EP0416270B1 - Procédé et dispositif pour commander et régler un moteur à auto-allumage - Google Patents

Procédé et dispositif pour commander et régler un moteur à auto-allumage Download PDF

Info

Publication number
EP0416270B1
EP0416270B1 EP90114417A EP90114417A EP0416270B1 EP 0416270 B1 EP0416270 B1 EP 0416270B1 EP 90114417 A EP90114417 A EP 90114417A EP 90114417 A EP90114417 A EP 90114417A EP 0416270 B1 EP0416270 B1 EP 0416270B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
loop control
fuel
correction
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90114417A
Other languages
German (de)
English (en)
Other versions
EP0416270A1 (fr
Inventor
Alf Dipl.-Phys. Löffler
Josef Dipl.-Ing. Wahl
Helmut Dipl.-Ing. Laufer
Gerhard Dipl.-Ing. Engel
Johannes Locher
Hermann Dipl.-Ing.(Fh) Grieshaber
Ulrich Dipl.-Ing. Flaig
Hermann Dipl.-Ing. Kull
Friedolin Dr.-Ing. Piwonka
Ewald Dipl.-Ing. Eblen
Wilhelm Dr.-Ing. Polach
Alfred Dr.-Ing. Schmitt
Joachim Dipl.-Ing. Tauscher (Ba)
Manfred Dipl.-Ing. Birk
Anton Dipl.-Ing. Karle
Werner Dr.-Ing. Zimmermann
Pierre Lauvin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0416270A1 publication Critical patent/EP0416270A1/fr
Application granted granted Critical
Publication of EP0416270B1 publication Critical patent/EP0416270B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors

Definitions

  • the invention relates to a method and a device for controlling and regulating a self-igniting internal combustion engine according to the preambles of the main claims.
  • EP-A-170 891 describes an optimization method for determining the correction values.
  • the injection quantity for two cylinders of the internal combustion engine is wobbled in opposite directions such that the total injection time or the total injection quantity of all cylinders is kept constant. It is then determined at which phase position of the wobble signal the maximum possible torque for the internal combustion engine is achieved.
  • two pairs of values of the injection quantity must always be wobbled. This process is very complex and quite time-consuming.
  • a fuel pump driven by the internal combustion engine has a plurality of outlets for connection to corresponding injection nozzles of the assigned internal combustion engine.
  • Electromagnetically actuated valves control the amount of fuel to be delivered through each outlet. Depending on a fuel quantity signal, the valves are controlled by a power module.
  • a comparison circuit compares the engine speed over a work cycle of the engine with the engine speed over the previous work cycle. Depending on this comparison, a distribution device delivers cylinder-specific control signals to the power modules.
  • This method has the disadvantage that the adjustment processes are carried out every combustion cycle. This is associated with a considerable amount of computing time.
  • DE-OS 30 11 595 a device for drift compensation of fuel metering systems is known from DE-OS 30 11 595. This device does not regulate the measured quantity but only the position of a quantity-determining signal box. The task of this facility is to make the originally applicable assignment between the to maintain the total amount of fuel injected and the position signal of the quantity-determining member. Variations in the fuel supply to the individual cylinders are not compensated for.
  • the invention is based on the object, in a method and a device for controlling and regulating an internal combustion engine of the type mentioned, to show ways of recognizing and compensating for variations in the fuel metering to the individual cylinders of the internal combustion engine. This should be done with the least amount of computing time and components.
  • the methods and the corresponding devices according to the invention have the advantage over the prior art that the correction values are only calculated when certain operating conditions are present and are then available for the subsequent fuel metering. Scattering of the amount of fuel to be injected, which are based on manufacturing tolerances of the injection system, can be corrected when the internal combustion engine is operated for the first time. These correction values are then available for the further operation of the internal combustion engine and do not have to be recalculated with every metering. Scattering that only occurs when the internal combustion engine is operating can also be corrected.
  • FIG. 1 shows schematically an electronic control and regulating device for a self-igniting internal combustion engine
  • Figure 2 shows the relationship between control pulses and measured value
  • Figure 3 shows a flow chart for determining the correction values based on the measured value of the individual cylinders
  • Figure 4 shows the measured value depending on which cylinder is switched off
  • 5 shows a flowchart to show the determination of the correction value as a function of the quantity reduction in the individual cylinders
  • FIG. 6 shows the course of the control signal for the individual cylinders
  • FIG. 7 shows a flowchart of a correction method in which the reduction in the fuel supply to a cylinder by an additional quantity in other cylinders is balanced.
  • FIG. 8 shows the control pulses
  • FIG. 9 shows a flow diagram of a correction method in which a defined load is switched on.
  • FIG. 1 shows an electronic control and regulating device for a self-igniting internal combustion engine.
  • Various transducers 20 are arranged on the internal combustion engine 10.
  • the signals from the transducers arrive on the one hand at an electronic control device 30 and on the other hand at an evaluation circuit 60.
  • the electronic control device 30 generates a quantity signal depending on the output signals of the transducer 20 and the target value specification 35.
  • the control device 40 processes the quantity signal, the control pulses of the evaluation circuit 60, and the correction values stored in a memory 50 into metering signals for the signal boxes 45 assigned to each cylinder.
  • the signal boxes 45 determine the fuel quantity injected into the individual cylinders by pump elements.
  • the evaluation circuit 60 receives measured values from the measured value sensor 20, and outputs control pulses to the control device 40 and correction values to the memory 50.
  • the device according to FIG. 1 operates as follows: Different measuring sensors 20 record measured values that characterize the operating state of the internal combustion engine. In particular, the speed N, the lambda value of the exhaust gas, the torque Md, the exhaust gas temperature T and possibly other variables can be detected.
  • the electronic control device 30 calculates the fuel quantity to be injected on the basis of the actual value and the desired value. The actual value results from the signal of the measuring sensor 20.
  • the output signal of the setpoint specification 35 serves as the setpoint.
  • the setpoint specification determines the setpoint based, among other things, on the accelerator pedal position, but the output signal of a vehicle speed controller 36 can also be used.
  • the electronic control device also takes into account special operating conditions, such as. B. the start case, errors or emergency situations. You can also limit the amount of fuel to be injected, so that certain sizes, for. B. exhaust gas temperature, speed, lambda, smoke or load are not exceeded.
  • this quantity signal is fed to an interlocking system which applies the same quantity of fuel to all cylinders.
  • Other devices have a control device for each cylinder.
  • the device according to the invention comprises only one electronic control device for all cylinders, which emits a quantity signal. Based on this quantity signal and the correction values stored in the memory 50, the control device 40 calculates the metering signals for the signal boxes 45 assigned to the individual cylinders. Only one signal box per internal combustion engine can be present, then fuel is metered into the individual cylinders one after the other, or it is for each cylinder has an interlocking.
  • So z. B. diesel engines are known in which the signal boxes 45 are designed as solenoid valves. Depending on the presence of a metering signal, the solenoid valves open or close and thereby determine the start and end of the fuel supply to the individual cylinders.
  • the correction values are designed in a particularly advantageous manner so that the same amount of fuel is supplied to all cylinders, or so that the measured values (speed, torque or exhaust gas temperature) of internal combustion engine 10 are the same as a result of the burns in the individual cylinders.
  • the evaluation circuit 60 is activated.
  • the evaluation circuit 60 then outputs control pulses to the control device 40 and observes the reaction at the measurement sensors 20. Depending on the reaction of the measurement sensors 20, it then calculates correction values which are stored in the memory 50.
  • the memory 50 is in a particularly advantageous manner a memory which does not lose its content when the internal combustion engine is switched off, but can be rewritten at any time.
  • the procedure is carried out in a particularly advantageous manner at different speed and load points, the correction values are then stored in a characteristic diagram depending on the speed and load.
  • the quantity signal of the control device 30 is divided between the individual cylinders. These metering signals for the individual cylinders are then modified additively and / or multiplicatively by means of the correction values stored in the memory 50.
  • the correction values are determined when the internal combustion engine is operated for the first time. This can e.g. B. in the last step of the manufacture of the internal combustion engine. After the internal combustion engine has been installed, a first test run takes place, in which the correction values are determined and stored.
  • the correction can also be carried out as part of the service or at suitable stationary operating points.
  • evaluation circuit 60 The function of the evaluation circuit 60 is explained below with reference to the figures and flow diagrams. This is done, for example, for a 4-cylinder internal combustion engine, but the methods can also be easily transferred to an internal combustion engine with a different number of cylinders.
  • FIG. Figure 2a shows the original metering pulses, in which the duration of the metering pulses are the same for the individual cylinders.
  • Figure 2 b shows the torque curve over a combustion cycle, that is, combustion takes place in all cylinders. Instead of the torque signal, a lambda signal, an exhaust gas temperature signal, or a speed signal can also be used.
  • Figure 2 c shows the corrected metering signals.
  • the metering signal of the cylinder 4 is shorter than the original metering signal Z4 by the time period DZ4.
  • the transducers deliver measured values corresponding to FIG. 2 d. They show a torque curve that is uniform for all cylinders.
  • each cylinder must be assigned a transducer, and the measured values of the sensors are evaluated directly.
  • the correction values are determined as shown in the flow chart in FIG. 3.
  • the evaluation circuit 60 sends a control pulse to the control device 40, on which the control device 40 measures a defined amount of fuel.
  • the actuators of the individual cylinders become equal with metering signals Zi Duration Z applied.
  • FIG. 2 b shows the course of a measured value, here the torque.
  • the evaluation circuit calculates the mean value MM of the measured values Mi.
  • the correction values DZi are proportional to the difference Di or to the ratio of the differences Di and the mean value MM.
  • step 116 the evaluation circuit 60 uses a control pulse to cause the control device 40 to take the determined correction values into account for the next fuel metering. The fuel is metered using the corrected metering signals.
  • FIGS. 4 and 5 A further exemplary embodiment of the evaluation circuit 60 is shown in FIGS. 4 and 5.
  • the fuel supply to the individual cylinders is interrupted one after the other and the reaction of the measured value detected by the measured value sensor 20 is observed. If the same amount of fuel is metered to all cylinders with the same metering signal, this always results in the switching off of the fuel supply to the individual cylinders same change in measured value. If a cylinder, in this example cylinder 4, receives a larger amount of fuel, then when this cylinder is switched off, the measured value decreases more than that of the others.
  • FIG. 4 shows the reaction of the measured value when the individual cylinders are switched off. If all cylinders are supplied with fuel, the measured value M0 results. If the fuel supply to one cylinder is interrupted for a period T, this is reflected in a decrease in the measured value by the value Mi.
  • the flowchart in FIG. 5 shows the correction value determination.
  • the evaluation circuit 60 emits a control pulse to the control device 40 in step 202.
  • the sensor 20 detects the measured value M0. In a particularly advantageous manner, one of the values exhaust gas temperature, lambda value of the exhaust gas, rotational speed or torque is used as the measured value, only one sensor being necessary.
  • a counter i is now set to the value 1.
  • the new measured value MNi is recorded.
  • the fuel supply must remain switched off until the measured value MNi assumes a constant value.
  • the difference Mi of the measured value from the measured value M0 before the i-th cylinder is switched off and the new measured value MNi after the switch-off is formed in the difference formation 212.
  • These values are stored in step 214 until further processing.
  • the subsequent interrogation unit 216 recognizes whether the counter has already reached the value 4. If i is less than 4, the counter is increased 218 by one. The query thereby recognizes whether the values Mi have been recorded for all cylinders.
  • the further processing takes place as described in FIG. 3, the interrogation unit 110 being omitted.
  • the steps 226, averaging 106, forming a difference 108, calculating the correction values 114 for the individual cylinders and storing 112 the correction values DZi, are carried out in succession. It is particularly advantageous in this embodiment that only one transducer is required. This can e.g. B. be a transducer that is already available for controlling the internal combustion engine.
  • FIG. 7 shows a flow diagram of the correction value determination
  • FIG. 6 shows individual sequences of metering signals during the course of the correction value determination.
  • the evaluation circuit 60 generates a control pulse, upon which the control device 40 emits metering signals.
  • the sensor 20 detects the measured value M0 in step 302, which is for the operation of all cylinders is characteristic.
  • a counter i is initialized with 1.
  • an additional signal ZD is calculated by which the metering signals Zm of the other cylinders are extended.
  • the duration of the metering signals Zm for the remaining cylinders is calculated as the sum of the original metering signal Z and the additional signal ZD.
  • the new measured value MN is then acquired in step 310.
  • Query 322 recognizes from counter i whether the fuel supply to all cylinders has been interrupted once and the above method has been carried out once. If this is not the case, the counter i is increased 324 by one. The further calculation of the mean values MM, the difference values Di and the correction values DZi and the storage of the correction values is carried out in accordance with FIG. 3 (steps 106, 108, 112 and 114) described.
  • the following modification provides information about the behavior of the signal box at a defined operating point.
  • the correction signal is determined by injecting an amount of fuel reduced by a certain amount.
  • Zi 0, Zi is only reduced by a small amount.
  • the correction values for various operating points are calculated from the reaction of the measured value to this quantity reduction, as explained in the previous exemplary embodiment.
  • FIGS. 8 and 9 A further embodiment of the evaluation circuit 60 is shown in FIGS. 8 and 9.
  • FIG. 9 again shows the corresponding flow chart.
  • Figures 8 a and 8 b different sequences of metering signals in the course of the correction value determination.
  • the sensor 20 detects the measured value M0.
  • the third step 406 By connecting a defined consumer in the third step 406, the internal combustion engine is subjected to a higher load.
  • the additional signal ZD results from the additional fuel quantity.
  • the counter i is set to one in step 404.
  • the evaluation circuit 60 sends a control pulse to the control device 40, which increases the control pulses Zi (see also FIG. 8b) by the value ZD in the i-th cylinder.
  • the new measured value MN is recorded 410 and compared 412 with the original M0. Depending on this comparison 414, the additional quantity ZD is increased 418 or decreased 416.
  • the measured value acquisition outputs the original measured value M0 so Mi is set equal to ZD.
  • the further evaluation takes place as described in the previous figures.
  • the query device 422 (corresponding to FIG. 7 322) queries whether the increase ZD has already been determined for all cylinders. If this is the case, the counter i is increased 424 by 1.
  • the further evaluation by averaging and the difference formation follows accordingly, as described in FIG. 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (7)

  1. Procédé pour commander et réguler un moteur thermique à allumage non commandé, avec au moins un capteur de mesure (20), une installation électronique de régulation (30) pour former un signal quantitatif de dosage de carburant, une installation de commande (40) pour commander un mécanisme de réglage (45) de manière spécifique aux cylindres, et qui fixe la quantité de carburant injectée dans un cylindre par un élément de pompe, des moyens de correction (50, 60) étant activés dans des conditions déterminées qui fournissent des valeurs de correction spécifiques aux cylindres pour équilibrer les cylindres et les enregistrent de manière permanente, l'installation de commande (40) fournissant des signaux de dosage au mécanisme de réglage (45) en fonction du signal quantitatif et des valeurs de correction, caractérisé en ce que pour déterminer les valeurs de correction on branche une charge déterminée, la valeur de correction associée à un certain cylindre découlant de la variation du signal de dosage de ce cylindre, qui est nécessaire pour obtenir la valeur de mesure d'au moins l'une des grandeurs température des gaz d'échappement, coefficient lambda, vitesse de rotation au couple, valeur de mesure existant avant le branchement de la charge déterminée.
  2. Procédé de commande et de régulation d'un moteur thermique à allumage non commandé, avec au moins un capteur de mesure (20), une installation électronique de régulation (30) pour former un signal quantitatif de dosage du carburant, une installation de commande (40) pour la commande d'un mécanisme de réglage (45) spécifique d'un cylindre, qui fixe la quantité de carburant injectée dans un cylindre par un élément de pompe, des moyens de correction (50, 60) étant activés dans des conditions déterminées, moyens qui fournissent les valeurs de correction spécifiques aux cylindres pour l'équilibrage des cylindres et les enregistrent en permanence, l'installation de commande (40) fournissant aux mécanismes de réglage (45), les signaux de dosage en fonction du signal quantitatif et des valeurs de correction, caractérisé en ce que pour déterminer les valeurs de correction on réduit la quantité de carburant fournie à un cylindre déterminé, la valeur de correction d'un certain cylindre découlant de la variation des signaux de dosage des autres cylindres, variation qui est nécessaire pour que la valeur de mesure d'au moins l'une des grandeurs température des gaz d'échappement, coefficient lambda, vitesse de rotation au couple, reprenne la valeur que cette grandeur avait avant la réduction de l'alimentation en carburant.
  3. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on active les moyens de correction (50, 60) à la fin de la chaîne de fabrication du moteur, à des intervalles déterminés et/ou pour des points de fonctionnement stationnaire, choisis.
  4. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on détermine les valeurs de correction en différents points de fonctionnement.
  5. Procédé selon l'une des revendications précédentes 1 à 5, caractérisé en ce qu'on enregistre les valeurs de correction en fonction de la charge et de la vitesse de rotation.
  6. Dispositif de commande et de régulation d'un moteur thermique à allumage non commandé avec au moins un capteur de mesure (20), une installation électronique de régulation (30) pour former un signal quantitatif de dosage de carburant, une installation de commande (40) pour la commande d'un mécanisme de réglage (45) spécifique à un cylindre, et qui fixe la quantité de carburant à injecter dans un cylindre à l'aide de l'élément de pompe, avec des moyens qui activent des moyens de correction (50, 60) dans des conditions déterminées, moyens de correction qui fournissent les valeurs de correction spécifiques aux cylindres pour équilibrer les cylindres et les enregistrent en permanence, l'installation de commande fournissant aux mécanismes de réglage (45), des signaux de dosage dépendant du signal quantitatif et des valeurs de correction, caractérisé par des moyens qui branchent une charge déterminée, les moyens déterminant la valeur de correction pour un certain cylindre à partir de la variation du signal de dosage de ce cylindre, variation qui est nécessaire pour que la valeur de mesure d'au moins l'une des grandeurs température des gaz d'échappement, coefficient lambda, vitesse de rotation au couple, reprenne la valeur de cette grandeur avant le branchement de la charge prédéterminée.
  7. Dispositif de commande et de régulation d'un moteur thermique à allumage non commandé avec au moins un capteur de mesure (20), une installation électronique de régulation (30) pour former un signal quantitatif de dosage de carburant, une installation de commande (40) pour la commande d'un mécanisme de réglage (45) de façon spécifique à un cylindre, qui fixe la quantité de carburant à injecter dans un cylindre avec un élément de pompe, des moyens qui activent les moyens de correction (50, 60) dans des conditions déterminées, pour fournir des valeurs de correction spécifiques aux cylindres, pour équilibrer les cylindres, et les enregistrent en permanence, l'installation de commande (40) fournissant des signaux de dosage aux mécanismes de réglage (45) en fonction du signal quantitatif et des valeurs de correction, dispositif caractérisé par des moyens qui, pour déterminer les valeurs de correction, réduisent la quantité de carburant à fournir à un certain cylindre, ces moyens déterminant la valeur de correction d'un certain cylindre à partir de la variation des signaux de dosage des autres cylindres, variation nécessaire pour rétablir la valeur de mesure d'au moins l'une des grandeurs température des gaz d'échappement, coefficient lambda, vitesse de rotation et couple, qui existait avant la réduction de l'alimentation en carburant.
EP90114417A 1989-09-07 1990-07-27 Procédé et dispositif pour commander et régler un moteur à auto-allumage Expired - Lifetime EP0416270B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3929746 1989-09-07
DE3929746A DE3929746A1 (de) 1989-09-07 1989-09-07 Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP0416270A1 EP0416270A1 (fr) 1991-03-13
EP0416270B1 true EP0416270B1 (fr) 1994-02-23

Family

ID=6388830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90114417A Expired - Lifetime EP0416270B1 (fr) 1989-09-07 1990-07-27 Procédé et dispositif pour commander et régler un moteur à auto-allumage

Country Status (4)

Country Link
US (1) US5131371A (fr)
EP (1) EP0416270B1 (fr)
JP (1) JP3146001B2 (fr)
DE (2) DE3929746A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088843A1 (de) * 2011-12-16 2013-06-20 Continental Automotive Gmbh Bestimmung eines individuellen Luft/Kraftstoffverhältnisses in einem ausgewählten Zylinder einer Brennkraftmaschine

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9205424A (pt) * 1991-01-14 1994-03-15 Orbital Engine Company Austria Sistema de gerenciamento de motor
DE4122139C2 (de) * 1991-07-04 2000-07-06 Bosch Gmbh Robert Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmengen bei einer Brennkraftmaschine
JP3142086B2 (ja) * 1992-06-26 2001-03-07 ヤマハ発動機株式会社 マリンエンジンの燃料噴射制御装置
US5265576A (en) * 1993-01-08 1993-11-30 Stanadyne Automotive Corp. Calibration system for electrically controlled fuel injection pump
DE4308813A1 (de) * 1993-03-19 1994-09-22 Bosch Gmbh Robert Steuersystem für die Kraftstoffzumessung einer Brennkraftmaschine
DE4319677C2 (de) * 1993-06-14 2002-08-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
JP3162553B2 (ja) * 1993-09-13 2001-05-08 本田技研工業株式会社 内燃機関の空燃比フィードバック制御装置
DE4332103A1 (de) * 1993-09-22 1995-03-23 Bayerische Motoren Werke Ag Verfahren zur Kraftstoffzumessung einer Diesel-Brennkraftmaschine
JPH0814092A (ja) * 1994-06-24 1996-01-16 Sanshin Ind Co Ltd 2サイクルエンジンの燃焼制御装置
US5477828A (en) * 1994-07-29 1995-12-26 Caterpillar Inc. Method for controlling a hydraulically-actuated fuel injection system
DE19527218B4 (de) * 1994-12-23 2004-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
US5623913A (en) * 1995-02-27 1997-04-29 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control apparatus
JP3499319B2 (ja) * 1995-03-03 2004-02-23 ヤマハマリン株式会社 エンジンの燃料噴射装置
IT1284681B1 (it) * 1996-07-17 1998-05-21 Fiat Ricerche Procedimento di taratura per un sistema di iniezione provvisto di iniettori.
DE19633066C2 (de) * 1996-08-16 1998-09-03 Telefunken Microelectron Verfahren zur zylinderselektiven Steuerung einer selbstzündenden Brennkraftmaschine
DE19700711C2 (de) * 1997-01-10 1999-05-12 Siemens Ag Verfahren zum Ausgleich des systematischen Fehlers an Einspritzvorrichtungen für eine Brennkraftmaschine
DE19720405A1 (de) * 1997-05-15 1998-11-19 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Einspritzmenge in eine Brennkraftmaschine bei Kraftfahrzeugen
US5924403A (en) * 1997-06-06 1999-07-20 Detroit Diesel Corporation Method for enhanced split injection in internal combustion engines
US6002980A (en) * 1997-11-14 1999-12-14 Cummins Engine Company, Inc. System and method for engine cylinder power diagnosis by cylinder(s) cut-off snap throttle engine acceleration tests
US6102005A (en) * 1998-02-09 2000-08-15 Caterpillar Inc. Adaptive control for power growth in an engine equipped with a hydraulically-actuated electronically-controlled fuel injection system
US5983876A (en) * 1998-03-02 1999-11-16 Cummins Engine Company, Inc. System and method for detecting and correcting cylinder bank imbalance
DE19809173A1 (de) * 1998-03-04 1999-09-09 Bosch Gmbh Robert Verfahren und Vorrichtung zum Steuern der Kraftstoffeinspritzung
JPH11351046A (ja) * 1998-06-10 1999-12-21 Honda Motor Co Ltd 多気筒内燃エンジンの燃料噴射制御装置
US6032642A (en) * 1998-09-18 2000-03-07 Detroit Diesel Corporation Method for enhanced split injection in internal combustion engines
US6240772B1 (en) 1998-12-09 2001-06-05 Detroit Diesel Corporation System and method for detecting engine malfunction based on crankcase pressure
US6189378B1 (en) * 1998-12-14 2001-02-20 Caterpillar Inc. Electronically controlled fuel injector trimming
US6172602B1 (en) 1999-03-22 2001-01-09 Detroit Diesel Corporation Maintenance alert system for heavy-duty trucks
US6356186B1 (en) 1999-03-24 2002-03-12 Detroit Diesel Corporation Vehicle anti-theft system and method
US6516782B1 (en) 1999-05-27 2003-02-11 Detroit Diesel Corporation System and method for controlling fuel injections
US6125823A (en) * 1999-05-27 2000-10-03 Detroit Diesel Corporation System and method for controlling fuel injections
DE10022952A1 (de) * 2000-05-11 2001-11-15 Bosch Gmbh Robert Verfahren zum Einstellen von zylinderspezifischen Einspritzmengenprofilen an einer Brennkraftmaschine
JP2001349243A (ja) 2000-06-07 2001-12-21 Isuzu Motors Ltd エンジンの燃料噴射制御装置
US6305348B1 (en) 2000-07-31 2001-10-23 Detroit Diesel Corporation Method for enhanced split injection in internal combustion engines
JP3878398B2 (ja) * 2000-08-18 2007-02-07 株式会社日立製作所 エンジンの自己診断装置および制御装置
DE10062895A1 (de) * 2000-12-16 2002-06-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US6705294B2 (en) * 2001-09-04 2004-03-16 Caterpiller Inc Adaptive control of fuel quantity limiting maps in an electronically controlled engine
DE10163894A1 (de) * 2001-12-22 2003-07-03 Daimler Chrysler Ag Brennkraftmaschine mit Direkteinspritzung
US6759438B2 (en) * 2002-01-15 2004-07-06 Chevron U.S.A. Inc. Use of oxygen analysis by GC-AED for control of fischer-tropsch process and product blending
DE10240492A1 (de) * 2002-09-03 2004-03-11 Robert Bosch Gmbh Verfahren zur Kalibrierung der Zylindersensorik einer zylinderindividuell betriebenen Brennkraftmaschine insbesondere eines Kraftfahrzeugs
SE524108C2 (sv) 2002-11-26 2004-06-29 Scania Cv Abp Metod för att styra bränsletillförseln till en förbränningsmotor
DE10256239A1 (de) * 2002-12-02 2004-06-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
US6879903B2 (en) * 2002-12-27 2005-04-12 Caterpillar Inc Method for estimating fuel injector performance
US6801847B2 (en) 2002-12-27 2004-10-05 Caterpillar Inc Method for estimating fuel injector performance
JP2004268615A (ja) 2003-03-05 2004-09-30 Sanden Corp 受液器取り付け用ブラケット
JP4192759B2 (ja) * 2003-10-31 2008-12-10 株式会社デンソー ディーゼル機関の噴射量制御装置
DE10359306A1 (de) * 2003-12-17 2005-07-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102004046083B4 (de) * 2004-09-23 2016-03-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
FR2879289B1 (fr) * 2004-12-14 2007-02-09 Renault Sas Procede et dispositif pour le controle de la dispersion des injecteurs d'un moteur a combustion interne
DE102005031591B4 (de) * 2005-07-06 2015-11-05 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine
DE102006011723B3 (de) * 2006-03-14 2007-08-23 Siemens Ag Adaptionsverfahren für Streuungen in zylinderselektiven Einspritzmengen einer Direkteinspritzanlage und Verfahren zur zylinderselektiven Einspritzsteuerung
DE102006026640A1 (de) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102006027591B4 (de) * 2006-06-14 2012-03-08 Caterpillar Motoren Gmbh & Co. Kg Verfahren zum Steuern eines Verbrennungsmotors
DE102006062930B3 (de) * 2006-06-14 2014-05-22 Caterpillar Motoren Gmbh & Co. Kg Steuereinheit zum Steuern eines Verbrennungsmotors
JP4715667B2 (ja) * 2006-07-28 2011-07-06 株式会社デンソー 内燃機関の制御装置
US8229648B2 (en) 2007-03-06 2012-07-24 GM Global Technology Operations LLC Method and apparatus for controlling fuel injection in a homogeneous charge compression ignition engine
US7647915B2 (en) * 2007-04-23 2010-01-19 Gm Global Technology Operations, Inc. System for controlling fuel injectors
FR2922267B1 (fr) * 2007-10-11 2012-09-21 Siemens Vdo Automotive Detection et correction d'une derive d'injecteur
WO2010087025A1 (fr) * 2009-01-28 2010-08-05 トヨタ自動車株式会社 Dispositif de décision du déséquilibre du rapport air/carburant entre cylindres pour un moteur à combustion interne à plusieurs cylindres
FR2983530A1 (fr) * 2011-12-06 2013-06-07 Renault Sa Methode de diagnostic d'une derive d'au moins un injecteur d'un systeme d'injection de carburant a rampe commune.
DE102012201083A1 (de) 2012-01-25 2013-07-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102012020489B4 (de) * 2012-10-10 2014-04-30 Mtu Friedrichshafen Gmbh Verfahren zur Angleichung eines Einspritzverhaltens von Injektoren in einem Verbrennungsmotor, Motorsteuergerät und System zur Angleichung eines Einspritzverhaltens
DE102012020488B3 (de) 2012-10-10 2014-03-20 Mtu Friedrichshafen Gmbh Verfahren zur Momentenregelung eines Verbrennungsmotors und Verbrennungsmotor
DE102012021076B4 (de) * 2012-10-19 2023-03-30 Rolls-Royce Solutions GmbH Verfahren zur Ermittlung von mindestens einem tatsächlichen Einspritzparameter mindestens eines Injektors in einem Verbrennungsmotor und Motorsteuergerät
US10107214B2 (en) 2013-10-31 2018-10-23 Robert Bosch Gmbh Control system and method using exhaust gas temperatures to adjust an air/fuel mixture for an internal combustion engine
EP3362665A4 (fr) * 2015-10-30 2019-05-22 Robert Bosch GmbH Capteur bolomètre mems pour mesurer la température dans un tuyau d'échappement d'un véhicule automobile
AT518584B1 (de) * 2016-05-11 2018-02-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Erkennen der Gasmenge

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3011595A1 (de) * 1980-03-26 1981-10-01 Robert Bosch Gmbh, 7000 Stuttgart Korrektureinrichtung fuer ein kraftstoffmesssystem bei einer brennkraftmaschine
US4495920A (en) * 1982-04-09 1985-01-29 Nippondenso Co., Ltd. Engine control system and method for minimizing cylinder-to-cylinder speed variations
JPS5985432A (ja) * 1982-11-08 1984-05-17 Nippon Denso Co Ltd 燃料噴射装置の制御方法
DE3336028C3 (de) * 1983-10-04 1997-04-03 Bosch Gmbh Robert Einrichtung zur Beeinflussung von Steuergrößen einer Brennkraftmaschine
JPS60195349A (ja) * 1984-03-17 1985-10-03 Toyota Motor Corp 内燃機関の燃料供給制御装置
US4616617A (en) * 1984-04-07 1986-10-14 Volkswagenwerk Aktiengesellschaft Method and arrangement for combustion chamber identification in an internal combustion engine
DE3429525A1 (de) * 1984-08-10 1986-02-20 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur zylindergruppenspezifischen regelung einer mehrzylindrigen brennkraftmaschine und vorrichtung zur durchfuehrung des verfahrens
JPH0650077B2 (ja) * 1984-08-10 1994-06-29 日本電装株式会社 内燃機関用燃料噴射量制御方法
JP2556964B2 (ja) * 1985-11-14 1996-11-27 株式会社ゼクセル 内燃機関用アイドル運転制御装置
IT1222835B (it) * 1986-10-08 1990-09-12 Lucas Ind Plc Sistema di alimentazione di combustibile per un motore a molti cilindri
US4790277A (en) * 1987-06-03 1988-12-13 Ford Motor Company Self-adjusting fuel injection system
DE3800176A1 (de) * 1988-01-07 1989-07-20 Bosch Gmbh Robert Steuereinrichtung fuer eine brennkraftmaschine und verfahren zum einstellen von parametern der einrichtung
US4869222A (en) * 1988-07-15 1989-09-26 Ford Motor Company Control system and method for controlling actual fuel delivered by individual fuel injectors
US4936277A (en) * 1988-12-19 1990-06-26 Motorola, Inc. System for monitoring and/or controlling multiple cylinder engine performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088843A1 (de) * 2011-12-16 2013-06-20 Continental Automotive Gmbh Bestimmung eines individuellen Luft/Kraftstoffverhältnisses in einem ausgewählten Zylinder einer Brennkraftmaschine
DE102011088843B4 (de) * 2011-12-16 2014-02-27 Continental Automotive Gmbh Bestimmung eines individuellen Luft/Kraftstoffverhältnisses in einem ausgewählten Zylinder einer Brennkraftmaschine

Also Published As

Publication number Publication date
EP0416270A1 (fr) 1991-03-13
DE3929746A1 (de) 1991-03-14
US5131371A (en) 1992-07-21
JP3146001B2 (ja) 2001-03-12
JPH03100351A (ja) 1991-04-25
DE59004671D1 (de) 1994-03-31

Similar Documents

Publication Publication Date Title
EP0416270B1 (fr) Procédé et dispositif pour commander et régler un moteur à auto-allumage
DE19945618B4 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
EP0416265B1 (fr) Procédé et appareil pour commander l'injection de carburant
DE602004003390T2 (de) Verfahren zur echtzeitbestimmung einer kraftstoffeinspritzungsströmungscharakteristik
DE4208002B4 (de) System zur Steuerung einer Brennkraftmaschine
DE102008043165B4 (de) Verfahren und Vorrichtung zur Kalibrierung der Voreinspritzmenge einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
EP0760056B1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
EP0152604A1 (fr) Méthode de commande et de régulation des paramètres de fonctionnement d'un moteur à C.I.
EP0154710A1 (fr) Dispositif pour la commande des paramètres de fontionnement d'un moteur à C.I.
DE19726757B4 (de) Verfahren zur Steuerung und/oder Regelung einer mit mehreren Brennräumen versehenen Brennkraftmaschine
EP1250525B1 (fr) Procede et dispositif pour commander un moteur a combustion interne
DE69825670T2 (de) Drehmomentsteuerung einer Brennkraftmaschine
DE19709395C2 (de) Verfahren zur Klopfregelung in Mehrzylinder-Brennkraftmaschinen
DE4041505C2 (de) Verfahren und Vorrichtung zur Erfassung einer veränderlichen Größe für eine Brennkraftmaschine an einem Kraftfahrzeug
DE102005058445B3 (de) Verfahren zur Ermittlung einer in einen Zylinder einer Brennkraftmaschine mit einer Common-Rail-Einspritzanlage eingespritzten Kraftstoffmemge und Mittel zur Durchführung des Verfahrens
DE3226026A1 (de) Verfahren und vorrichtung zur elektronischen regelung einer brennkraftmaschine
EP0629775A1 (fr) Procédé et dispositif pour commander la stabilité de marche d'un moteur à combustion interne
DE60300178T2 (de) System und Verfahren zur Steuerung der Kraftstoffeinspritzung
DE3429525A1 (de) Verfahren zur zylindergruppenspezifischen regelung einer mehrzylindrigen brennkraftmaschine und vorrichtung zur durchfuehrung des verfahrens
EP1409865B1 (fr) Procede pour equilibrer la quantite d'injection, de maniere individuelle, dans chaque cylindre d'un moteur a combustion interne
WO1991008390A1 (fr) Systeme de commande electronique pour le dosage de carburant dans le cas d'un moteur a combustion interne
DE10302058B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1005609B1 (fr) Procede permettant de commander le recyclage des gaz d'echappement d'un moteur a combustion interne
DE19537381B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0368954A1 (fr) Syteme de commande pour moteurs diesel.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19910904

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940221

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59004671

Country of ref document: DE

Date of ref document: 19940331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090724

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100727