combination of mono- and polycarbodiimides, and suitable processes for their production.
  • polyester molecules are cleaved in such a way that, for example in the case of polyethylene terephthalate, the ester bond is cleaved to form a carboxyl end group and a vinyl ester, the vinyl ester then reacting further with the cleavage of acetaldehyde.
  • thermal decomposition is primarily influenced by the level of the reaction temperature, the residence time and possibly by the nature of the polycondensation catalyst.
  • the resistance to hydrolysis of a polyester strongly depends on the number of carboxyl end groups per unit weight. It is known to improve the hydrolysis resistance by closing these carboxyl end groups by chemical reactions. Reactions with aliphatic, aromatic, but also cycloaliphatic mono-, bis- or polycarbodiimides have already been described several times as such a “closure” of the carboxyl end groups.
  • DE-OS 1 770 495 describes stabilized polyethylene glycol terephthalates, which were obtained by adding polycarbodiimides. Because of the slower reaction rate generally observed with polycarbodiimides, it is necessary to ensure that the polycarbodiimide remains in the polyester melt for a longer time. For this reason, polycarbodiimides have already been added in the polycondensation reaction of the polyesters. However, such an approach has a number of disadvantages. For example, due to the long residence time, a large number of by-products arise, and the actual polycondensation reaction of the polyester may also be hindered.
  • the two last-mentioned designs are specifically designed for the production of stabilized polyester filaments, with a slight excess of carbodiimide in the finished thread being recommended in both cases.
  • the excess over the stoichiometrically required amount should be up to 7.5 m Val / kg polyester, while in JA-AS 1-15604 / 89 an excess of 0.005 to 1.5 wt .-% of the monocarbodiimide specifically recommended there.
  • JP-AS 1-15604 / 89 it is of particular importance for the desired thermal and hydrolytic resistance of threads produced therefrom that free carbodiimide is still contained in the finished threads or monofilaments, since otherwise, for example, among the very aggressive conditions in a paper machine such materials would soon be unusable.
  • JP-AS also shows that the use of polycarbodiimides does not correspond to the state of the art that has already been achieved.
  • a disadvantage of all previously known processes which work with an excess of mono- or biscarbodiimides is that, due to the volatility of these products, which cannot be neglected, and in particular that of the thermally and hydrolytically produced cleavage products such as the corresponding isocyanates and aromatic amines, a noticeable burden on operating personnel and the environment must be expected. Due to their special properties, stabilized polyester threads are usually used at higher temperatures and usually in the presence of water vapor. Under these conditions, such a burden can be expected from the excess additions of carbodiimide and secondary products. Because of their volatility, it can be expected that these compounds will diffuse out of the polyester or can also be extracted, for example, by solvents or mineral oils. A sufficient deposit effect is therefore not guaranteed in the long run.
  • the invention therefore relates to polyester fibers and filaments in which the carboxyl end groups are mainly sealed by reaction with mono- and / or biscarbodiimides, but the fibers and filaments according to the invention contain only very small or no amounts of these carbodiimides in free form.
  • the polyester fibers and filaments contain at least 0.05% by weight of at least one polycarbodiimide, this polycarbodiimide should be in free form or with at least some reactive carbodiimide groups.
  • the desired polyester fibers and filaments with significantly improved resistance to thermal and / or hydrolytic attack should contain less than 3 meq / kg carboxyl end groups in the polyester.
  • Fibers and filaments are preferred in which the number of carboxyl end groups has been reduced to less than 2, preferably even less than 1.5 meq / kg polyester.
  • the content of free mono- and / or bis-carbodiimides should preferably be 0 to 20, in particular 0 to 10 ppm (weight) polyester.
  • the fibers and filaments still contain polycarbodiimides or their reaction products with groups which are still reactive. Concentrations of 0.1 to 0.6, in particular 0.3 to 0.5% by weight of polycarbodiimide in the polyester fibers and filaments are preferred.
  • the molecular weight of suitable carbodiimides is between 2000 and 15000, preferably between 5000 and about 10000.
  • polyesters that have a high, medium molecular weight, corresponding to an intrinsic viscosity (intrinsic viscosity) of at least 0.64 [dl / g].
  • the measurements were carried out in dichloroacetic acid at 25 ° C.
  • the process according to the invention for producing the stabilized polyester fibers and filaments claimed consists in the addition of mono- and / or biscarbodiimide in an amount which corresponds at most to the stoichiometrically required amount, calculated from the number of carboxyl groups, and additionally an amount of at least 0. 15% by weight, based on polyester, of a polycarbodiimide.
  • This mixture of polyester and carbodiimides can be spun into threads and monofilaments or staple fibers in a known manner and processed further.
  • the stoichiometric amount is the amount in milliequivalents per unit weight of the polyester which can and should react with the terminal carboxyl groups of the polyester.
  • polyesters to be used should have less than 20, preferably even less than 10 meq carboxyl end groups per kg. The increase due to the melting has already been taken into account in these values. Polyesters and carbodiimides should not be stored for as long as required at high temperatures. It has already been mentioned above that additional carboxyl end groups are formed when polyesters are melted. The carbodiimides used can also decompose at the high temperatures of the polyester melts.
  • melt extruders it is possible to reduce this residence time in the molten state to less than 5, preferably less than 3 minutes.
  • the melting time in the extruder is only limited by the fact that the reactants have to be mixed sufficiently for a perfect reaction between carbodiimide and polyester carboxyl end groups. This can be done by designing the extruders appropriately or, for example, by using static mixers.
  • thread-forming polyesters are suitable for use in accordance with the present invention, ie aliphatic / aromatic polyesters such as, for example, polyethylene terephthalates or polybutylene terephthalates, but also completely aromatic and, for example, halogenated polyesters can be used in the same way.
  • Modules of thread-forming polyesters are preferably diols and dicarboxylic acids or correspondingly constructed oxycarboxylic acids.
  • the main acid component of the polyesters is terephthalic acid, of course, other compounds which are preferably para or trans, such as 2,6-naphthalenedicarboxylic acid or p-hydroxybenzoic acid, are also suitable.
  • Typical suitable dihydric alcohols would be, for example, ethylene glycol, propanediol, 1,4-butanediol but also hydroquinone etc.
  • Preferred aliphatic diols have two to four carbon atoms.
  • Ethylene glycol is particularly preferred.
  • longer-chain diols can be used in proportions of up to approximately 20 mol%, preferably less than 10 mol%, for modifying the properties.
  • polyester fibers and filaments according to the invention which consist predominantly or entirely of polyethylene terephthalate and in particular those which have a molecular weight corresponding to an intrinsic viscosity (intrinsic viscosity) of at least 0.64, preferably at least 0.70 [dl / g].
  • the intrinsic viscosities are determined in dichloroacetic acid at 25 ° C.
  • the filaments or fibers according to the invention are stabilized by adding a combination of a mono- and / or biscarbodiimide on the one hand and a polymeric carbodiimide on the other hand.
  • the use of monocarbodiimides is preferred since they are distinguished in particular by a high reaction rate in the reaction with the carboxyl end groups of the polyester.
  • the carboxyl groups still remaining in the polyesters after the polycondensation are said to be predominantly by reaction with a mono- or Biscarbodiimide be closed.
  • a smaller proportion of the carboxyl end groups will also react with carbodiimide groups of the additionally used polycarbodiimide under these conditions according to the invention.
  • the polyester fibers and filaments according to the invention therefore essentially contain the reaction products with the carbodiimides used instead of the carboxyl end groups.
  • Mono- or bis-carbodiimides which may only occur to a very small extent in free form in the fibers and filaments, are the known aryl, alkyl and cycloalkyl carbodiimides.
  • the diarylcarbodiimides which are preferably used, the aryl nuclei can be unsubstituted.
  • aromatic carbodiimides substituted and thus sterically hindered are preferably used in the 2- or 2,6-position.
  • DE-AS 1 494 009 already lists a large number of monocarbodiimides with steric hindrance to the carbodiimide group.
  • the N, N ′ - (di-o-tolyl) carbodiimide and the N, N ′ - (2,6,2 ′, 6′-tetraisopropyl) diphenylcarbodiimide are particularly suitable.
  • Biscarbodiimides which are suitable according to the invention are described, for example, in DE-OS 20 20 330.
  • suitable polycarbodiimides are compounds in which the carbodiimide units are connected to one another via mono- or disubstituted aryl nuclei, phenyl, naphthylene, diphenylene and the divalent radical derived from diphenyl methane being suitable as aryl nuclei and the substituents according to the type and place of substitution being the substituents of the Mono-diarylcarbodiimides substituted in the aryl nucleus correspond.
  • a particularly preferred polycarbodiimide is the commercially available aromatic polycarbodiimide which is substituted with isopropyl groups in the o-position to the carbodiimide groups, ie in the 2,6- or 2,4,6-position on the benzene nucleus.
  • the polycarbodiimides contained free or bound in the polyester filaments according to the invention preferably have an average molecular weight of from 2000 to 15,000, but in particular from 5,000 to 10,000. As already stated above, these polycarbodiimides react with the carboxyl end groups at a significantly lower rate. If such a reaction occurs, preferably only one group of the carbodiimide will initially react. However, the other groups present in the polymeric carbodiimide lead to the desired depot effect and are the cause of the substantially improved stability of the fibers and filaments obtained.
  • polyester fibers and filaments produced according to the invention can contain conventional additives such as e.g. Contain titanium dioxide as a matting agent or additives, for example, to improve the dyeability or to reduce electrostatic charges.
  • additives or comonomers are of course also suitable which can reduce the flammability of the fibers and filaments produced in a known manner.
  • colored pigments, carbon black or soluble dyes can also be incorporated or already contained in the polyester melt.
  • other polymers such as polyolefins, polyesters, polyamides or polytetrafluoroethylenes, it is possible to achieve completely new textile-technical effects if necessary.
  • cross-linking substances and similar additives can also bring advantages for selected areas of application.
  • polyester fibers and filaments are necessary to produce the polyester fibers and filaments according to the invention.
  • This melting can preferably take place in the melt extruder directly before the actual spinning process.
  • the carbodiimides can be added by adding them to the polyester chips, impregnating the polyester material before the extruder with suitable solutions of the carbodiimides, but also by breading or the like.
  • Another type of additive is in particular for metering in the polymeric carbodiimides, the preparation of master batches in polyester (masterbatches). These concentrates can be used to mix the polyester material to be treated directly upstream of the extruder or, if a twin screw extruder is used, for example, in the extruder. If the polyester material to be spun is not in the form of chips, but is, for example, continuously supplied as a melt, appropriate metering devices for the carbodiimide may have to be provided in the molten form.
  • the amount of the monocarbodiimide to be added depends on the carboxyl end group content of the starting polyester, taking into account the additional carboxyl end groups which are likely to be formed during the melting process. In order to achieve the desired, minimal impact on the environment and the operating personnel, it is preferable to work with substoichiometric amounts of mono- or biscarbodiimides.
  • the amount of mono- or biscarbodiimides added should preferably be less than 90% of the stoichiometrically calculated amount, in particular 50 to 85% of the stoichiometric amount of the mono- or biscarbodiimide corresponding to the carboxyl end group content. Care must be taken to ensure that no losses occur due to premature evaporation of the mono- or biscarbodiimides used.
  • a preferred form of addition for the Polycarbodiimide represents the addition of stock batches which contain a higher percentage, for example 15%, of polycarbodiimide in a conventional polymeric polyester granulate.
  • the residence time of the carbodiimides in the melt should preferably be less than 5 minutes, in particular less than 3 minutes.
  • the amounts of mono- or bis-carbodiimide used react well in quantitative terms, i.e. they can then no longer be detected in free form in the pressed threads.
  • some of the carbodiimide groups of the polycarbodiimides used react, albeit at a significantly lower percentage, but they primarily take on the depot function.
  • polymeric carbodiimides for long-term stabilization, in addition to the lower thermal decomposability and lower volatility of these compounds, there is also a considerably greater degree of safety toxicological. This applies in particular to all the polymer molecules of polycarbodiimides which have already been chemically bonded to the polyester material with at least one carbodiimide group via a carboxyl end group of the polyester.
  • the carbodiimide was mixed with the masterbatch and the polymer material in containers by mechanical shaking and stirring. This mixture was then placed in a single-screw extruder from Reifen Reifenberger, Germany, type S 45 A.
  • the individual extruder zones had temperatures of 282 to 293 ° C., the extruder was operated with a discharge of 500 g of melt / min using conventional spinnerets for monofilaments. Residence time of the mixtures in the molten state 2.5 min.
  • the freshly spun monofilaments were quenched in a water bath after a short air gap and then continuously stretched in two stages. The draw ratio was 1: 4.3 in all tests.
  • the temperature during drawing in the first stage was 80 ° C. and in the second stage 90 ° C., the running speed of the spun threads after leaving the quenching bath was 32 m / min. Thereafter, heat-setting was carried out in a fixing channel at a temperature of 275 ° C. All spun monofilaments had a final diameter of 0.4 mm.
  • a monofilament was again produced under the same conditions as in Example 1, but with 0.6% by weight of the N, N '- (2,6,2', 6'-tetraisopropyl-diphenyl) -carbodiimide alone as a closing agent for the carboxyl groups was used.
  • the amount of 0.6% by weight corresponds to a value of 16.6 meq / kg, so an excess of 10.2 meq / kg polymer was used.
  • a polyester monofilament is obtained which shows very good stability against thermal hydrolytic attack.
  • the free monocarbodiimide content of 222 ppm in the finished products is disadvantageous.
  • Example 1 was also repeated here for comparison purposes. This time, however, an amount of 0.876% by weight of the polycarbodiimide described above was added in the form of a 15% masterbatch. This experiment was carried out in order to check again the information in the previous literature, according to which even with a noticeable excess of polycarbodiimide, presumably due to the low reactivity, a reduced thermal and hydrolytic resistance can be observed, compared to the prior art. This example clearly shows that this is indeed the case. It is interesting that this selected amount of polycarbodiimide already appears to lead to a noticeable crosslinking of the polyester, as can be deduced from the significant increase in the intrinsic viscosity values. In general, such a crosslinking is only permissible within thread-forming polymers if it is strictly reproducible and no spinning difficulties or difficulties in stretching the threads produced therefrom are to be expected.
  • Example 2 The procedure according to Example 1 or Example 2 was repeated, but now amounts of monocarbodiimide were added which result from the stoichiometrically calculated value or a 20% excess of monocarbodiimide.
  • the results obtained here are also shown in the following table.
  • In run 4a exactly the stoichiometrically required amount of monocarbodiimide was added, while in run 4b an excess of 1.3 meq / kg of monocarbodiimide was used.
  • the relative residual strengths found after treatment at 135 ° C. in a steam atmosphere after a period of 80 hours do not correspond to the prior art.
  • Example 1 was repeated, but this time, in addition to monocarbodiimide, a polycarbodiimide was also used according to the invention.
  • the amount of monocarbodiimide added was only 5.5 mVal / kg, ie a deficit of 0.9 mVal / kg, calculated on the stoichiometric requirement, was used. Expressed as a percentage, this is a deficit of 14.1% or only 85.9% of the stoichiometrically required amount was added.
  • the free monocarbodiimide content is within the desired limits under these conditions, but in particular the thermal-hydrolytic resistance within the error limits is readily comparable to the best known compositions to date.
  • Example 5 was repeated as run 5b, but this time with the addition of exactly the equivalent amount of monocarbodiimide and the addition of polycarbodiimide in the concentration range claimed.
  • the relative residual strength found was not influenced by the increase in the monocarbodiimide content. Only a slight increase in the free monocarbodiimide content was observed.
  • Example 5 was reworked, but this time with an excess of monocarbodiimide addition of 1.3 meq / kg, or 20% more than required by the stoichiometry. A corresponding excess has already been used in run 4b. Under the chosen conditions it is shown that this amount already has an undesirably high free monocarbodiimide content of 33 ppm, i.e. thus significantly more than observed in runs 5a and 5b. Such a value should actually no longer be tolerated, since it was shown in the runs of Example 5 that the same relative residual strength, i.e. So the same thermal hydrolytic resistance can also be achieved with a lower content of free monocarbodiimide and thus a lower pollution of the environment.
  • the test results and reaction conditions are summarized in the table below.
  • the monocarbodiimide additive is expressed once as a percentage by weight. Addition, then, given in a second column in mVal / kg. In the next column, the excess or: deficit of monocarbodiimide additive compared to the stoichiometric calculation is given, then in the next column the addition of polycarbodiimide is noted in percent by weight. Further columns show the measured values of the monofilaments obtained, each of which had a diameter of 0.40 mm. First the amount of carboxyl end groups is given in mVal / kg, then the amount of free monocarbodiimide in ppm (weight values). The free carbodiimide content was determined by extraction and gas chromatographic analysis, similar to that described in JP-AS 1-15604-89. Further columns follow in which the relative residual strength and the intrinsic viscosity of the individual thread samples are given.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Paper (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Polyamides (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Beschrieben werden Polyesterfasern und -filamente, die durch Umsetzung mit Carbodiimiden verschlossene Carboxylendgruppen aufweisen, wobei - der Verschluß der Carboxylendgruppen überwiegend durch Umsetzung mit Mono- und/oder Bis-carbodiimiden erfolgte, die in den Fasern und Filamenten in freier Form jedoch nur noch mit weniger als 30 ppm (Gewicht) Polyester enthalten sind, - der Gehalt an freien Carboxylendgruppen weniger als 3 mVal/kg polyester beträgt und - in den Fasern und Filamenten wenigstens noch 0,05 Gewichtsprozent wenigstens eines freien Polycarbodiimids oder eines Reaktionsproduktes mit noch reaktionsfähigen Carbodiimid -Gruppen enthalten sind, sowie ein Verfahren zu deren Herstellung. Die beschriebenen Filamente eignen sich besonders zur Herstellung von Papiermaschinensieben.

Description

  • Gegenstand der Erfindung sind Chemiefasern aus Polyestern, bevorzugt Polyestermonofile, die durch den Zusatz einer Kombination von Mono- und Polycarbodiimiden gegen den thermischen und insbesondere den hydrolytischen Abbau stabilisiert worden sind sowie geeignete Verfahren zu ihrer Herstellung.
  • Es ist bekannt, daß bei einer thermischen Belastung Polyestermoleküle derart gespalten werden, daß beispielsweise bei einem Polyäthylenterephthalat die Aufspaltung der Esterbindung unter Ausbildung einer Carboxylendgruppe und eines Vinylesters erfolgt, wobei der Vinylester dann unter Abspaltung von Acetaldehyd weiterreagiert. Eine derartige thermische Zersetzung wird vor allem durch die Höhe der Reaktionstemperatur, die Verweilzeit und möglicherweise durch die Natur des Polykondensationskatalysators beeinflußt.
  • Im Gegensatz dazu ist die Hydrolysebeständigkeit eines Polyesters stark von der Zahl an Carboxylendgruppen pro Gewichtseinheit anhängig. Es ist bekannt, eine Verbesserung der Hydrolysebständigkeit dadurch zu erreichen, daß diese Carboxylendgruppen durch chemische Umsetzungen verschlossen werden. Als derartiger "Verschluß" der Carboxylendgruppen sind bereits mehrfach Umsetzungen mit aliphatischen, aromatischen, aber auch cycloaliphatischen Mono-, Bis- oder Polycarbodiimiden beschrieben worden.
  • So werden beispielsweise in der DE-OS 1 770 495 stabilisierte Polyäthylenglykolterephthalate beschrieben, die durch Zusatz von Polycarbodiimiden erhalten wurden. Aufgrund der allgemein bei Polycarbodiimiden zu beobachtenden langsameren Reaktionsgeschwindigkeit ist es erforderlich, für eine längere Verweilzeit des Polycarbodiimids in der Polyesterschmelze zu sorgen. Aus diesem Grunde wurden Polycarbodiimide bereits bei der Polykondensationsreaktion der Polyester zugesetzt. Ein derartiges Vorgehen ist jedoch mit einer Reihe von Nachteilen verbunden. Beispielsweise entstehen aufgrund der langen Verweilzeit eine Vielzahl von Nebenprodukten, gegebenenfalls wird auch die eigentliche Polykondensationsreaktion des Polyesters behindert.
  • Im Gegensatz dazu ist bekannt, daß Monocarbodiimide und Biscarbodiimide deutlich schneller mit Polyesterschmelzen reagieren. Aus diesem Grunde ist es möglich, die Zeit für das Vermischen und Reagieren soweit abzukürzen, daß ein Einsatz dieser Materialien gemeinsam mit den aufzuschmelzenden Polyestergranulaten direkt vor dem Spinnextruder erfolgen kann. Als Beispiele für den Einsatz von Biscarbodiimiden für diesen Zweck sei die DE-OS 20 20 330 genannt, für den Einsatz von Monocarbodiimiden die DE-AS 24 58 701 und die JA-AS 1-15604/89.
  • Die beiden letztgenannten Auslegeschriften sind speziell auf die Herstellung von stabilisierten Polyesterfilamenten ausgerichtet, wobei in beiden Fällen ein geringer Überschuß an Carbodiimid im fertigen Faden empfohlen wird. Gemäß DE-AS 24 58 701, Beispiele, soll der Überschuß über der stöchiometrisch benötigten Menge bis zu 7,5 m Val/kg Polyester betragen, während in der JA-AS 1-15604/89 ein Überschuß von 0,005 bis 1,5 Gew.-% an dem dort speziell empfohlenen Monocarbodiimid gefordert wird. Bei der Berechnung der stöchiometrisch notwendigen Menge wird in beiden Fällen berücksichtigt, daß durch das Aufschmelzen des Polymers zum Verspinnen noch einige zusätzliche Carboxylgruppen durch thermischen Abbau entstehen, die ebenfalls verschlossen werden müssen. Wie insbesondere der JP-AS 1-15604/89 entnommen werden kann, ist es für die gewünschte thermische und hydrolytische Beständigkeit daraus erzeugter Fäden von besonderer Bedeutung, daß in den fertigen Fäden bzw. Monofilamenten noch freies Carbodiimid enthalten ist, da andernfalls beispielsweise unter den sehr agressiven Bedingungen in einer Papiermaschine derartige Materialien bald unbrauchbar sein würden. Der JP-AS ist weiterhin zu entnehmen, daß der Einsatz von Polycarbodiimiden nicht dem bereits erreichten Stand der Technik entspricht.
  • Nachteil aller bisher bekannten Verfahren, die mit einem Überschuß an Mono- oder Biscarbodiimiden arbeiten, ist, daß aufgrund der nicht zu vernachlässigenden Flüchtigkeit dieser Produkte und insbesondere der der thermisch und hydrolytisch erzeugten Spaltprodukte wie z.B. der entsprechenden Isocyanate und aromatischen Amine, mit einer merklichen Belastung von Bedienungspersonal und Umwelt gerechnet werden muß. Der Einsatz stabilisierter Polyesterfäden erfolgt aufgrund ihrer besonderen Eigenschaften üblicherweise bei höheren Temperaturen und meist in Gegenwart von Wasserdampf. Unter diesen Bedingungen ist eine derartige Belastung durch die überschüssigen Zusätze an Carbodiimid und Folgeprodukten zu erwarten. Aufgrund ihrer Flüchtigkeit ist zu erwarten, daß diese Verbindungen aus dem Polyester heraus diffundieren oder auch beispielsweise durch Lösungsmittel oder Mineralöle extrahiert werden können. Eine ausreichende Depotwirkung ist also auf Dauer nicht gewährleistet.
  • Bei diesem Stand der Technik bestand immer noch die Aufgabe, eine Stabilisierung von Polyesterfilamenten aufzufinden, bei der einerseits möglichst alle Carboxylendgruppen innerhalb kurzer Verweilzeiten verschlossen werden, auf der anderen Seite aber die Belästigung durch flüchtige Mono- bzw. Bis-Carbodiimide und ihre Folgeprodukte aufgrund der damit verbundenen Nachteile zumindest auf ein Minimum reduziert wird.
  • Überraschend wurde gefunden, daß diese Aufgabe durch den Einsatz von Mischungen bestimmter Carbodiimide gelöst werden kann. Gegenstand der Erfindung sind daher Polyesterfasern und -filamente, bei denen der Verschluß der Carboxylendgruppen überwiegend durch Umsetzung mit Mono- und/oder Biscarbodiimiden erfolgt, die Fasern und Filamente gemäß der Erfindung jedoch nur sehr geringe oder keine Mengen an diesen Carbodiimiden in freier Form enthalten. Dagegen ist es erforderlich, daß die Polyesterfasern und -filamente zumindest noch 0,05 Gew.-% wenigstens eines Polycarbodiimids enthalten, wobei dieses Polycarbodiimid in freier Form oder mit wenigstens noch einigen reaktionsfähigen Carbodiimidgruppen vorliegen sollte. Die gewünschten Polyesterfasern und Filamente mit erheblich verbesserten Beständigkeiten gegenüber thermischen und/oder hydrolytischen Angriff sollten weniger als 3 mVal/kg Carboxylendgruppen im Polyester enthalten. Bevorzugt sind Fasern und Filamente, bei denen die Zahl der Carboxylendgruppen auf weniger als 2, vorzugsweise sogar weniger als 1,5 mVal/kg Polyester reduziert wurde. Der Gehalt an freien Mono- und/oder Bis-Carbodiimiden sollte vorzugsweise 0 bis 20, insbesondere 0 bis 10 ppm (Gewicht) Polyester betragen.
  • Es ist dafür zu sorgen, daß in den Fasern und Filamenten noch Polycarbodiimide oder deren Reaktionsprodukte mit noch reaktionsfähigen Gruppen enthalten sind. Bevorzugt sind Konzentrationen von 0,1 bis 0,6, insbesondere 0,3 bis 0,5 Gew.-% Polycarbodiimid in den Polyesterfasern und -filamenten. Das Molekulargewicht geeigneter Carbodiimide liegt zwischen 2000 und 15000, vorzugsweise zwischen 5000 und etwa 10000.
  • Zur Erzeugung von Hochleistungsfasern ist es erforderlich, Polyester einzusetzen, die in hohes, mittleres Molekulargewicht aufweisen, entsprechend einer Intrinsic-­Viskosität (Grenzviskosität) von mindestens 0,64 [dl/g]. Die Messungen erfolgten in Dichloressigsäure bei 25°C. Das erfindungsgemäße Verfahren zur Herstellung der beanspruchten stabilisierten Polyesterfasern und -filamente besteht in dem Zusatz von Mono- und/oder Biscarbodiimid in einer Menge, die höchstens der stöchiometrisch benötigten Menge, errechnet aus der Zahl der Carboxylgruppen, entspricht und zusätzlich eine Menge von wenigstens 0,15 Gew.-%, bezogen auf Polyester, eines Polycarbodiimides. Diese Mischung aus Polyester und Carbodiimiden kann in bekannter Weise zu Fäden, und Monofilamenten oder Stapelfasern versponnen und weiterverarbeitet. Um die besonders niedrigen Werte an freien Mono- und/oder Biscarbodiimiden zu erreichen, ist es vorteilhaft, weniger als 90 % der stöchiometrisch benötigten Menge, vorzugsweise sogar nur 50 bis 85 % dieser Menge an Mono- und/oder Biscarbodiimid einzusetzen. Unter der stöchiometrischen Menge ist die Menge in Milliäquivalenten pro Gewichtseinheit des Polyesters verstehen, die mit den endständigen Carboxylgruppen des Polyesters reagieren kann und soll. Weiterhin ist bei der Berechnung der stöchiometrisch benötigten Menge zu berücksichtigen, daß üblicherweise bei einer thermischen Belastung, wie sie beispielsweise das Aufschmelzen des Polyesters darstellt, zusätzliche Carboxylendgruppen entstehen. Auch diese, beim Aufschmelzen des eingesetzten Polyestermaterials zusätzlich entstehenden Carboxylendgruppen sind bei der Berechnung der stöchiometrisch benötigten Menge an Carbodiimiden mit zu berücksichtigen.
  • Gemäß der vorliegenden Erfindung ist es vorteilhaft, Polyester als Spinnmaterial einzusetzen, die bereits aufgrund ihrer Herstellung nur eine geringe Menge von Carboxylendgruppen aufweisen. Dies kann beispielsweise durch Einsatz des sogenannten Feststoffkondensationsverfahrens erfolgen. Es wurde gefunden, daß einzusetzende Polyester weniger als 20, vorzugsweise sogar weniger als 10 mVal Carboxylendgruppen pro kg aufweisen sollten. In diesen Werten ist bereits der Zuwachs durch das Aufschmelzen mit berücksichtigt worden. Polyester und Carbodiimide sind bei hohen Temperaturen nicht beliebig lange zu lagern. Bereits weiter oben wurde darauf hingewiesen, daß beim Aufschmelzen von Polyestern zusätzliche Carboxylendgruppen entstehen. Auch die eingesetzten Carbodiimide können sich bei den hohen Temperaturen der Polyesterschmelzen zersetzen. Es ist daher wünschenswert, die Kontakt- bzw. Reaktionszeit der Carbodiimidzusätze mit den geschmolzenen Polyestern möglichst zu begrenzen. Bei Einsatz von Schmelzextrudern ist es möglich, diese Verweilszeit im geschmolzenen Zustand auf weniger als 5, vorzugsweise weniger als 3 Minuten herabzusetzen. Eine Begrenzung der Aufschmelzzeit im Extruder ist nur dadurch gegeben, daß für eine einwandfreie Reaktion zwischen Carbodiimid und Polyester-­Carboxylendgruppen eine ausreichende Durchmischung der Reaktanten erfolgen muß. Dies kann durch entsprechende Ausgestaltung der Extruder oder beispielsweise durch Einsatz von statischen Mischern erfolgen.
  • Im Prinzip sind für den Einsatz gemäß der vorliegenden Erfindung alle fadenbildenden Polyester geeignet, d.h. aliphatisch/aromatische Polyester wie z.B. Polyäthylenterephthalate oder Polybutylenterephthalate, aber auch vollständig aromatische und beispielsweise halogenierte Polyester sind in gleicher Weise einsetzbar. Bausteine von fadenbildenden Polyestern sind vorzugsweise Diole und Dicarbonsäuren, bzw. entsprechend aufgebaute Oxycarbonsäuren. Hauptsäurebestandteil der Polyester ist die Terephthalsäure, als geeignet sind natürlich auch andere vorzugsweise para- oder trans-ständige Verbindungen wie z.B. 2,6-Naphthalindicarbonsäure aber auch p-Hydroxybenzoesäure zu nennen. Typische geeignete zweiwertige Alkohole wären beispielsweise Ethylenglykol, Propandiol, 1,4-Butandiol aber auch Hydrochinon usw. Bevorzugte aliphatische Diole haben zwei bis vier C-Atome. Besonders bevorzugt ist Ethylenglykol. Längerkettige Diole können aber in Anteilen bis zu ca. 20 Mol-%, vorzugsweise weniger als 10 Mol-% zur Modifizierung der Eigenschaften eingesetzt werden.
  • Für besondere technische Aufgaben haben sich jedoch besonders hochmolekulare Polymerisate aus reinem Polyäthylenterephthalat und deren Copolymerisate mit geringen Zusätzen an Comonomeren bewährt, sofern die Temperaturbelastung den Eigenschaften von Polyäthylenterephthalat überhaupt gerecht wird. Andernfalls ist auf geeignete bekannt vollaromatische Polyester auszuweichen.
  • Besonders bevorzugt sind demzufolge erfindungsgemäße Polyesterfasern und -filamente, die überwiegend oder vollständig aus Polyäthylenterephthalat bestehen und insbesondere solche, die ein Molekulargewicht entsprechend einer Intrinsic-Viskosität (Grenzviskosität) von mindestens 0,64, vorzugsweise mindestens 0,70 [dl/g] aufweisen. Die Intrinsic-Viskositäten werden in Dichloressigsäure bei 25°C bestimmt. Die Stabilisierung der erfindungsgemäßen Filamente bzw. Fasern wird durch Zugabe einer Kombination von einem Mono- und/oder Biscarbodiimid auf der einen Seite und einem polymeren Carbodiimid auf der anderen Seite erreicht. Bevorzugt ist der Einsatz von Monocarbodiimiden, da sie sich insbesondere durch eine hohe Reaktionsgeschwindigkeit bei der Umsetzung mit den Carboxylendgruppen des Polyesters auszeichnen. Sie können jedoch, falls gewünscht, teilweise oder vollständig durch entsprechende Mengen an Biscarbodiimiden ersetzt werden, um die bei diesen Verbindungen schon bemerkbare geringere Flüchtigkeit auszunutzen. In diesem Fall ist jedoch dafür Sorge zu tragen, daß die Kontaktzeit ausreichend lang gewählt wird, um auch bei Einsatz von Biscarbodiimiden beim Mischen und Einschmelzen im Schmelzextruder eine ausreichende Reaktion sicherzustellen.
  • Die in den Polyestern nach der Polykondensation noch verbliebenen Carboxylgruppen sollen gemäß dem erfindungsgemäßen Verfahren überwiegend durch Reaktion mit einem Mono- bzw. Biscarbodiimid verschlossen werden. Ein geringerer Anteil der Carboxylendgruppen wird unter diesen erfindungsgemäßen Bedingungen auch mit Carbodiimidgruppen des zusätzlich eingesetzten Polycarbodiimids reagieren.
  • Die erfindungsgemäßen Polyesterfasern und Filamente enthalten daher anstelle der Carboxylendgruppen im wesentlichen deren Reaktionsprodukte mit den eingesetzten Carbodiimiden. Mono- bzw. Bis-Carbodiimide, die nur, wenn überhaupt, in sehr geringem Maße in freier Form in den Fasern und Filamenten vorkommen dürfen, sind die bekannten, Aryl-, Alkyl- und Cycloalkyl-Carbodiimide. Bei den Diarylcarbodiimiden, die bevorzugt eingesetzt werden, können die Arylkerne unsubstituiert sein. Vorzugsweise werden jedoch in 2- oder 2,6-Stellung substituierte und damit sterisch gehinderte aromatische Carbodiimide eingesetzt. Bereits in der DE-AS 1 494 009 wird eine Vielzahl von Monocarbodiimiden mit sterischer Behinderung der Carbodiimidgruppe aufgezählt. Besonders geeignet sind beispielsweise von den Monocarbodiimiden das N,N′-(Di-o-­tolyl)-carbodiimid und das N,N′-(2,6,2′,6′-Tetraisopropyl)-­diphenyl-carbodiimid. Biscarbodiimide, die gemäß der Erfindung geeignet sind, werden beispielsweise in der DE-OS 20 20 330 beschrieben.
  • Als Polycarbodiimide sind erfindungsgemäß Verbindungen geeignet, bei denen die Carbodiimideinheiten über ein- oder zweifach substituierter Arylkerne miteinander verbunden sind, wobei als Arylkerne Phenylen, Naphthylen, Diphenylen und der vom Diphenylmethan abgeleitete zweiwertige Rest in Betracht kommen und die Substituenten nach Art und Substitutionsort den Substituenten der im Arylkern substituierten Mono-Diarylcarbodiimiden entsprechen.
  • Ein besonders bevorzugtes Polycarbodiimid ist das handelsübliche aromatische Polycarbodiimid, das in o-Stellung zu den Carbodiimidgruppen, d.h. in 2,6- oder 2,4,6-Stellung am Benzolkern mit Isopropylgruppen substituiert ist.
  • Die in den erfindungsgemäßen Polyesterfilamenten frei oder gebunden enthaltenen Polycarbodiimide haben vorzugsweise ein mittleres Molekulargewicht von 2000 bis 15 000, insbesondere jedoch von 5000 bis 10 000. Wie bereits oben ausgeführt, reagieren diese Polycarbodiimide mit deutlich geringerer Geschwindigkeit mit den Carboxylendgruppen. Wenn es zu einer solchen Reaktion kommt, wird vorzugsweise zunächst nur eine Gruppe des Carbodiimids reagieren. Die weiteren im polymeren Carbodiimid vorhandenen Gruppen führen jedoch zu der gewünschten Depotwirkung und sind die Ursache für die wesentlich verbesserte Stabilität der erhaltenen Fasern und Filamente. Für diese gewünschte thermische und insbesondere hydrolytische Beständigkeit der geformten Polyestermassen ist es daher entscheidend, daß die in ihnen vorhandenen polymeren Carbodiimide noch nicht völlig umgesetzt wurden, sondern noch freie Carbodiimidgruppen zum Abfangen weiterer Carboxylendgruppen aufweisen.
  • Die erzeugten erfindungsgemäßen Polyesterfasern und Filamente können übliche Zusätze wie z.B. Titandioxyd als Mattierungsmittel bzw. Zusätze beispielsweise für Verbesserung der Anfärbbarkeit oder zur Verminderung von elektrostatischen Aufladungen enthalten. In gleicher Weise sind natürlich auch Zusätze oder Comonomere geeignet, die die Brennbarkeit der erzeugten Fasern und Filamente in bekannter Weise herabsetzen können.
  • Es können auch z.B. Buntpigmente, Ruß oder lösliche Farbstoffe in der Polyesterschmelze eingearbeitet werden oder bereits enthalten sein. Durch Zumischen anderer Polymerer, wie z.B. Polyolefinen, Polyestern, Polyamiden oder Polytetrafluorethylenen ist es möglich, gegebenenfalls ganz neue textil-technische Effekte zu erzielen. Auch der Zusatz vernetzend wirkender Substanzen und ähnlicher Zusätze kann für ausgewählte Anwendungsgebiete Vorteile bringen.
  • Wie bereits oben ausgeführt ist zur Herstellung der erfindungsgemäßen Polyesterfasern und -filamente ein Vermischen und Aufschmelzen erforderlich. Vorzugsweise kann dieses Aufschmelzen im Schmelzextruder direkt vor dem eigentlichen Spinnvorgang erfolgen. Der Zusatz der Carbodiimide kann durch Beimischen zu den Polyesterchips, Imprägnieren des Polyestermaterials vor dem Extruder mit geeigneten Lösungen der Carbodiimide, aber auch durch Panieren oder ähnlichem erfolgen. Eine weitere Art des Zusatzes ist insbesondere für die Zudosierung der polymeren Carbodiimide, die Herstellung von Stammansätzen in Polyester (Masterbatches). Mit diesen Konzentraten kann das zu behandelnde Polyestermaterial direkt vor dem Extruder oder, bei Verwendung beispielsweise eines Doppelschneckenextruders, auch im Extruder vermischt werden. Falls das zu verspinnende Polyestermaterial nicht in Chipsform vorliegt, sondern beispielsweise laufend als Schmelze angeliefert wird, müssen entsprechende Dosiervorrichtungen für das Carbodiimid gegebenenfalls in aufgeschmolzener Form, vorgesehen werden.
  • Die Menge des zuzusetzenden Monocarbodiimids richtet sich nach dem Carboxylendgruppengehalt des Ausgangspolyesters unter Berücksichtigung der voraussichtlich bei dem Aufschmelzvorgang noch entstehenden zusätzlichen Carboxylendgruppen. Um die gewünschte, möglichst geringe Belastung der Umwelt und des Bedienungspersonals zu erreichen, ist vorzugsweise mit unterstöchiometrischen Mengen an Mono- bzw. Biscarbodiimiden zu arbeiten. Vorzugsweise sollte die Menge an zugesetzten Mono- bzw. Biscarbodiimiden weniger als 90 % der stöchiometrisch errechneten Menge, insbesondere 50 bis 85 % der dem Carboxylendgruppengehalt entsprechenden stöchiometrischen Menge des Mono- bzw. Biscarbodiimids sein. Hierbei ist darauf zu achten, daß nicht Verluste durch ein vorzeitiges Verdampfen der eingesetzten Mono- bzw. Biscarbodiimide auftreten. Eine bevorzugte Zugabeform für das Polycarbodiimid stellt die Zugabe von Stammansätzen dar, die einen höheren Prozentsatz, z.B. 15 %, an Polycarbodiimid in einem üblichen polymeren Polyestergranulat enthalten.
  • Besonders hingewiesen werden soll noch einmal auf die Gefahr von Nebenreaktionen, die bei der thermischen Belastung durch den gemeinsamen Schmelzvorgang sowohl für den Polyester als auch für die eingesetzten Carbodiimide bestehen. Aus diesem Grunde sollte die Verweilzeit der Carbodiimide in der Schmelze vorzugsweise weniger als 5 min, insbesondere weniger als 3 min betragen. Unter diesen Umständen reagieren bei guter Durchmischung die eingesetzten Mengen an Mono- bzw. Biscarbodiimid weitgehend quantitativ, d.h. sie sind anschließend nicht mehr in freier Form in den ausgepreßten Fäden nachweisbar. Darüberhinaus reagiert zu einem, wenn auch deutlich geringeren Prozentsatz, bereits ein Teil der Carbodiimidgruppen der eingesetzten Polycarbodiimide, die jedoch vor allen Dingen die Depotfunktion übernehmen. Durch diese Maßnahme ist es erstmals möglich geworden, wirksam gegen thermischen und insbesondere hydrolytischen Abbau geschützte Polyesterfasern und -filamente zu erzeugen, die praktisch kein freies Mono- bzw. Biscarbodiimid und auch nur sehr geringe Mengen an deren Spalt- und Folgeprodukten aufweisen, die zu einer Belästigung oder Schädigung der Umwelt führen können. Durch die Anwesenheit von polymeren Carbodiimiden wird erreicht, daß die gewünschte Langzeitstabilisierung der so behandelten Polyestermaterialien gewährleistet ist. Es ist überraschend, daß diese Funktion durch die Polycarbodiimide zuverlässig erfolgt, obwohl Stabilisierungsversuche unter alleinigem Einsatz dieser Verbindungen nicht zu der geforderten Stabilisierung geführt haben.
  • Durch Einsatz von polymeren Carbodiimiden für die Langzeitstabilisierung ergibt sich neben der geringeren thermischen Zersetzbarkeit und geringeren Flüchtigkeit dieser Verbindungen auch eine wesentlich größere Sicherheit in toxikologischer Hinsicht. Dies gilt insbesondere für alle die Polymermoleküle von Polycarbodiimiden, die bereits wenigstens mit einer Carbodiimidgruppe über eine Carboxylendgruppe des Polyesters mit dem Polyestermaterial chemisch verbunden wurden.
  • Beispiele
  • Die folgenden Beispiele sollen zur Erläuterung der Erfindung dienen. Bei allen Beispielen wurde ein getrocknetes, feststoffkondensiertes Polyestergranulat mit einem mittleren Carboxylendgruppengehalt von 5 mVal/kg Polymerisat eingesetzt. Als monomeres Carbodiimid diente N,N′-2,2′,6,6′-Tetraisopropyl-­diphenyl-carbodiimid. Das in den nachfolgend beschriebenen Versuchen eingesetzte polymere Carbodiimid war ein aromatisches Polycarbodiimid, das jeweils in o-Stellung, d.h. in 2,6-­oder 2,4,6-Stellung, mit Isopropylgruppen substituierte Benzolkerne aufwies. Es wurde nicht im reinen Zustand, sondern als Masterbatch (15 % Polycarbodiimid in Polyethylenterephthalat) eingesetzt (Handelsprodukt ®stabaxol KE 7646 der Rhein-Chemie, Rheinhausen, Deutschland).
  • Das Vermischen des Carbodiimides mit dem Masterbatch und dem Polymermaterial erfolgte in Behältern durch mechanisches Schütteln und Rühren. Anschließend wurde diese Mischung einem Einschneckenextruder der Fa. Reifenhäuser, Deutschland, Typ S 45 A vorgelegt. Die einzelnen Extruderzonen wiesen Temperaturen von 282 bis 293°C auf, der Extruder wurde mit einem Austrag von 500 g Schmelze/min gefahren unter Verwendung von üblichen Spinndüsen für Monofilamente. Verweilzeit der Mischungen im geschmolzenen Zustand 2,5 min. Die frisch ausgesponnenen Monofilamente wurden nach einer kurzen Luftstrecke in einem Wasserbad abgeschreckt und anschließend kontinuierlich zweistufig verstreckt. Das Verstreckungsverhältnis lag bei allen Versuchen bei 1:4,3.
  • Die Temperatur bei der Verstreckung in der ersten Stufe betrug 80°C und in der zweiten Stufe 90°C, die Laufgeschwindigkeit der Spinnfäden nach Verlassen des Abschreckbades betrug 32 m/min. Im Anschluß wurde eine Thermofixierung in einem Fixierkanal bei einer Temperatur von 275°C durchgeführt.Sämtliche ausgesponnene Monofilamente wiesen einen Enddurchmesser von 0,4 mm auf. Als Stabilitätstest wurde die feinheitsbezogene Höchstzugkraft (= Reißfestigkeit) an den erhaltenen Monofilamenten einmal direkt nach der Erzeugung und ein zweites Mal nach Lagerung der Monofile bei 135°C in einer Wasserdampfatmosphäre nach 80 Stunden geprüft. Danach wurde erneut die Reißfestigkeit bestimmt und der Quotient aus Restreißfestigkeit und ursprünglicher Reißfestigkeit errechnet. Er ist ein Maß für die erreichte Stabilisierungswirkung der Zusätze.
  • Beispiel 1
  • In diesem Beispiel wurden Monofile ohne jeglichen Zusatz ausgesponnen. Die erhaltenen Proben wiesen natürlich kein freies Monocarbodiimid auf, der Carboxylendgruppengehalt betrug 6,4 mVal/kg Polymer. In der nachfolgenden Tabelle sind die Versuchsbedingungen und die erhaltenen Ergebnisse zusammengefaßt worden.
  • Beispiel 2
  • Auch dieses Beispiel wurde zum Vergleich ausgefertigt. Unter den gleichen Bedingungen wie in Beispiel 1 wurde wiederum ein Monofil hergestellt, wobei jedoch 0,6 Gew.-% des N,N′-(2,6,2′,6′-Tetraisopropyl-diphenyl)-carbodiimid allein als Verschlußmittel für die Carboxylgruppen eingesetzt wurde. Die Menge von 0,6 Gew.-% entspricht einen Wert von 16,6 mVal/kg, es wurde also mit einem Überschuß von 10,2 mVal/kg Polymer gearbeitet. Unter diesen Bedingungen wird ein Polyestermonofil erhalten, das eine sehr gute Stabilität gegenüber thermisch hydrolytischen Angriff zeigt. Nachteilig ist jedoch der Gehalt an freiem Monocarbodiimid in Höhe von 222 ppm in den fertigen Produkten.
  • Beispiel 3
  • Auch hier wurde zu Vergleichszwecken das Beispiel 1 wiederholt. Diesmal wurde jedoch eine Menge von 0,876 Gew.-% des oben beschriebenen Polycarbodiimids zugesetzt und zwar in Form eines 15 %igen Masterbatches. Dieser Versuch wurde durchgeführt, um noch einmal die Angaben der Vorliteratur zu überprüfen, nach denen selbst bei einem merklichen Überschuß von Polycarbodiimid, vermutlich aufgrund der geringen Reaktionsfähigkeit, eine gegenüber dem Stand der Technik herabgesetzte thermische und hydrolytische Beständigkeit zu beobachten ist. Dieses Beispiel zeigt deutlich, daß dies tatsächlich der Fall ist. Interessant ist, daß diese gewählte Menge an Polycarbodiimid bereits zu einer merklichen Vernetzung des Polyesters zu führen scheint, wie aus dem deutlichen Anstieg der Intrinsic-Viskositäts-Werte abgeleitet werden kann. Im allgemeinen ist eine derartige Vernetzung bei fadenbildenden Polymeren nur innerhalb enger Grenzen zulässig, wenn sie streng reproduzierbar erfolgt und keine Spinnschwierigkeiten oder Schwierigkeiten bei der Verstreckung der daraus hergestellten Fäden zu erwarten sind.
  • Beispiel 4
  • Das Verfahren gemäß Beispiel 1 bzw. Beispiel 2 wurde wiederholt, wobei jetzt jedoch Mengen an Monocarbodiimid zugesetzt wurden, die sich aus dem stöchiometrisch berechneten Wert bzw. einem 20 %igen Überschuß an Monocarbodiimid ergeben. Auch die hier erhaltenen Ergebnisse sind in der folgenden Tabelle aufgeführt. In einem Lauf 4a wurde genau die stöchiometrisch benötigte Menge an Monocarbodiimid zugegeben, während in einem Lauf 4b ein Überschuß von 1,3 mVal/kg an Monocarbodiimid eingesetzt wurde. Wie in der Tabelle gezeigt, entsprechen die gefundenen relativen Restfestigkeiten nach einer Behandlung bei 135°C in Wasserdampfatmosphäre nach einer Zeit von 80 Stunden nicht dem Stand der Technik. Ein Überschuß von ca. 20 %, wie er beispielsweise auch bereits den Zahlenangaben der DE-AS 24 58 701 entnommen werden kann, führt ebenfalls noch nicht zu den hohen hydrolytischen Beständigkeiten, wie sie gemäß dem Stand der Technik beispielsweise gemäß Beispiel 2 erreicht werden können. Das bedeutet jedoch, daß gemäß dem Stand der Technik nur mit einem erheblichen Überschuß an Monocarbodiimid eine besonders gute relative Restfestigkeit nach thermisch-hydrolytischer Belastung erzielt werden konnte. Das ist zwangsläufig mit einem großen Gehalt an freiem Monocarbodiimid verbunden.
  • Beispiel 5
  • Beispiel 1 wurde wiederholt, diesmal jedoch erfindungsgemäß neben Monocarbodiimid auch ein Polycarbodiimid eingesetzt. In einem Lauf 5a betrug die Menge an zugesetztem Monocarbodiimid nur 5,5 mVal/kg, d.h. es wurde mit einem Unterschuß von 0,9 mVal/kg, berechnet auf den stöchiometrischen Bedarf, gearbeitet. Prozentual ausgedrückt ist dies ein Unterschuß von 14,1 % bzw. es wurden nur 85,9 % der stöchiometrisch benötigten Menge zudosiert. Wie aus der Tabelle zu ersehen, ist unter diesen Bedingungen der Gehalt an freiem Monocarbodiimid in den gewünschten Grenzen, insbesondere aber ist die thermisch-hydrolytische Beständigkeit innerhalb der Fehlergrenzen ohne weiteres vergleichbar mit den bisher bekannten besten Kompositionen. Die gefundenen Abweichungen sind nicht signifikant von dem Wert des Beispiels 2, bzw. des Beispiels 6 verschieden. Das Beispiel 5 wurde als Lauf 5b wiederholt, diesmal jedoch mit einem Zusatz von genau der äquivalenten Menge an Monocarbodiimid und einem Zusatz von Polycarbodiimid in dem beanspruchten Konzentrationsbereich. Die gefundene relative Restfestigkeit ist durch den Anstieg des Gehaltes an Monocarbodiimid nicht beeinflußt worden. Einzig und allein ein geringer Zunahme des Gehaltes an freiem Monocarbodiimid war zu beobachten.
  • Beispiel 6
  • Das Beispiel 5 wurde nachgearbeitet, diesmal jedoch mit einem Überschuß an Monocarbodiimidzusatz von 1,3 mVal/kg, bzw. 20 % mehr als nach der Stöchiometrie benötigt. Ein entsprechender Überschuß wurde bereits in dem Lauf 4b eingesetzt. Unter den gewählten Bedingungen zeigt sich, daß bereits diese Menge einen unerwünscht hohen Gehalt an freiem Monocarbodiimid von 33 ppm aufweist, d.h. also deutlich mehr als in den Läufen 5a und 5b beobachtet. Ein derartiger Wert sollte eigentlich schon nicht mehr toleriert werden, da in den Läufen des Beispiels 5 gezeigt wurde, daß die gleiche relative Restfestigkeit, d.h. also die gleiche thermisch-­hydrolytische Beständigkeit auch mit einem geringeren Gehalt an freiem Monocarbodiimid und damit einer geringeren Belastung der Umwelt erzielt werden kann. Die Überschreitung des gesetzten Grenzwertes von 30 ppm Gehalt an freiem Monocarbodiimid ist hier natürlich nur geringfügig. Ein Überschuß von 1,3 mVal/kg an Monocarbodiimid führt unter den gewählten Versuchsbedingungen nur zu einer Überschreitung des Gehaltes an freiem Monocarbodiimid von 10 % über die gesetzten Grenze. Aus dieser geringfügigen Überschreitung kann daher die zusätzliche Lehre entnommen werden, daß bei den gewählten Versuchsbedingungen offensichtlich eine geringe Menge an Mono-Carbodiimid zersetzt wurde oder sich verflüchtigt hat. Es ist also im Einzelfall auch eine geringfügige Überschreitung der stöchiometrischen Menge zulässig, um doch noch in den gewählten Grenzen von maximal ppm freies Monocarbodiimid/kg Polymer zu bleiben.
  • Bemerkenswert ist, daß auch hier durch die zusätzliche Gabe von Polycarbodiimid die relative Restfestigkeit verglichen mit dem Beispiel 4b noch deutlich verbessert werden konnte.
  • In der nachfolgenden Tabelle sind die Versuchsergebnisse und Reaktionsbedingungen zusammengestellt. Aufgeführt wird der Monocarbodiimidzusatz einmal ausgedrückt als Gewichtsprozent-­ Zusatz, dann, in einer zweiten Spalte angegeben in mVal/kg. In der nächsten Spalte ist der Überschuß bzw: Unterschuß an Monocarbodiimidzusatz gegenüber der stöchiometrischen Berechnung angegeben, danach in der nächsten Spalte wird der Zusatz an Polycarbodiimid in Gewichtsprozent vermerkt. Weitere Spalten zeigen die Meßwerte der erhaltenen Monofilamente, die jeweils einen Durchmesser von 0,40 mm aufwiesen. Zunächst wird die Menge an Carboxylendgruppen in mVal/kg angegeben, danach die Menge an freiem Monocarbodiimid in ppm (Gewichtswerte). Die Bestimmung des Gehaltes an freiem Carbodiimid erfolgte durch Extraktion und gaschromatographische Analyse, ähnlich wie in der JP-AS 1-15604-89 beschrieben. Es folgen weitere Spalten, in denen die relative Restfestigkeit und die Intrinsic-Viskosität der einzelnen Fadenproben angegeben werden.
    Figure imgb0001

Claims (17)

1. Polyesterfasern und -filamente, die durch Umsetzung mit Carbodiimiden verschlossene Carboxylendgruppen aufweisen, dadurch gekennzeichnet, daß
. der Verschluß der Carboxylendgruppen überwiegend durch Umsetzung mit Mono- und/oder Bis-carbodiimiden erfolgte, die in den Fasern und Filamenten in freier Form jedoch nur noch mit weniger als 30 ppm (Gewicht) Polyester enthalten sind,
. der Gehalt an freien Carboxylendgruppen weniger als 3 mVal/kg Polyester beträgt und
. in den Fasern und Filamenten wenigstens noch 0,05 Gewichtsprozent wenigstens eines freien Polycarbodiimids oder eines Reaktionsproduktes mit noch reaktionsfähigen Carbodiimid-Gruppen enthalten sind.
2. Fasern und Filamente nach Anspruch 1, dadurch gekennzeichnet, daß der Gehalt an freien Mono- und/oder Bis-carbodiimiden 0 bis 20, vorzugsweise 0 bis 10 ppm (Gewicht) Polyester beträgt.
3. Fasern und Filamente nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Menge der freien Carboxylendgruppen weniger als 2, vorzugsweise weniger als 1,5 mVal/kg Polyester beträgt.
4. Fasern und Filamente nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie einen Gehalt an wenigstens einem freien Polycarbodiimid oder einem Reaktionsprodukt mit noch reaktionsfähigen Carbodiimid-Gruppen von 0,1 bis 0,6, vorzugsweise 0,3 bis 0,5 Gewichtsprozent aufweisen.
5. Fasern und Filamente nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der fadenbildende Polyester ein mittleres Molekulargewicht entsprechend einer Intrinsic-Viskosität von mindestens 0.64 [dl/g] gemessen in Dichloressigsäure bei 25°C, besitzt.
6. Fasern und Filamente nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das oder die eingesetzte(n) Polycarbodiimid(e) ein mittleres Molekulargewicht zwischen etwa 2000 bis 15 000, vorzugsweise 5000 bis 10 000 aufweisen.
7. Verfahren zur Herstellung von mit Carbodiimiden stabilisierten Polyesterfasern und -filamenten, dadurch gekennzeichnet, daß dem Polyester vor dem Verspinnen höchstens die stöchiometrisch benötigte Menge eines Mono- und/oder Bis-carbodiimids, sowie mindestens 0,15 Gew.-%, bezogen auf Polyester, wenigstens eines Polycarbodiimids zugesetzt und dann in bekannter Weise zu Fäden ausgesponnen werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß weniger als 90 % der stöchiometrisch benötigten Menge, vorzugsweise nur 50 bis 85 Prozent dieser Menge als Mono- und/oder Biscarbodiimid zugegeben werden.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der zu verspinnende Polyester ohne Carbodiimidzusatz nach dem Verspinnen Carboxylgruppen aufweist, die einer stöchiometrisch benötigten Menge an Mono- oder Biscarbodiimid von weniger als 20, vorzugsweise weniger als 10 mVal/kg Polyester entsprechen.
10. Verfahren nach wenigstens einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Kontaktzeit von geschmolzenem Polyester und Carbodiimidzusätzen weniger als 5, vorzugsweise weniger als 3 Minuten beträgt.
11. Verfahren nach wenigstens einem der Ansprüche 7 bis 10 dadurch gekennzeichnet, daß der zu verarbeitende Polyester ein mittleres Molekulargewicht entsprechend einer Intrinsic- Viskosität von mindestens 0,64 [dl/g] gemessen in Dichloressigsäure bei 25°C, besitzt.
12. Verfahren nach wenigstens einem der Ansprüche 7 bis 11 dadurch gekennzeichnet, daß das Polycarbodiimid als Konzentrat in einem Polymeren, bevorzugt in Polyester, (Masterbatch) dem zu verarbeitenden Polyester zugegeben wird.
13. Verfahren nach wenigstens einem der Ansprüche 7 bis 12 dadurch gekennzeichnet, daß die Carbodiimide unmittelbar vor dem Verspinnen des Polyesters vor dem oder im Extruder zugegeben werden.
14. Verfahren nach wenigstens einem der Ansprüche 7 bis 13 dadurch gekennzeichnet, daß als Monocarbodiimid das N,N′-­2,6,2′,6′-Tetra-isopropyl-diphenyl-carbodiimid Verwendung findet.
15. Verfahren nach wenigstens einem der Ansprüche 7 bis 14 dadurch gekennzeichnet, daß als Polycarbodiimid ein aromatisches Polycarbodiimid eingesetzt wird, das in o-Stellung zu den Carbodiimid-Gruppierungen, d.h. in 2,6- oder 2,4,6-Stellung, mit Isopropylgruppen am Benzolkern substituiert ist.
16. Filamente nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es Monofile mit rundem oder profiliertem Querschnitt sind, die einen - gegebenenfalls äquivalenten - Durchmesser von 0,1 bis 2,0 mm aufweisen.
17. Verwendung der Filamente gemäß einem der Patentansprüche 1 bis 6 und 16 zur Herstellung von Papiermaschinensieben.
EP90117454A 1989-09-15 1990-09-11 Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung Expired - Lifetime EP0417717B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3930845A DE3930845A1 (de) 1989-09-15 1989-09-15 Mit carbodiimiden modifizierte polyesterfasern und verfahren zu ihrer herstellung
DE3930845 1989-09-15

Publications (3)

Publication Number Publication Date
EP0417717A2 true EP0417717A2 (de) 1991-03-20
EP0417717A3 EP0417717A3 (en) 1992-01-22
EP0417717B1 EP0417717B1 (de) 1996-04-10

Family

ID=6389507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90117454A Expired - Lifetime EP0417717B1 (de) 1989-09-15 1990-09-11 Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung

Country Status (15)

Country Link
US (1) US5246992A (de)
EP (1) EP0417717B1 (de)
JP (1) JP2925280B2 (de)
KR (1) KR0163429B1 (de)
AT (1) ATE136594T1 (de)
BR (1) BR9004603A (de)
CA (1) CA2025418C (de)
DD (1) DD297670A5 (de)
DE (2) DE3930845A1 (de)
ES (1) ES2087105T3 (de)
FI (1) FI103812B (de)
IE (1) IE72202B1 (de)
MX (1) MX174567B (de)
PT (1) PT95318B (de)
RU (1) RU2055950C1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503421A1 (de) * 1991-03-14 1992-09-16 Hoechst Aktiengesellschaft Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung
EP0779382A1 (de) 1995-12-15 1997-06-18 Hoechst Trevira GmbH & Co. KG Hydrolysebeständige Polyesterfasern und -filamente, Masterbatches und Verfahren zur Herstellung von Polyesterfasern und -filamenten
US6147128A (en) * 1998-05-14 2000-11-14 Astenjohnson, Inc. Industrial fabric and yarn made from recycled polyester
DE4307392C2 (de) * 1993-03-10 2001-03-29 Klaus Bloch Monofil mit erhöhter Hydrolysebeständigkeit auf Basis Polyester für die Verwendung in technischen Geweben und Verfahren zu dessen Herstellung
WO2003000767A1 (de) * 2001-06-21 2003-01-03 Basf Aktiengesellschaft Hochstabilisiertes polymer
EP2418247A1 (de) * 2010-08-11 2012-02-15 Rhein Chemie Rheinau GmbH Langlebige biobasierte Kunststoffe, ein Verfahren zu deren Herstellung und deren Verwendung
EP2581368A1 (de) * 2010-06-10 2013-04-17 Teijin Limited Zyklische carbodiimidverbindung

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378537A (en) * 1990-10-19 1995-01-03 Toray Industries, Inc. Polyester monofilament
DE4208916A1 (de) * 1992-03-20 1993-09-23 Akzo Nv Polyesterfaser und verfahren zu deren herstellung
US5407736A (en) * 1993-08-12 1995-04-18 Shakespeare Company Polyester monofilament and paper making fabrics having improved abrasion resistance
US5464890A (en) * 1993-11-12 1995-11-07 Shakespeare Company Polyester monofilaments extruded from a high temperature polyester resin blend with increased resistance to hydrolytic and thermal degradation and fabrics thereof
JP3110633B2 (ja) * 1994-02-02 2000-11-20 東レ株式会社 ポリエステル組成物、モノフィラメントおよび工業用織物
US5424125A (en) * 1994-04-11 1995-06-13 Shakespeare Company Monofilaments from polymer blends and fabrics thereof
EP0828793B1 (de) * 1995-06-02 1999-04-28 Eastman Chemical Company Polyester aus 2,6-naphtalendicarbonsäure mit verbesserter hydrolysebeständigkeit
US5607757A (en) * 1995-06-02 1997-03-04 Eastman Chemical Company Paper machine fabric
JP3373996B2 (ja) * 1996-02-06 2003-02-04 日清紡績株式会社 エステル基を有する樹脂用の耐加水分解安定剤及び該安定剤によるエステル基を有する樹脂の耐加水分解安定化方法
US5763538A (en) * 1996-10-28 1998-06-09 E. I. Du Pont De Nemours And Company Process for making an oriented polyester article having improved hydrolytic stability
US5910363A (en) * 1997-05-30 1999-06-08 Eastman Chemical Company Polyesters of 2,6-naphthalenedicarboxylic acid having improved hydrolytic stability
US5973024A (en) * 1997-07-09 1999-10-26 Nisshinbo Industries, Inc. Method for control of biodegradation rate of biodegradable plastic
JP2002501172A (ja) * 1998-01-07 2002-01-15 アラン ケイ マレー 植物内での成長およびストレスを検出すると共に紡織繊維の品質をモニタするための方法
DE19828517C2 (de) * 1998-06-26 2000-12-28 Johns Manville Int Inc Monofile auf der Basis von Polyethylen-2,6-naphthalat
KR100277116B1 (ko) * 1998-08-10 2001-02-01 김윤 내가수분해성이우수한텍스타일지오그리드용폴리에스테르섬유의제조방법
KR20010045177A (ko) * 1999-11-03 2001-06-05 김석기 하수, 분뇨 그리고 산업폐수의 생물학적 처리시 사용하기위한 미생물 배양제 및 그의 제조방법
TW558570B (en) * 2000-07-14 2003-10-21 Teijin Ltd Polyester fiber
KR20020039110A (ko) * 2000-11-20 2002-05-25 홍지헌 폐수처리용 종균제
DE10249585B4 (de) * 2002-10-24 2007-10-04 Teijin Monofilament Germany Gmbh Leitfähige, schmutzabweisende Kern-Mantel-Faser mit hoher Chemikalienresistenz, Verfahren zu deren Herstellung und Verwendung
DE102004041755A1 (de) * 2004-08-28 2006-03-02 Teijin Monofilament Germany Gmbh Polyesterfasern, Verfahren zu deren Herstellung und deren Verwendung
DE102005033350A1 (de) * 2005-07-16 2007-01-18 Teijin Monofilament Germany Gmbh Polyesterfasern, Verfahren zu deren Herstellung und deren Verwendung
JP5571452B2 (ja) * 2010-05-17 2014-08-13 帝人株式会社 産業用資材
JP5475377B2 (ja) * 2009-09-16 2014-04-16 帝人株式会社 繊維および繊維構造体
JP5571464B2 (ja) * 2010-06-08 2014-08-13 帝人株式会社 吸水性ポリ乳酸繊維構造体および繊維製品
JP5571463B2 (ja) * 2010-06-08 2014-08-13 帝人株式会社 ポリ乳酸異型断面糸
JP5431904B2 (ja) * 2009-12-17 2014-03-05 帝人株式会社 繊維構造体
RU2012114588A (ru) * 2009-09-16 2013-10-27 Тейдзин Лимитед Волокно и волоконная структура
JP5571462B2 (ja) * 2010-06-08 2014-08-13 帝人株式会社 ポリ乳酸含有複合繊維
JP5431903B2 (ja) * 2009-12-17 2014-03-05 帝人株式会社 繊維構造体
JP5468867B2 (ja) * 2009-10-13 2014-04-09 帝人株式会社 ポリエステル組成物およびそれよりなるポリエステル系繊維
JP5571450B2 (ja) * 2010-05-14 2014-08-13 帝人株式会社 ポリ乳酸加工糸
JP5571461B2 (ja) * 2010-06-08 2014-08-13 帝人株式会社 ポリ乳酸繊維構造体およびそれよりなる衣料
JP5571453B2 (ja) * 2010-05-17 2014-08-13 帝人株式会社 染色された繊維構造体の製造方法および繊維構造体並びに繊維製品
JP5468920B2 (ja) * 2010-01-26 2014-04-09 帝人株式会社 ポリ乳酸組成物およびそれよりなるポリ乳酸系繊維
JP5571477B2 (ja) * 2010-06-23 2014-08-13 帝人株式会社 繊維製品
JP5722557B2 (ja) * 2010-06-16 2015-05-20 帝人株式会社 環状カルボジイミド化合物
JP5722555B2 (ja) * 2010-06-10 2015-05-20 帝人株式会社 環状カルボジイミド化合物
PT2671912E (pt) * 2012-06-05 2015-08-21 Rhein Chemie Rheinau Gmbh Método para a estabilização de polímeros que contêm grupos éster
BR112018069128B1 (pt) 2016-03-31 2022-04-12 Dow Global Technologies Llc Método para sintetizar policarbodiimidas ou biscarbodiimidas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1224635A (en) * 1967-04-03 1971-03-10 Fiber Industries Inc Stabilised polyester shaped articles
CH621135A5 (en) * 1976-05-05 1981-01-15 Inventa Ag Process for improving the hydrolysis stability of fibre- and film-forming polyesters
WO1983001253A1 (en) * 1981-10-09 1983-04-14 Bhatt, Girish, M. Monofilaments of low carboxyl content for use in fabricating a paper machine dryer fabric

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL272088A (de) * 1960-12-02
DE1770495A1 (de) * 1968-05-25 1971-11-11 Bayer Ag Stabilisierte Polyaethylenglykolterephthalate
DE2020330A1 (de) * 1970-04-25 1971-11-11 Glanzstoff Ag Verfahren zur Verbesserung der Stabilitaet von Polyestern
US3975329A (en) * 1974-01-02 1976-08-17 The Goodyear Tire & Rubber Company Industrial polyester yarn
JPS6415604A (en) * 1987-07-10 1989-01-19 Nec Corp Measuring apparatus for length by electron beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1224635A (en) * 1967-04-03 1971-03-10 Fiber Industries Inc Stabilised polyester shaped articles
CH621135A5 (en) * 1976-05-05 1981-01-15 Inventa Ag Process for improving the hydrolysis stability of fibre- and film-forming polyesters
WO1983001253A1 (en) * 1981-10-09 1983-04-14 Bhatt, Girish, M. Monofilaments of low carboxyl content for use in fabricating a paper machine dryer fabric

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503421A1 (de) * 1991-03-14 1992-09-16 Hoechst Aktiengesellschaft Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung
US5885709A (en) * 1991-03-14 1999-03-23 Hoechst Aktiengesellschaft Carbodiimide-modified polyester fiber and preparation thereof
DE4307392C2 (de) * 1993-03-10 2001-03-29 Klaus Bloch Monofil mit erhöhter Hydrolysebeständigkeit auf Basis Polyester für die Verwendung in technischen Geweben und Verfahren zu dessen Herstellung
EP0779382A1 (de) 1995-12-15 1997-06-18 Hoechst Trevira GmbH & Co. KG Hydrolysebeständige Polyesterfasern und -filamente, Masterbatches und Verfahren zur Herstellung von Polyesterfasern und -filamenten
US5811508A (en) * 1995-12-15 1998-09-22 Hoechst Trevira Gmbh & Co Kg Hydrolysis-resistant polyester fibers and filaments, masterbatches and processes for the production of polyester fibers and filaments
US6147128A (en) * 1998-05-14 2000-11-14 Astenjohnson, Inc. Industrial fabric and yarn made from recycled polyester
WO2003000767A1 (de) * 2001-06-21 2003-01-03 Basf Aktiengesellschaft Hochstabilisiertes polymer
EP2581368A1 (de) * 2010-06-10 2013-04-17 Teijin Limited Zyklische carbodiimidverbindung
EP2581368A4 (de) * 2010-06-10 2013-05-22 Teijin Ltd Zyklische carbodiimidverbindung
EP2418247A1 (de) * 2010-08-11 2012-02-15 Rhein Chemie Rheinau GmbH Langlebige biobasierte Kunststoffe, ein Verfahren zu deren Herstellung und deren Verwendung
EP2418248A1 (de) * 2010-08-11 2012-02-15 Rhein Chemie Rheinau GmbH Langlebige biobasierte Kunststoffe, ein Verfahren zu deren Herstellung und deren Verwendung

Also Published As

Publication number Publication date
IE903348A1 (en) 1991-04-10
US5246992A (en) 1993-09-21
CA2025418C (en) 2000-11-28
MX174567B (es) 1994-05-26
KR0163429B1 (ko) 1998-12-01
JPH03104919A (ja) 1991-05-01
JP2925280B2 (ja) 1999-07-28
DD297670A5 (de) 1992-01-16
DE3930845A1 (de) 1991-03-28
IE72202B1 (en) 1997-04-09
RU2055950C1 (ru) 1996-03-10
PT95318A (pt) 1991-08-14
FI904514A0 (fi) 1990-09-13
FI103812B1 (fi) 1999-09-30
DE59010270D1 (de) 1996-05-15
KR910006526A (ko) 1991-04-29
CA2025418A1 (en) 1991-03-16
PT95318B (pt) 1997-06-30
EP0417717A3 (en) 1992-01-22
FI103812B (fi) 1999-09-30
ATE136594T1 (de) 1996-04-15
BR9004603A (pt) 1991-09-10
EP0417717B1 (de) 1996-04-10
ES2087105T3 (es) 1996-07-16

Similar Documents

Publication Publication Date Title
EP0417717B1 (de) Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung
EP0503421B1 (de) Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung
DE2041745C3 (de) Zusammengesetzte Fasern aus zwei oder mehreren im Kern-Mantel-Verhältnis angeordneten Komponenten
DE2445404A1 (de) Verfahren zum spinnen von faserbildenden polyestern
DE2458701B2 (de) Polyesterfäden und ihre Verwendung
DE2453621A1 (de) Mittel zur flammfestausruestung von polyamid
EP1208255A1 (de) Hochfeste polyesterfäden und verfahren zu deren herstellung
DE60301956T2 (de) Polytrimethylenterephthalate mit verbesserten eigenschaften
DE3885040T2 (de) Stabilisierte antimikrobielle Mittel, thermoplastische Zusammensetzungen, welche sie enthalten und damit hergestellte Erzeugnisse.
EP0779382B1 (de) Hydrolysebeständige Polyesterfasern und -filamente, Masterbatches und Verfahren zur Herstellung von Polyesterfasern und -filamenten
EP1769117B1 (de) Polymere werkstoffe, die anorganische feststoffe enthalten und verfahren zu deren herstellung
DE2745906C2 (de) Verfahren zur Herstellung einer gehärteten linearen aromatischen Polyestermasse
DE3800672A1 (de) Flammgeschuetzte polyethylenterephthalatformmassen
DE69123400T2 (de) Flammfeste Polyolefinfasern und Folien
DE2309450C3 (de) Verfahren zum Kristallisieren von Polycarbonaten
DE19937727A1 (de) Polyester-Stapelfasern und Verfahren zu deren Herstellung
DE2740728A1 (de) Selbstverloeschende polymermaterialien und verfahren zur herstellung derselben
DE3872885T2 (de) Reduktion von carboxylendgruppen in polyester mit lactimaethern.
DE2728095A1 (de) Verbesserte fadenbildende polyesterpolymerisate und verfahren zu ihrer herstellung
EP0005496B1 (de) Schwer entflammbare Polypropylenfaser und ein Verfahren zu deren Herstellung
EP0486916A2 (de) Polyester mit polycarbonatverkappten Carboxylendgruppen, daraus bestehendes Fasermaterial sowie Verfahren zu deren Herstellung
DE19915683A1 (de) Polyesterfasern und -filamente und Verfahren zu deren Herstellung
DE2322237A1 (de) Pillingarme polyesterfaeden
EP0340572B1 (de) Aus der Schmelze geformte Fäden aus mindestens einem aromatischen Polymeren und ein Verfahren zu deren Herstellung
DE2344075A1 (de) Verfahren zum faerben von polyestern mittels eines farbstoffkonzentrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901221

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19950522

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 136594

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59010270

Country of ref document: DE

Date of ref document: 19960515

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2087105

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2087105

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960613

ET Fr: translation filed
PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: AKZO NOBEL FASER AG

Effective date: 19961223

NLR1 Nl: opposition has been filed with the epo

Opponent name: AKZO NOBEL FASER AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19980319

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990922

Year of fee payment: 10

NLS Nl: assignments of ep-patents

Owner name: JOHNS MANVILLE INTERNATIONAL, INC.

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HOECHST AKTIENGESELLSCHAFT TRANSFER- JOHNS MANVILL

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000911

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010717

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010730

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010921

Year of fee payment: 12

Ref country code: BE

Payment date: 20010921

Year of fee payment: 12

Ref country code: SE

Payment date: 20010921

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020912

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

BERE Be: lapsed

Owner name: *JOHNS MANVILLE INTERNATIONAL INC.

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031011

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070921

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071128

Year of fee payment: 18

Ref country code: IT

Payment date: 20070925

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080911