EP0381136B1 - Voie porteuse pour véhicules magnétiques - Google Patents

Voie porteuse pour véhicules magnétiques Download PDF

Info

Publication number
EP0381136B1
EP0381136B1 EP90101794A EP90101794A EP0381136B1 EP 0381136 B1 EP0381136 B1 EP 0381136B1 EP 90101794 A EP90101794 A EP 90101794A EP 90101794 A EP90101794 A EP 90101794A EP 0381136 B1 EP0381136 B1 EP 0381136B1
Authority
EP
European Patent Office
Prior art keywords
concrete
travel way
steel
way support
guideway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90101794A
Other languages
German (de)
English (en)
Other versions
EP0381136A1 (fr
Inventor
Rolf Prof.Dr.-Ing. Kindmann
Gert Dipl.-Ing. Schwindt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Technologies AG
Original Assignee
Thyssen Industrie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Industrie AG filed Critical Thyssen Industrie AG
Publication of EP0381136A1 publication Critical patent/EP0381136A1/fr
Application granted granted Critical
Publication of EP0381136B1 publication Critical patent/EP0381136B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • E01B25/305Rails or supporting constructions

Definitions

  • the invention relates to guideway supports for magnetic tracks and the like.
  • Track-bound transport systems to which the stators of linear motors can be attached and which absorb all loads, in particular as a result of carrying, guiding, driving, braking and depositing the vehicles.
  • Magnetic tracks of the above type reach very high speeds of up to 500 km / h or more.
  • the magnetic railway vehicles travel on guideway girders, which in turn rest on supports and / or foundations erected on the building ground (ground).
  • the guideway girders must ensure that all loads occurring during driving operation can be absorbed and reliably transferred to the substructures (supports and foundations) and the foundation.
  • the guideway supports must follow the specified route in terms of route and gradient (this is the target line of the road) very precisely. This applies particularly to the positional accuracy of the functional surfaces and -components that are required on the guideway girders for driving.
  • the previously known guideway girders consist of steel girders or prestressed concrete girders.
  • the three above-mentioned functional components are three individual parts which have to be connected to one another and to the steel guideway supports by means of screws or corresponding, preferably adjustable fastening means in an extremely precise position.
  • the three above-mentioned functional components are an integral part of the welded steel guideway girders.
  • the known guideway girders in concrete construction consist of prestressed concrete girders into which steel anchor bodies are concreted as construction parts for the positionally correct connection (fastening) of the stators. After the prestressed concrete beams have been manufactured, the steel side guide rails are attached in a subsequent separate operation (cf. also DE-A-27 44 367).
  • the steel girder design with the screwed-on functional components requires very high expenditures for production and corrosion protection.
  • the fully welded steel girder version is cheaper in terms of corrosion protection, but even here the required high positional accuracy of the functional components can only be achieved with cost-intensive measures during production, as is also the case with the prestressed concrete girders.
  • the thickness tolerances of the steel side guide rails that occur during their manufacture in the rolling mill are a major reason for the measures required in the manufacture of the guideway girders. These thickness tolerances are already of the same order of magnitude as is permitted for the finished guideway construction.
  • the invention has for its object to provide a guideway girder which has favorable properties for the load-bearing and the deformation behavior, which is maintenance-free as long as possible, and whose target shape can be achieved with high accuracy in a cost-effective manufacturing process.
  • the solution to this problem consists in a guideway girder of the type mentioned in the introduction that the guideway girder consists of steel structures which, at least in the area of the upper girders of the guideway girder with reinforced concrete or prestressed concrete, are shear-resistant to a composite girder by means of a compound. are connected, and that the side guide rails are welded to the steel structures of the guideway girder.
  • the shear-resistant connection of the steel structures with reinforced concrete or prestressed concrete creates a composite girder that has a higher rigidity than steel girders, which reduces the deformation due to traffic loads.
  • the deformation due to different temperature distribution in the guideway girder e.g. due to solar radiation
  • the welding of the side guide rails to the steel structures of the girder represents a secure connection with a long service life.
  • the steel structures of the guideway girder can be prefabricated individually and used as formwork or formwork aids for concreting.
  • the rolling tolerances of the steel side guide rails can thereby be eliminated and the target shape of the guideway girder can be reliably achieved with little effort if adjustable devices with side stops are used.
  • composite girders are lighter in weight than prestressed concrete girders. This results in advantages for production, for equipping the guideway girders with stators (linear motor) and for the assembly process on the construction site, since the capacities of the means of transport and the lifting devices can be designed accordingly smaller.
  • steel needles according to claim 2 instead of reinforcing bars or structural steel mesh mats enables a simple and safe method for increasing the tensile strength of the concrete, particularly in the area of difficult to access areas. Places that are difficult to access are e.g. for the side guide rails and sliding levels (on the top flange) and in the area of the bottom flange.
  • the desired shape of the guideway girder can be achieved by subsequent tightening if it has not been achieved sufficiently enough during the manufacturing process.
  • prefabricated concrete parts according to claim 4 has the advantage that they can be produced completely separately from the rest of the support structure and that after a temporary storage the shortening due to the shrinkage of the concrete has already taken place and has ended. Without storage time, the shortening must be taken into account as the planned deformation of the guideway girder.
  • the maximum transport and lifting weights can also be reduced with precast concrete elements, which is important when considering the long distances to be built.
  • continuous girders By connecting two or more guideway girders, the length and weight of which are limited, so-called continuous girders can be created at the construction site, which are supported in the longitudinal direction by more than two support points (supports, foundations). With continuous beams, the deformations due to traffic loads and due to different temperature distribution are significantly less than with single span beams (with only 2 supports). It has been shown that the connection of the concrete parts to achieve the continuous effect is not necessary and the connection of the steel parts of the adjoining guideway girders by welding or screwing is sufficient. Continuous girders with a large length are thus realized, but the weight and the length of the to the construction site transporting single carriers remain below the economically justifiable limits for transport and assembly on the construction site today.
  • a composite guideway beam is shown in cross section.
  • the concrete slab 1 on the upper flange 10 and the concrete body 1 on the lower flange 11 are connected to the steel structure 3 in a shear-resistant manner with the aid of composite means 4.
  • the steel structure 3 arranged below the upper chord 10 consists of two lateral longitudinal plates which are welded to transverse bulkheads 7, so that they form a type of trough together with the lower chord. This creates a very stable composite support structure.
  • the side guide rails 5 are firmly welded to the two steel structures 3 of the upper chord 10. This ensures exact compliance with the gauge in a particularly permanent connection.
  • the tendons 2 can be used to increase the load capacity, to reduce the deflection due to creeping of the concrete and subsequent correction of the carrier shape can be used.
  • Steel sheets serve as sliding planes 6, the spacers 8 of which simultaneously serve as a compound.
  • FIG. 2 shows a composite girder construction for the guideway, which differs from the construction shown in FIG. 1 in the area of the functional components (side guide rail 5, sliding plane 6) and the lower flange 11.
  • a sheet metal is welded to the upper end of the side guide rails 5 perpendicular to them, which serves for load transfer and at the same time contains the two sliding planes 6.
  • This constructive training is cheaper in terms of durability than the solution shown in Fig. 1.
  • the lower flange 11 is made of sheet steel and has no concrete body. The support should be built with a corresponding length increase during production. By the time of commissioning, this increase is largely reduced by the shrinkage of the concrete 1 in the upper chord 10.
  • a lower flange 11 without concrete can also be used in the embodiment according to FIG. 1.
  • Fig. 3 illustrates the advantages that are achieved in the manufacture of the composite support structure according to the invention.
  • the manufacture takes place in a position rotated by 180 ° and in devices 9 which - which is not shown in the drawing - can be adjusted or selected with regard to their dimensions such that the desired shape of the composite construction can be specified with them.
  • the side guide rails 5 are part of two separate steel structures 3, these can be on the side Stops of the devices 9 are fixed. This eliminates the unavoidable thickness tolerances of the side guide rails 5 from the rolling process, so that compliance with the track width defined by the distance between the two side guide rails 5 is ensured.
  • the adjustable devices 9 and the two steel structures 3 serve as formwork.
  • the further, trough-like steel construction 3 with transverse bulkheads 7 made of steel is manufactured in separate devices.
  • This trough-like steel structure 3 can be welded to the two steel structures 3 connected to the concrete slab 1 with the side guide rails 5 without difficulty, since only the usual manufacturing and assembly tolerances of the steel structure have to be observed.
  • the two side guide rails 5 are welded to a continuous cover plate 14, to which the composite means 4 are also fastened, preferably welded.
  • the elimination of the thickness tolerances of the side guide rails 5, as can be seen immediately in FIG. 4, is ensured by the position of the weld seams 15 and their design.
  • the concrete body 1 can then be concreted using the customary construction methods, the steel structure 3 serving in part as formwork. 4, the functional components or surfaces (side guide rails 5 and sliding planes 6) are an integral part of a continuous (one-piece) steel structure 3. This also offers considerable advantages for the durability of the guideway girders, in view of the fact that the girders when later driving operations are exposed to all weather influences for decades.

Claims (5)

  1. Poutre de voie pour voies magnétiques et systèmes de transport liés à des voies semblables sur lesquels les stators de moteurs linéaires peuvent être fixés et qui absorbent toutes les charges, en particulier dues au port, au guidage, à la propulsion, au freinage et à la pose des véhicules, caractérisée par le fait qu'elle est constituée de charpentes en acier (3) qui, au moins dans la zone des membrures supérieures de la poutre de voie, sont jointes de manière résistant au cisaillement, par des moyens de jonction (4), à du béton armé (1) ou du béton précontraint (1) pour la formation d'une poutre mixte, et que les rails de guidage latéraux (5) sont soudés aux charpentes en acier (3) de la poutre de voie.
  2. Poutre de voie selon la revendication 1, caractérisée par le fait que le béton (1), pour l'augmentation de sa résistance à la traction, est armé en totalité ou en partie par des aiguilles en acier.
  3. Poutre de voie selon l'une des revendications 1 et 2, caractérisée par le fait que dans le béton (1) sont insérés des éléments de précontrainte (2) qui peuvent être mis en tension après la fabrication de la poutre de voie.
  4. Poutre de voie selon l'une des revendications précédentes, caractérisée par le fait qu'elle présente des éléments préfabriqués en béton avec éléments en acier noyés dans le béton ou évidements et ces éléments sont joints de manière résistant au cisaillement aux autres éléments de construction de la poutre par soudage, par boulonnage ou avec du mortier de scellement.
  5. Poutre de voie selon une ou plusieurs des revendications précédentes, caractérisée par le fait que deux ou plus de deux poutres de voie préfabriquées sont réunies en une poutre continue par soudage ou boulonnage de leur charpente en acier (3).
EP90101794A 1989-02-01 1990-01-30 Voie porteuse pour véhicules magnétiques Expired - Lifetime EP0381136B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3902949A DE3902949A1 (de) 1989-02-01 1989-02-01 Fahrwegtraeger fuer magnetbahnen
DE3902949 1989-02-01

Publications (2)

Publication Number Publication Date
EP0381136A1 EP0381136A1 (fr) 1990-08-08
EP0381136B1 true EP0381136B1 (fr) 1992-09-16

Family

ID=6373219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90101794A Expired - Lifetime EP0381136B1 (fr) 1989-02-01 1990-01-30 Voie porteuse pour véhicules magnétiques

Country Status (9)

Country Link
US (1) US5027713A (fr)
EP (1) EP0381136B1 (fr)
JP (1) JPH02248501A (fr)
CN (1) CN1044836A (fr)
AU (1) AU631839B2 (fr)
CA (1) CA2009132C (fr)
DD (1) DD291792A5 (fr)
DE (2) DE3902949A1 (fr)
RU (1) RU2023785C1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699006B2 (en) 2003-03-25 2010-04-20 Thyssenkrupp Transrapid Gmbh Carrier and a magnetic levitation railway provided with said deck

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672316B1 (fr) * 1991-02-05 1993-05-28 Cogifer Cie Cle Installat Ferr Appareil de voie pour vehicules ferroviaires sur pneumatiques a galet de guidage median et procede pour sa fabrication.
DE4115935C2 (de) * 1991-05-16 1996-11-07 Dyckerhoff & Widmann Ag Fahrwegkonstruktion für Magnetschwebefahrzeuge
DE4219200C2 (de) * 1992-06-12 1997-01-23 Thyssen Industrie Fahrweg für Magnetbahnen
US5653173A (en) * 1992-08-14 1997-08-05 Fischer; Phillip A. Induction motor monorail system
EP0653992A4 (fr) * 1992-08-14 1995-07-26 Phillip A Fischer Systeme monorail de moteur a induction.
DE4306166C2 (de) * 1993-02-27 1997-09-11 Magnetbahn Gmbh Trogförmiger Fahrwegträger für Magnetschwebefahrzeuge und Verfahren zur Herstellung des Fahrwegträgers
US5511488A (en) * 1994-04-25 1996-04-30 Powell; James R. Electromagnetic induction ground vehicle levitation guideway
DE19808622C2 (de) * 1998-02-28 2001-12-13 Max Boegl Bauunternehmung Fahrweg
US5953996A (en) * 1998-04-03 1999-09-21 Powell; James R. System and method for magnetic levitation guideway emplacement on conventional railroad line installations
DE19829900B4 (de) * 1998-07-06 2011-05-05 Berding Beton Gmbh Fahrbahn einer Magnetbahn
DE19946105A1 (de) * 1999-09-16 2001-03-22 Thyssen Transrapid System Gmbh Träger zur Herstellung eines Fahrwegs für spurgebundene Fahrzeuge, insbesondere einer Magnetschwebebahn, und damit hergestellter Fahrweg
DE19945749C1 (de) * 1999-09-24 2001-12-06 Brueckenbau Plauen Gmbh Fahrwegträger
US6951433B2 (en) 2000-08-04 2005-10-04 Dieter Reichel Device for nonpositively fixing a bracket to a supporting base body
DE10038851A1 (de) 2000-08-04 2002-02-14 Boegl Max Bauunternehmung Gmbh Verfahren zum Herstellen einer Verbindungsstelle an einem Fahrweg
AU2002213874B2 (en) * 2000-09-12 2004-07-29 Max Bogl Bauunternehmung Gmbh & Co. Kg Support beam for a track-guided high-speed vehicle
US6554199B1 (en) * 2000-10-06 2003-04-29 Pfleiderer Infrastrukturtechnick Gmbh & Co., Kg Trackway for transrapid
AU777666B2 (en) * 2000-10-16 2004-10-28 Rail.One Gmbh Travel way for land transport systems
KR20020031674A (ko) * 2000-10-23 2002-05-03 추후제출 경량궤도차용 차도
US6708623B2 (en) 2001-08-16 2004-03-23 Judith Marie Cummins Support structure
CN1143027C (zh) * 2001-09-07 2004-03-24 上海磁悬浮交通发展有限公司 高速轨道交通的轨道结构
DE10148949A1 (de) * 2001-10-04 2003-06-05 Hochtief Ag Hoch Tiefbauten Anbauelement für Fahrwegträger von Magnetschwebebahnen
US20060032395A1 (en) * 2002-05-28 2006-02-16 Johann Matuschek Driveway, driveway module, and method for the production thereof
DE10240808A1 (de) * 2002-08-30 2004-03-11 Walter Bau-Ag Magnetbahnfahrweg aus Stahlträgern im Verbund mit Fahrwegelementen aus Betonfertigteilen
EP1579077A4 (fr) * 2002-12-30 2008-10-22 Koo Min Se Poutre mixte precontrainte, structure de poutre mixte precontrainte en continu et procedes de fabrication et de raccordement correspondants
EP1597434B1 (fr) * 2003-01-14 2007-12-19 Schmitt Stumpf Frühauf und Partner Ingenieurgesellschaft im Bauwesen mbH Piste pour trains a sustentation magnetique, et son procede de production
DE10332253A1 (de) * 2003-03-20 2004-09-30 Hirschfeld, Inc., San Angelo Verfahren zur Errichtung eines Fahrweges für eine Magnetschwebebahn
US7347350B2 (en) * 2003-08-26 2008-03-25 Lincoln Global, Inc. Welding workpiece support structures
US7357290B2 (en) * 2003-08-26 2008-04-15 Lincoln Global, Inc. Workpiece support structures and system for controlling same
DE102004028948A1 (de) * 2004-06-14 2005-12-29 Thyssenkrupp Transrapid Gmbh Fahrwegträger und damit hergestellte Magnetschwebebahn
CN103223246B (zh) 2006-03-03 2015-12-23 哈姆游乐设施股份有限公司 直线电机驱动的游乐设施及方法
DE102008005888A1 (de) * 2008-01-22 2009-07-23 Thyssenkrupp Transrapid Gmbh Magnetschwebebahn
US8297017B2 (en) 2008-05-14 2012-10-30 Plattforms, Inc. Precast composite structural floor system
US8161691B2 (en) 2008-05-14 2012-04-24 Plattforms, Inc. Precast composite structural floor system
US8453406B2 (en) 2010-05-04 2013-06-04 Plattforms, Inc. Precast composite structural girder and floor system
US8381485B2 (en) 2010-05-04 2013-02-26 Plattforms, Inc. Precast composite structural floor system
CN102140777B (zh) * 2011-04-01 2013-01-16 深圳市市政设计研究院有限公司 一种多弦杆组合梁结构
WO2013000090A1 (fr) 2011-06-30 2013-01-03 Hm Attractions Inc. Système de contrôle de mouvement et procédé pour une attraction
CN103512739B (zh) * 2013-09-25 2015-09-02 合肥工业大学 对金属构件施加有效预应力的自平衡体系
CA2973238C (fr) * 2015-01-09 2019-04-23 Dynamic Structures, Ltd. Composant de structure de support de voie en v
CN106245512B (zh) * 2016-08-04 2018-05-04 浙江工业大学 钢-橡胶混凝土扣件式组合箱梁
CN109683145B (zh) * 2018-12-14 2021-05-07 中国航空工业集团公司北京航空精密机械研究所 大尺寸边缘驱动旋转转台的台体
CN110965405A (zh) * 2019-12-20 2020-04-07 重庆艾博瑞威轨道交通设备有限公司 一种新型单轨轨道梁

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1136874A (fr) * 1954-10-05 1957-05-21 Alweg Forschung Gmbh Voie ou élément porteur pour véhicules du type monorail
US3771033A (en) * 1970-07-07 1973-11-06 Japan National Railway Apparatus for propelling a movable body in a suspended state at a very high speed
US3892185A (en) * 1970-12-11 1975-07-01 Rockwell International Corp Low drag magnetic suspension system
SE373821B (fr) * 1972-02-29 1975-02-17 Swedish Rail System Ab Srs
DE2239656A1 (de) * 1972-08-12 1974-02-28 Maschf Augsburg Nuernberg Ag Fahrbahnkoerper fuer hochleistungsschnellbahnen
US3920182A (en) * 1973-11-23 1975-11-18 George Molyneux Heavy duty rail track assemblies
NL7416664A (nl) * 1974-02-05 1975-08-07 Krauss Maffei Ag Lineaire inductiemotor.
JPS5253317A (en) * 1975-10-28 1977-04-28 Toshiba Corp Guide for magnetic floating vehicle
FR2359245A1 (fr) * 1976-07-23 1978-02-17 Vivion Robert Dispositif de fixation de voie ferree sur longrines disposees bout a bo
LU77749A1 (de) * 1977-07-12 1979-03-26 Arbed Verbundtraeger
DE2744367A1 (de) * 1977-10-01 1979-04-05 Maschf Augsburg Nuernberg Ag Aufgestaenderter fahrweg fuer hochleistungsschnellbahnen
DE2914907A1 (de) * 1979-04-12 1980-10-30 Thyssen Industrie Brueckenartiger fahrbahntraeger fuer magnet-schwebebahnen
FR2494400A1 (fr) * 1980-11-14 1982-05-21 Campenon Bernard Perfectionnement aux ouvrages mixtes beton-acier de genie civil a ames metalliques d'elements de beton
DE3404061C1 (de) * 1984-02-06 1985-09-05 Thyssen Industrie Ag, 4300 Essen Verfahren zur Iagegenauen Befestigung von Ausruestungsteilen an vorgegebenen Anschlussorten an der Tragkonstruktion von Fahrwegen
IT1176498B (it) * 1984-07-27 1987-08-18 I P A Ind Prefabbricati Affini Componenti per linee ferroviarie su piastre prefabbricate in cemento armato,senza massicciata

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699006B2 (en) 2003-03-25 2010-04-20 Thyssenkrupp Transrapid Gmbh Carrier and a magnetic levitation railway provided with said deck
DE10314068B4 (de) * 2003-03-25 2016-08-18 Thyssenkrupp Transrapid Gmbh Fahrwegträger und damit hergestellte Magnetschwebebahn

Also Published As

Publication number Publication date
AU631839B2 (en) 1992-12-10
CA2009132A1 (fr) 1990-08-01
RU2023785C1 (ru) 1994-11-30
DE59000298D1 (de) 1992-10-22
DD291792A5 (de) 1991-07-11
CN1044836A (zh) 1990-08-22
US5027713A (en) 1991-07-02
DE3902949A1 (de) 1990-08-09
AU4904790A (en) 1990-08-09
CA2009132C (fr) 1999-05-04
EP0381136A1 (fr) 1990-08-08
JPH02248501A (ja) 1990-10-04

Similar Documents

Publication Publication Date Title
EP0381136B1 (fr) Voie porteuse pour véhicules magnétiques
EP2088244B1 (fr) Pont en béton armé ou pont de construction composite et methode pour sa fabrication
EP0987370B1 (fr) Méthode précise de positionnement et de connection des stators d'une voie pour véhicule à lévitation magnétique et sa structure de support
EP1048784B1 (fr) Voie pour circulation à lévitation magétique, par exemple TRANSRAPID
EP1888843A1 (fr) Voie sans ballast pour vehicules ferroviaires
DE10321047B4 (de) Fahrbahn für Magnetschwebebahnen und Herstellungsverfahren dafür
AT517231B1 (de) Verfahren zur Herstellung einer Fahrbahnplatte für eine Brücke
DE3825508C1 (de) Verfahren zur Justierung und Befestigung von Funktionsflächen eines Fahrwegs einer elektromagnetischen Schnellbahn und Vorrichtung zur Durchführung des Verfahrens
EP0556609B1 (fr) Quai ferroviaire
DE10212090B4 (de) Fahrweg für eine elektromagnetische Schnellbahn
EP1597434B1 (fr) Piste pour trains a sustentation magnetique, et son procede de production
EP0445259B1 (fr) Rail pour vehicules a levitation magnetique
DE10237176B4 (de) Fahrbahn für Magnetbahnzüge
DE102006038888B3 (de) Fahrbahn für Magnetschwebebahnen
DE20220631U1 (de) Fahrweg für spurgeführte Fahrzeuge
EP1573133B1 (fr) Traverse de chassis et son procede de production
EP2166149B2 (fr) Unité de pièce de structure de voie ferrée
EP1114221A1 (fr) Structure de traverses destinee a une voie ferree destinee a des vehicules ferroviaires, notamment a une voie ballastee
DE202009018562U1 (de) Schienenlagerung
DE19944783A1 (de) Feste-Fahrbahn-System
WO2004005619A1 (fr) Voie pour un train a sustentation magnetique
DE2303552A1 (de) Anordnung zur zusammenfassung und montage mehrerer fahrbahnseitiger komponenten der betriebssysteme eines magnetschwebefahrzeugs
DE102009037309A1 (de) Schienenlagerung und Verfahren zur Herstellung eines Gleisabschnitts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19910729

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59000298

Country of ref document: DE

Date of ref document: 19921022

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060113

Year of fee payment: 17

Ref country code: FR

Payment date: 20060113

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080124

Year of fee payment: 19

Ref country code: DE

Payment date: 20080122

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090130