EP0362525A2 - Verfahren und Vorrichtung zum Kaltmahlen - Google Patents

Verfahren und Vorrichtung zum Kaltmahlen Download PDF

Info

Publication number
EP0362525A2
EP0362525A2 EP89115154A EP89115154A EP0362525A2 EP 0362525 A2 EP0362525 A2 EP 0362525A2 EP 89115154 A EP89115154 A EP 89115154A EP 89115154 A EP89115154 A EP 89115154A EP 0362525 A2 EP0362525 A2 EP 0362525A2
Authority
EP
European Patent Office
Prior art keywords
refrigerant
sump
grinding
grinding chamber
coarse material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89115154A
Other languages
English (en)
French (fr)
Other versions
EP0362525A3 (de
EP0362525B1 (de
Inventor
Klaus Bochmann
Hans Joachim Risto
Wolfgang Volker
Helmut Gursky
Dieter Steidl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Priority to AT89115154T priority Critical patent/ATE103208T1/de
Publication of EP0362525A2 publication Critical patent/EP0362525A2/de
Publication of EP0362525A3 publication Critical patent/EP0362525A3/de
Application granted granted Critical
Publication of EP0362525B1 publication Critical patent/EP0362525B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S241/00Solid material comminution or disintegration
    • Y10S241/37Cryogenic cooling

Definitions

  • the invention relates to a method and a device for cold grinding in a fluidized bed counter jet mill.
  • Jet mills have long been known comminution machines in which the particles to be comminuted are accelerated by gas flows and comminuted by collision. There are a number of different jet mill designs. They differ in the type of gas flow, the type of Impact of the particles against each other or on an impact surface and thereby whether the particles to be comminuted are carried along in the gas jet or whether the gas jet hits the particles and entrains them. Air or superheated steam is usually used as the grinding gas.
  • the fluidized bed counter jet mill In the fluidized bed counter jet mill, freely expanding gas jets meet in a grinding chamber in which the material to be ground is in the form of a fluidized bed. The grinding is carried out practically exclusively by impact of the regrind particles against one another, the grinding is thus almost wear-free.
  • the fluidized bed counter jet mill is assigned a classifier, in which the fine material obtained is separated from the coarse material which has not yet been comminuted sufficiently. The coarse material is returned to the grinding chamber.
  • the propellant gas stream is therefore cooled, as described, for example, in DE-OS 21 33 019.
  • the cooling of the propellant gas stream makes it possible to grind materials that would not be grindable in jet mills under normal conditions.
  • intensive cooling for example with liquid nitrogen
  • the self-cooling of the propellant gas stream due to its expansion the achievable improvement in grindability leaves much to be desired.
  • fine Reach grain sizes but only with an extremely high expenditure of time and energy.
  • the invention is therefore based on the object of providing a method and a device for cold grinding which require little energy and refrigerant and at the same time enable the fine grinding of products to finest grain sizes which have hitherto been practically unattainable with a substantial increase in throughput.
  • the invention is therefore based on the idea of not cooling the propellant gas flow, but rather the coarse material circulating with a cryogenic refrigerant.
  • the measure according to the invention brings about a sudden improvement in the grinding results, as can be seen from the operating results set out below.
  • the invention enables a considerable increase in throughput to be achieved on fluidized bed counter-jet mills.
  • the end product is easy to pour and has a high bulk and bulk weight.
  • materials that are tough, rubber table, sticky or greasy can be excellently ground using the method according to the invention.
  • These are primarily natural products, many pharmaceutical products, thermoplastics, waxes and high-molecular plastics.
  • Liquefied gases, especially nitrogen, are primarily considered as refrigerants, but also carbon dioxide. In the simplest and in many cases the most practical case, these can be fed directly into the bottom of the mill. Indirect cooling of the coarse material is of course also possible. Indirect cooling can also take place using other refrigerants, for example brine baths.
  • the mill shows a fluidized bed counter jet mill in schematic form.
  • the mill consists of a housing 1 which comprises the grinding chamber 2 and the sump 3.
  • the propellant gas enters the grinding chamber 2 through the nozzles 4.
  • the classifier 5 connects to the housing 1.
  • the coarse material to be ground is in the form of a fluidized bed 6 in the grinding chamber.
  • the regrind is metered in through the lock 7.
  • the fine material 10 separated in the classifier 5 is drawn off through the fine material outlet 8, as indicated by the arrow 9, and fed to the filter system 15. This has a connection 16 for the exhaust gas and a removal lock 17 for the fine material 10 obtained.
  • the coarse material 11 flows from the classifier 5 back into the grinding chamber 2.
  • the propellant gas, with which the nozzles 4 are acted on, is brought in through the supply line 14.
  • the coarse material located in the sump 3 of the mill is cooled by liquid nitrogen. This is introduced through the line 12 and the porous entry body 13. Porous feed grains are particularly suitable for small mills. For grinders with larger diameters, other feed systems, for example nozzle plates, are preferred in order to be able to feed the nitrogen in as finely divided as possible.
  • the nitrogen supply through line 12 and the porous Entry body 13 takes place depending on the temperature control 18.
  • the regrind can be fed through the lock 7 directly into the sump 3.
  • the fine fraction of the fine material 10 is determined by the speed of the classifier 5.
  • the coarse material 11 flowing back from the classifier 5 forms, together with the mill material entering from the lock 7, the fluidized bed 6.
  • the liquid nitrogen entering through the porous feed body 13 evaporates and cools the sump of the mill, ie the coarse material 11 flowing back from the classifier 5 and possibly freshly applied mill material .
  • the evaporated cold nitrogen is drawn upwards through the material and enters the grinding zone.
  • Cold gas, coarse material and regrind form a first fluidized bed zone below the grinding chamber 2 in the sump 3.
  • FIG. 2 shows in schematic form the lower part of the fluidized bed counter-jet mill from FIG. 1, but with the lock 7 for the regrind arranged directly on the sump 3.
  • the arrows 19 illustrate the mixture of cold gas, propellant gas, coarse material and fine material which is drawn off towards the classifier.
  • the liquid nitrogen is supplied through lines 20 and 21.
  • the liquid nitrogen entering through line 21 passes into a double-walled tube 22 closed at the end faces.
  • This double-walled tube 22 has outlet openings 23 directed inwards.
  • the entire lower part of the mill housing is also designed as a double-walled chamber 24.
  • the line 20 opens into it.
  • the chamber 24 has outlet openings 25 arranged in the sump 3 for the nitrogen supplied through the line 20.
  • the coarse material 11 flowing back from the classifier is therefore first indirectly cooled in the area between the double-walled tube 22 and the chamber 24. Then there is direct cooling by the nitrogen emerging from the outlet openings 23 and 25. Depending on the mode of operation, this can still be liquid or already gaseous.
  • FIG. 4 shows an embodiment similar to FIG. 2, but with an elongated sump 3.
  • a certain flow form is impressed on the coarse material 11 and the cold gas by means of a tubular apron 26.
  • the apron 26 separates the grinding chamber into a central shaft 37, where the grinding process takes place, and into an annular shaft 38 for the coarse material flowing back.
  • the liquid nitrogen is supplied at two points, namely through line 12a directly into the sump 3 and through line 12b into a spray system 39 in the annular shaft 38.
  • the nitrogen introduced through line 12b therefore cools the coarse material flowing back from the classifier.
  • the invention is not limited to the embodiments described above, since there are numerous other possibilities for cooling the coarse material flowing back from the classifier by means of a refrigerant.
  • Several grinding zones with sump in the form of a cascade can also be connected in series. The mixture of fine and coarse material emerging from the grinding zone is separated from the exhaust gas in a filter and fed to the next grinding zone. The one under every meal zone swamp is cooled according to the invention. A sifter is only assigned to the last stage.
  • Hostalen (R) GUR 200 is a high-molecular polyethylene from Hoechst AG, Frankfurt. As the operating results show, the two investigated materials could not be ground to the finenesses that can be achieved with the method according to the invention under economic conditions.
  • the grain size analysis was determined using a commercially available laser granolaometer (Cilas). From the printed curve, the d10, d50 and d90 values were selected as representative values. For example, the d10 value of 10.2 ⁇ m in line 4 of the table means that 10% of the end product is grains with a size below 10.2 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Fließbett-Gegenstrahlmühlen sind Gasstrahlmühlen, mit denen sich sehr hohe Mahlfeinheiten bei äußerst gerin­gem Verschleiß erreichen lassen. Eine Verbesserung des Mahlergebnisses läßt sich durch Abkühlung der Gasstrah­len mittels eines Kältemittels erreichen, jedoch ist die erreichbare Verbesserung nicht erheblich und der Kältemittelverbrauch sehr hoch. Zwecks Senkung des Kältemittelverbrauchs bei gleichzeitiger beträchtlicher Verbesserung der Mahlfeinheit wird das vom Sichter (5) der Mühle abgetrennte Grobgut (11) durch das Kältemittel innerhalb der Fließbett-Gegenstrahlmühle gekühlt und in die Mahlkammer (2) zurückgeführt. Als Kältemittel wird flüssiger Stickstoff bevorzugt, mit dem der Sumpf (3) der Mühle gekühlt wird.

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrich­tung zum Kaltmahlen in einer Fließbett-Gegenstrahlmühle.
  • Strahlmühlen sind seit langem bekannte Zerkleinerungs­maschinen, in denen die zu zerkleinernden Teilchen durch Gasströme beschleunigt und durch Zusammenprall zerkleinert werden. Es gibt eine Anzahl unterschied­licher Strahlmühlenkonstruktionen. Sie unterscheiden sich durch die Art der Gasführung, durch die Art des Aufprallens der Teilchen gegeneinander oder auf eine Prallfläche und dadurch, ob die zu zerkleinernden Teil­chen im Gasstrahl mitgeführt werden oder ob der Gas­strahl auf die Teilchen auftrifft und sie mitreißt. Als Mahlgas wird gewöhnlich Luft oder Heißdampf verwendet.
  • Bei der Fließbett-Gegenstrahlmühle treffen freiexpan­dierende Gasstrahlen in einer Mahlkammer aufeinander, in welcher sich das Mahlgut in Form eines Fließbettes befindet. Die Vermahlung erfolgt hierbei praktisch aus­schließlich durch Aufeinanderprall der Mahlgutteilchen gegeneinander, die Vermahlung ist somit nahezu ver­schleißfrei. Der Fließbett-Gegenstrahlmühle ist ein Sichter zugeordnet, in welchem das gewonnene Feingut vom noch nicht genügend zerkleinerten Grobgut abge­trennt wird. Das Grobgut wird in die Mahlkammer zurück­geführt.
  • Viele Stoffe, beispielsweise Kunststoffe, lassen sich wegen ihrer Zähigkeit nur schlecht oder überhaupt nicht auf feine Korngrößen vermahlen. Durch Kältezufuhr und die dadurch bewirkte Versprödung der Werkstoffe lassen sich die Mahleigenschaften derartig zäher Werk­stoffe verbessern. Bei Strahlmühlen kühlt man deshalb den Treibgasstrom ab, wie es beispielsweise in der DE-­OS 21 33 019 beschrieben ist. Die Abkühlung des Treib­gasstromes ermöglicht es, Materialien zu mahlen, die unter normalen Bedingungen in Strahlmühlen nicht mahlbar wären. Trotz intensiver Abkühlung, beispiels­weise mit flüssigem Stickstoff, und trotz der Eigenab­kühlung des Treibgasstromes infolge seiner Expansion, läßt die erreichbare Verbesserung der Mahlbarkeit jedoch sehr zu wünschen übrig. Zwar lassen sich feine Korngrößen erreichen, jedoch nur mit einem überaus hohen Zeit- und Energieaufwand.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Kaltmahlen zu schaffen, welche einen geringen Bedarf an Energie und Kältemittel erfordern und gleichzeitig die Feinstzer­mahlung von Produkten auf bisher praktisch nicht er­reichbare feinste Korngrößen bei wesentlicher Durch­satzsteigerung ermöglichen.
  • Ausgehend von dem im Oberbegriff des Anspruches 1 be­rücksichtigen Stand der Technik ist diese Aufgabe er­findungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprü­chen angegeben.
  • Die Erfindung beruht daher auf der Überlegung, nicht den Treibgasstrom, sondern das umlaufende Grobgut mit einem kryogenen Kältemittel zu kühlen. Die erfindungs­gemäße Maßnahme bewirkt eine sprunghafte Verbesserung der Mahlergebnisse, wie aus den weiter hinten aufge­stellten Betriebsergebnissen ersichtlich ist.
  • Es ist überraschend, daß sich dies allein durch die er­findungsgemäße Maßnahme, nicht den Treibgasstrom, son­dern das umlaufende Grobgut zu kühlen, erreichen läßt. Die Erfinder folgerten dies aus Betriebsversuchen mit einer Fließbett-Gegenstrahlmühle, bei der sich trotz intensiver Abkühlung des Treibgasstromes mit flüssigem Stickstoff für das umlaufende Grobgut im Sumpf der Müh­ le nur eine geringe Abkühlung ergab. Die Erfinder schlossen hieraus, daß die Kühlung am Grobgut selbst erfolgen müsse, um die Mahlleistung zu verbessern.
  • Spätere theoretische Überlegungen bestätigten die Rich­tigkeit dieser Folgerung.
  • Wesentlich hierbei ist, daß dann, wenn mit einem ge­kühlten Treibgasstrom gemahlen wird, die in Wärme umge­wandelte Stoßenergie eines Teilchens nur unvollkommen auf den kalten Gasstrom übergeht. Dies hat mehrere Ur­sachen. So ist die Zeit für den Wärmeübergang vom Teil­chen auf das Gas extrem kurz. Da die Wärmekapazität mit sinkender Temperatur kleiner wird, ist die Temperatur­erhöhung durch einen Stoß bei tiefen Temperaturen grö­ßer als bei höheren Temperaturen. Die Relativbewegung zwischen Teilchen und kaltem Treibgas ist gering, so daß die Werte für den Wärmeübergang ebenfalls abfallen. Hinzu kommt, daß die Wärmeleitfähigkeit vieler Mahlgü­ter an sich schon niedrig ist und mit sinkender Tempera­tur noch schlechter wird. Ferner ist die Beschleuni­gungsenergie von kaltem Gas schlechter als von warmem Gas. Je feiner die angestrebten Korngrößen werden, um so schlechter werden daher die Mahlbedingungen beim Mahlen mit einem gekühlten Treibgasstrom. Dies trifft besonders auf Thermoplaste zu, die einen sehr niedrigen Kristallisationsbereich haben. Deren Mahlung wird völ­lig unwirtschaftlich.
  • Durch die Erfindung läßt sich auf Fließbett-Gegen­strahlmühlen eine beträchtliche Durchsatzsteigerung erreichen. Es lassen sich Teilchen höchster Feinheit mit entsprechender Oberflächenvergrößervng und glatter Oberflächenstruktur herstellen. Das Endprodukt wird gut rieselfähig und besitzt ein hohes Schütt- und Rüttge­wicht. Insbesondere Werkstoffe, die zäh, gummielstisch, klebrig oder schmierig sind, lassen sich mit dem er­findungsgemäßen Verfahren hervorragend mahlen. Hierbei handelt es sich vor allem um Naturstoffe, viele Pharma­produkte, Thermoplaste, Wachse und hochmolekulare Kunststoffe. Als Kältemittel kommen in erster Linie verflüssigte Gase, insbesondere Stickstoff, infrage, aber auch Kohlendioxid. Diese können im einfachsten und in vielen Fällen zweckmäßigsten Fall direkt in den Sumpf der Mühle eingespeist werden. Selbstverständlich ist auch eine indirekte Kühlung des Grobgutes möglich. Eine indirekte Kühlung kann auch durch andere Kältemit­tel, beispielsweise Solebäder, erfolgen.
  • Einige Ausführungsbeispiele der Erfindung sollen anhand der beigefügten Zeichnungen erläutert werden.
  • Es zeigen:
    • Fig.1 eine Fließbett-Gegenstrahlmühle in schematischer Form,
    • Fig.2 die Kühlung des Sumpfes der Fließbett­Gegenstrahlmühle von Fig.1,
    • Fig.3 eine Mischform aus direkter und indirekter Kühlung des Sumpfes,
    • Fig.4 eine Ausführungsform ähnlich Fig.3, jedoch mit ausschließlich direkter Kühlung.
  • In der nachfolgenden Beschreibung sind für gleiche Tei­le in allen Figuren die gleichen Bezugszeichen verwen­det worden.
  • Fig.1 zeigt eine Fließbett-Gegenstrahlmühle in schema­tischer Form. Die Mühle besteht aus einem Gehäuse 1, welches die Mahlkammer 2 und den Sumpf 3 umfaßt. Das Treibgas tritt durch die Düsen 4 in die Mahlkammer 2 ein. An das Gehäuse 1 schließt sich der Sichter 5 an. Das zu mahlende Grobgut befindet sich in Form eines Fließbettes 6 in der Mahlkammer. Das Mahlgut wird durch die Schleuse 7 zudosiert. Das im Sichter 5 abgetrennte Feingut 10 wird durch den Feingutaustritt 8 abgezogen, wie durch den Pfeil 9 angegeben, und der Filteranlage 15 zugeführt. Diese besitzt einen Stutzen 16 für das Abgas und eine Entnahmeschleuse 17 für das gewon­nene Feingut 10. Das Grobgut 11 strömt vom Sichter 5 zurück in die Mahlkammer 2. Das Treibgas, mit dem die Düsen 4 beaufschlagt werden, wird durch die Zufuhrlei­tung 14 herbeigeführt.
  • Erfindungsgemäß wird das sich im Sumpf 3 der Mühle be­findende Grobgut durch flüssigen Stickstoff abgekühlt. Dieser wird durch die Leitung 12 und den porösen Ein­tragkörper 13 eingeleitet. Poröse Eintragkörner eignen sich besonders für kleine Mühlen. Für Mühlen mit grö­ßeren Durchmessern sind andere Eintragsysteme, bei­spielsweise Düsenplatten, vorzuziehen, um den Stick­stoff möglichst feinzerteilt eintragen zu können. Die Stickstoffzufuhr durch die Leitung 12 und den porösen Eintragkörper 13 erfolgt in Abhängigkeit von der Temperaturregelung 18. Die Mahlgutaufgabe durch die Schleuse 7 kann auch direkt in den Sumpf 3 erfolgen. Die Feinfraktion des Feingutes 10 wird durch die Drehzahl des Sichters 5 bestimmt. Das vom Sichter 5 zurückstromende Grobgut 11 bildet zusammen mit dem aus der Schleuse 7 eintretenden Mahlgut das Fließbett 6. Der durch den porösen Eintragkörper 13 eintretende flüssige Stickstoff verdampft und kühlt den Sumpf der Mühle, d.h. das vom Sichter 5 zurückstromende Grobgut 11 und gegebenenfalls frischaufgegebenes Mahlgut. Der verdampfte kalte Stickstoff zieht nach oben durch das Gut ab und tritt in die Mahlzone ein. Kaltgas, Grobgut und Mahlgut bilden unterhalb der Mahlkammer 2 im Sumpf 3 eine erste Fließbettzone.
  • Fig.2 zeigt in schematischer Form den unteren Teil der Fließbett-Gegenstrahlmühle von Fig.1, jedoch mit der Schleuse 7 für das Mahlgut direkt am Sumpf 3 angeordnet. Die Pfeile 19 verdeutlichen das nach oben zum Sichter hin abziehende Gemisch aus Kaltgas, Treibgas, Grobgut und Feingut.
  • Fig.3 zeigt eine Variante mit indirektem und direkten Wärmeaustausch zwischen zugeführtem Stickstoff und Mahlgut. Die Zufuhr des flüssigen Stickstoffes erfolgt durch die Leitungen 20 und 21. Der durch die Leitung 21 eintretende flüssige Stickstoff gelangt in ein an den Stirnflächen geschlossenes doppelwandiges Rohr 22. Die­ses doppelwandige Rohr 22 besitzt nach innen gerichtet Austrittsöffnungen 23. Der gesamte untere Teil des Mühlengehäuses ist ebenfalls als doppelwandige Kammer 24 ausgebildet. In sie mündet die Leitung 20. Die Kammer 24 besitzt im Sumpf 3 angeordnete Austrittsöffnungen 25 für den durch die Leitung 20 zugeführten Stickstoff. Das vom Sichter zurückströmende Grobgut 11 wird daher zunächst in dem Bereich zwischen dem doppelwandigen Rohr 22 und der Kammer 24 indirekt gekühlt .Anschließend erfolgt eine direkte Kühlung durch den aus den Aus­trittsöffnungen 23 und 25 austretenden Stickstoff. Je nach Betriebsweise kann dieser noch flüssig oder be­reits gasförmig sein.
  • Fig.4 zeigt eine Ausführungsform ähnlich Fig.2, jedoch mit einem verlängerten Sumpf 3. Durch eine rohrförmige Schürze 26 wird hierbei dem Grobgut 11 und dem Kaltgas eine bestimmte Strömungsform aufgeprägt. Die Schürze 26 trennt die Mahlkammer in einen zentralen Schacht 37, wo der Mahlvorgang stattfindet, und in einen ringförmigen Schacht 38 für das zurückströmende Grobgut. Die Zufuhr des flüssigen Stickstoffes erfolgt an zwei Stellen, nämlich durch die Leitung 12a direkt in den Sumpf 3 und durch die Leitung 12b in ein Einsprühsystem 39 im ring­förmigen Schacht 38. Der durch die Leitung 12b einge­leitete Stickstoff kühlt demnach unmittelbar das vom Sichter zurückströmende Grobgut.
  • Die Erfindung ist nicht auf die vorstehend beschriebe­nen Ausführungsformen beschränkt, da zahlreiche weitere Möglichkeiten für die Abkühlung des vom Sichter zurück­strömenden Grobgutes durch ein Kältemittel bestehen. Es können auch mehrere Mahlzonen mit Sumpf in Form einer Kaskade hintereinander geschaltet werden. Hierbei wird das aus der Mahlzone austretende Gemisch aus Feingut und Grobgut in einem Filter vom Abgas abgetrennt und der nächsten Mahlzone zugeführt. Der unter jeder Mahl­ zone befindliche Sumpf wird hierbei gemäß der Erfindung gekühlt. Erst der letzten Stufe wird ein Sichter zuge­ordnet.
  • Nachstehende Betriebsergebnisse zeigen den Fortschritt des erfindungsgemäßen Verfahrens gegenüber der herkömm­lichen Betriebsweise.
    Produktbezeichnung Korngrößen Produktdurchsatz Gasdurchsat
    Aufgabegut Endprodukt Kg/h Luft N₂
    d₁₀ µm d₅₀ µm d₉₀ µm d₁₀ µm d₅₀ µm d₉₀ µm m³/h m³/h
    Hostalen(R) GUR 200 30,3 82,2 127,3 17,5 32,1 85,3 2,0 850 ohne
    Hostalen(R) GUR 200 30,3 82,2 127,3 14,3 23,6 38,6 13,0 850 200
    Polyamid 70 130 200 keine Mahlwirkung 850 ohne
    Polyamid 70 130 200 10,2 26,5 41,6 3 850 300
  • Hostalen(R) GUR 200 ist ein hochmolekulares Polyethylen der Hoechst AG, Frankfurt. Wie die Betriebsergebnisse zeigen, konnten beide untersuchten Materialien unter wirtschaftlichen Bedingungen nicht auf solche Feinhei­ten gemahlen werden, wie sie mit dem erfindungsgemäßen Verfahren erreichbar sind.
  • Die Korngrößenanalyse wurde mit einem handelsüblichen Lasergranolometer (Cilas) ermittelt. Aus der ausge­druckten Kurve wurden die d₁₀-, d₅₀- und d₉₀-Werte als repräsentative Werte ausgewählt. Zum Beispiel bedeutet der d₁₀-Wert von 10,2 µm in Zeile 4 der Tabelle, daß 10% des Endproduktes Körner mit einer Größe unter 10,2µm sind.
  • Besonders überraschend ist die Steigerung des Produkt­durchsatzes bei Hostalen(R)GUR 200 von 2,0 auf 13,0 kg/h bei gleichzeitig wesentlich engerem Kornband. Durch die damit verbundene signifikante Vergrößerung der spezi­fischen Oberfläche eröffnen sich neue Anwendungsmög­lichkeiten.

Claims (7)

1. Verfahren zum Kaltmahlen in einer Fließbett-­Gegenstrahlmühle mit einer von Gasstrahlen beauf­schlagten Mahlkammer (2), einer Mahlgutaufgabeein­richtung, einem Sichter (5) zur Trennung von Grob­(11) und Feingut (10) und einem Sumpf (3) unterhalb der Mahlkammer für zudosiertes Mahlgut und vom Sich­ter zurückströmendes Grobgut,
dadurch gekennzeichnet,
daß das vom Sichter zurückströmende Grobgut inner­halb der Fließbett-Gegenstrahlmühle durch ein kryogenes Kältemittel gekühlt wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß das kryogene Kältemittel in feinzerteilter Form mit dem Grobgut in Berührung gebracht wird.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß das kryogene Kältemittel in den Sumpf eingetra­gen wird.
4. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 2 oder 3
gekennzeichnet durch eine im Sumpf einer Fließbett­Gegenstrahlmühle angeordnete Eintragvorrichtung für ein kryogenes Kältemittel, welche als an den Stirn­flächen geschlossenes doppelwandiges Rohr (22) aus­gebildet ist, das in axialer Richtung mit Abstand zu den zylindrischen Wänden der Mahlkammer angeord­net ist und auf die Rohrachse gerichtete Austritts­ öffnungen (23) für das Kältemittel aufweist.
5. Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet,
daß die dem doppelwandigen Rohr zugeordneten Wände der Mahlkammer doppelwandig ausgebildet sind, mit kryogenem Kältemittel beaufschlagbar sind und in den Sumpf gerichtete Austrittsöffnungen (25) für das Kältemittel besitzen.
6. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3,
gekennzeichnet durch eine konzentrische rohrförmige Schürze (26) welche die Mahlkammer in einen zentra­len Schacht (37) und einen ringförmigen Schacht (38) trennt.
7. Vorrichtung nach Anspruch 6,
gekennzeichnet durch eine Einsprühvorrichtung (39) für das kryogene Kältemittel im ringförmigen Schacht.
EP89115154A 1988-10-05 1989-08-17 Verfahren und Vorrichtung zum Kaltmahlen Expired - Lifetime EP0362525B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89115154T ATE103208T1 (de) 1988-10-05 1989-08-17 Verfahren und vorrichtung zum kaltmahlen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3833830 1988-10-05
DE3833830A DE3833830A1 (de) 1988-10-05 1988-10-05 Verfahren und vorrichtung zum kaltmahlen

Publications (3)

Publication Number Publication Date
EP0362525A2 true EP0362525A2 (de) 1990-04-11
EP0362525A3 EP0362525A3 (de) 1991-01-16
EP0362525B1 EP0362525B1 (de) 1994-03-23

Family

ID=6364406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89115154A Expired - Lifetime EP0362525B1 (de) 1988-10-05 1989-08-17 Verfahren und Vorrichtung zum Kaltmahlen

Country Status (7)

Country Link
US (1) US4962893A (de)
EP (1) EP0362525B1 (de)
JP (1) JPH02227148A (de)
AT (1) ATE103208T1 (de)
DE (2) DE3833830A1 (de)
ES (1) ES2052845T3 (de)
ZA (1) ZA897535B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377170A2 (de) * 1988-12-31 1990-07-11 Hoechst Aktiengesellschaft Verfahren zur Herstellung feinkörniges Polyetherketonpulvers und dessen Verwendung
US5247052A (en) * 1988-12-31 1993-09-21 Hoechst Aktiengesellschaft Fine-grained polyether-ketone powder, process for the manufacture thereof, and the use thereof
US5887803A (en) * 1995-09-07 1999-03-30 Messer Griesheim Gmbh Process and apparatus for grinding and sifting a product
WO2007008480A1 (en) * 2005-07-07 2007-01-18 Nanotherapeutics, Inc. Process for milling and preparing powders and compositions produced thereby

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220014A1 (de) * 1992-06-19 1993-12-23 Messer Griesheim Gmbh Verfahren zur Feinmahlung in Apparaten mit Mahlkörpern
DE10059442A1 (de) 2000-11-30 2002-06-13 Messer Griesheim Gmbh Vorrichtung und Verfahren zur Herstellung von Feingut aus chemisch aktivem Mahlgut
IL159522A0 (en) 2001-07-05 2004-06-01 Kerr Mcgee Pigments Internat G Method for directly cooling fine-particle solid substances
JP4287173B2 (ja) * 2003-03-18 2009-07-01 株式会社リコー カウンタージェットミル式粉砕分級機
DE10351174B4 (de) * 2003-05-05 2005-11-24 Zeiss, Karl Reinhard, Dipl.-Ing. Verfahren und Vorrichtung zum Trennen von Stoffgemischen
FI120625B (fi) * 2005-08-17 2009-12-31 Valtion Teknillinen Tärkkelyspohjainen kuituratojen täyteaine- ja päällystyspigmenttikoostumus ja menetelmä sen valmistamiseksi
US20110297586A1 (en) * 2010-04-28 2011-12-08 Jean-Francois Leon Process for Separating Bitumen from Other Constituents in Mined, Bitumen Rich, Ore
CA2703082A1 (en) 2010-05-10 2011-11-10 Gary J. Bakken Method of bonding poly-crystalline diamonds to carbide surfaces
DE102011014643A1 (de) * 2011-03-21 2012-09-27 Roland Nied Betriebsverfahren für eine Strahlmühlenanlage und Strahlmühlenanlage
WO2014127206A2 (en) * 2013-02-15 2014-08-21 Ohio State Innovation Foundation Processing of harvested plant materials for extraction of biopolymers and related materials and methods
JP6283204B2 (ja) * 2013-11-11 2018-02-21 大阪瓦斯株式会社 微粉化装置
CN105928756A (zh) * 2016-04-23 2016-09-07 陈传海 一种新型物料缩分二分器
FR3072307B1 (fr) * 2017-10-12 2019-11-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif et procede de broyage cryogenique a jets confluents
CN109806531B (zh) * 2019-01-30 2020-04-24 河南理工大学 一种低碳气体水合物粉碎抑爆装置
DE102020006008B3 (de) * 2020-10-01 2022-03-31 Hosokawa Alpine Aktiengesellschaft Fließbettgegenstrahlmühle zur Erzeugung feinster Partikel aus Aufgabegut geringer Schüttdichte und Verfahren dafür

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897010A (en) * 1971-07-02 1975-07-29 Linde Ag Method of and apparatus for the milling of granular materials
SU1060199A1 (ru) * 1982-03-31 1983-12-15 Украинский Научно-Исследовательский Институт Специальных Сталей,Сплавов И Ферросплавов Струйна мельница
EP0135244A2 (de) * 1983-08-24 1985-03-27 JAMES HOWDEN & COMPANY LIMITED Pulverisiermühle
EP0139279A2 (de) * 1983-10-20 1985-05-02 Alpine Aktiengesellschaft Fliessbett-Gegenstrahlmühle
WO1986005717A1 (en) * 1985-04-03 1986-10-09 Magyar Aluminiumipari Tröszt An air-jet mill for fine and/or cryogenic milling and surface treatment of preferably hard, elastic and/or thermoplastic materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186648A (en) * 1963-05-27 1965-06-01 Grace W R & Co Fluid energy mill
DE2133019A1 (de) * 1971-07-02 1973-01-18 Linde Ag Verfahren und vorrichtung zum kaltstrahlmahlen
BE798161A (fr) * 1972-04-13 1973-10-12 Union Carbide Corp Procede de broyage a tres basse temperature
DE2253516C2 (de) * 1972-10-28 1985-09-26 Fa. E. Kampffmeyer, 2000 Hamburg Verfahren zum Herstellung von Pulver aus Fett bzw. fettähnlichen Stoffen mit oder ohne Trägerstoffe
GB2044126B (en) * 1979-03-15 1983-04-20 Air Prod & Chem Method and apparatus for cryogenic grinding
JPS62273061A (ja) * 1986-05-20 1987-11-27 株式会社 栗本鉄工所 低温粉砕用気流式粉砕装置
JPS62273062A (ja) * 1986-05-20 1987-11-27 株式会社 栗本鉄工所 低温粉砕用気流式粉砕装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897010A (en) * 1971-07-02 1975-07-29 Linde Ag Method of and apparatus for the milling of granular materials
SU1060199A1 (ru) * 1982-03-31 1983-12-15 Украинский Научно-Исследовательский Институт Специальных Сталей,Сплавов И Ферросплавов Струйна мельница
EP0135244A2 (de) * 1983-08-24 1985-03-27 JAMES HOWDEN & COMPANY LIMITED Pulverisiermühle
EP0139279A2 (de) * 1983-10-20 1985-05-02 Alpine Aktiengesellschaft Fliessbett-Gegenstrahlmühle
WO1986005717A1 (en) * 1985-04-03 1986-10-09 Magyar Aluminiumipari Tröszt An air-jet mill for fine and/or cryogenic milling and surface treatment of preferably hard, elastic and/or thermoplastic materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOVIET INVENTIONS ILLUSTRATED, Woche 8431, 12. September 1984, Sektion J/M, Klasse J02/M22, Nr. 84-194530/31, Derwent Publications Ltd, London, GB; & SU-A-1 060 199 (UKR SPEC. STEELFERR) 15-12-1983 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377170A2 (de) * 1988-12-31 1990-07-11 Hoechst Aktiengesellschaft Verfahren zur Herstellung feinkörniges Polyetherketonpulvers und dessen Verwendung
EP0377170A3 (de) * 1988-12-31 1991-05-02 Hoechst Aktiengesellschaft Verfahren zur Herstellung feinkörniges Polyetherketonpulvers und dessen Verwendung
US5247052A (en) * 1988-12-31 1993-09-21 Hoechst Aktiengesellschaft Fine-grained polyether-ketone powder, process for the manufacture thereof, and the use thereof
US5887803A (en) * 1995-09-07 1999-03-30 Messer Griesheim Gmbh Process and apparatus for grinding and sifting a product
WO2007008480A1 (en) * 2005-07-07 2007-01-18 Nanotherapeutics, Inc. Process for milling and preparing powders and compositions produced thereby

Also Published As

Publication number Publication date
DE3833830C2 (de) 1991-11-07
EP0362525A3 (de) 1991-01-16
JPH02227148A (ja) 1990-09-10
US4962893A (en) 1990-10-16
ES2052845T3 (es) 1994-07-16
DE58907281D1 (de) 1994-04-28
EP0362525B1 (de) 1994-03-23
DE3833830A1 (de) 1990-04-12
ATE103208T1 (de) 1994-04-15
ZA897535B (en) 1990-06-27

Similar Documents

Publication Publication Date Title
EP0362525B1 (de) Verfahren und Vorrichtung zum Kaltmahlen
EP0370447B1 (de) Verfahren und Vorrichtung zur produktschonenden Mahlung und gleichzeitigen Trocknung von feuchten Celluloseethern
EP2637790B1 (de) Verfahren zur zerkleinerung von mahlgut und wälzmühle
DE19728382C2 (de) Verfahren und Vorrichtung zur Fließbett-Strahlmahlung
EP2004329B1 (de) Verfahren zur erzeugung feinster partikel mittels einer strahlmühle
EP0650763A1 (de) Umlaufmahlanlage
EP0796660A1 (de) Verfahren und Vorrichtung zur Herstellung von extrem feinen Pulvern
WO2018122017A1 (de) Verfahren zur aufbereitung von carbon black und herstellungsverfahren eines pre-compounds für eine gummi-mischerei
EP0814133A1 (de) Verfahren zur kontinuierlichen Trockengranulation von Pulverruss
EP0377170B1 (de) Verfahren zur Herstellung feinkörniges Polyetherketonpulvers und dessen Verwendung
EP4196279A1 (de) Verfahren zur zerkleinerung von düngemittelschülpen in einer zweiwalzenmühle
EP0785814B1 (de) Verfahren zur hochdrucksprühextraktion von flüssigkeiten
DE3730597C2 (de) Strahlmühle
DE1607462B1 (de) Verfahren zur Feinzerkleinerung von durch Eintauchen in verfluessigtes Gas sproede gemachten festen Stoffen
DE2318549A1 (de) Kryogenes zerkleinerungsverfahren
WO2003028893A1 (de) Verfahren zur zerkleinerung von mahlgut sowie mahlanlage
DE2133019A1 (de) Verfahren und vorrichtung zum kaltstrahlmahlen
EP1339497B1 (de) Vorrichtung und verfahren zur herstellung von feingut aus chemisch aktivem mahlgut
DE60105908T2 (de) Vorrichtung zum Sandstrahlen
WO1998045042A1 (de) Verfahren zur vermahlung von temperaturempfindlichen produkten und für die durchführung dieses verfahrens geeignete mahlanlage
DE3620440A1 (de) Zweistufiges unter druck betriebenes gegenstrahl-zerkleinerungsverfahren zur vergroesserung der oberflaeche feinkoerniger bis koerniger schuettgueter
DE2516764C2 (de) Kaltmahlverfahren
EP1609848A1 (de) Verfahren zur Granulation von Malzextrakten
WO2001004363A1 (de) Verfahren zum zerkleinern von stückgut oder granulat sowie vorrichtung zur durchführung dieses verfahrens
WO2000071319A1 (de) Verfahren zum auf- und/oder zubereiten einer thermoplastischen masse und vorrichtung zur durchführung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910627

17Q First examination report despatched

Effective date: 19920908

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940323

REF Corresponds to:

Ref document number: 103208

Country of ref document: AT

Date of ref document: 19940415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58907281

Country of ref document: DE

Date of ref document: 19940428

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940523

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2052845

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 89115154.0

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980728

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980806

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980810

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980813

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980814

Year of fee payment: 10

Ref country code: ES

Payment date: 19980814

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980827

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980909

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981016

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990817

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990817

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

BERE Be: lapsed

Owner name: MESSER GRIESHEIM G.M.B.H.

Effective date: 19990831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

EUG Se: european patent has lapsed

Ref document number: 89115154.0

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050817