EP0341415A1 - Verfahren zum galvanischen Abscheiden eines Zink-Nickel-Legierungsüberzuges auf einem Stahlband - Google Patents

Verfahren zum galvanischen Abscheiden eines Zink-Nickel-Legierungsüberzuges auf einem Stahlband Download PDF

Info

Publication number
EP0341415A1
EP0341415A1 EP89106006A EP89106006A EP0341415A1 EP 0341415 A1 EP0341415 A1 EP 0341415A1 EP 89106006 A EP89106006 A EP 89106006A EP 89106006 A EP89106006 A EP 89106006A EP 0341415 A1 EP0341415 A1 EP 0341415A1
Authority
EP
European Patent Office
Prior art keywords
nickel
electrolyte
zinc
anodes
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89106006A
Other languages
German (de)
English (en)
French (fr)
Inventor
Theodor Dr. Florian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rasselstein AG
Original Assignee
Rasselstein AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rasselstein AG filed Critical Rasselstein AG
Publication of EP0341415A1 publication Critical patent/EP0341415A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Definitions

  • the invention relates to a method for the electrodeposition of a zinc-nickel alloy coating on a steel strip in an electrolyte, which contains Zn2+ and Ni2+ ions, using at least one metal anode at current densities of at least 10 A / dm2, the withdrawn metal content is continuously supplemented.
  • titanium anodes coated with platinum metals and / or their oxides are also known.
  • the use of coated titanium anodes of this type is expensive, since the noble metal coating is slightly dissolved during the electrolysis and consequently from time to time Time needs to be renewed.
  • the precious metal coating can also be rubbed off the titanium by mechanical injuries, which can be caused, for example, by insufficient tension in the steel strip when starting up the system.
  • soluble anodes made of zinc, nickel and their alloys include: low metal costs. With electrolytic dissolution with high current densities, however, especially on the nickel anodes, metal flakes form which have to be removed from the electrolyte, since they would impair the quality of the zinc-nickel coatings. In addition, the zinc content of the electrolyte increases due to the chemical dissolution of the zinc anodes.
  • the invention is therefore based on the object of demonstrating a method for the electrodeposition of a zinc-nickel alloy coating on a steel strip of the type mentioned at the outset, in which contamination of the electrolyte by foreign metal ions or anode flakes is avoided and which is therefore particularly easy to generate of flawless coatings with high corrosion resistance.
  • electrolyte-nickel anodes are used as anodes and in that the most chloride-free electrolyte is used.
  • Electrolyte nickel also called cathode nickel, is electrolytically refined, particularly pure, at least 99.5% nickel. Such, non-activated nickel tends to pass in normal electrolytes, which contain no or only a few chloride ions.
  • the passivation protects the electrolytic nickel anode faster resolution. It is important that the electrolyte is as chloride-free as possible, since so-called pitting on the anodes causes chloride and thus also tinsel formation.
  • chloride ions would accelerate the dissolution of the electrolyte nickel anode.
  • the passivation layer does not completely prevent the electrolytic nickel anodes from dissolving, it only slows them down.
  • electrolytic nickel anodes have a long service life.
  • the use of these electrolyte nickel anodes prevents the introduction of disruptive foreign metal ions and also prevents the formation of tinsel.
  • the nickel ions slowly released from the electrolyte nickel anodes serve to supplement the metal content in the electrolyte as desired.
  • an electrolyte should be used whose chloride content is below 300 mg / l, preferably below 50 mg / l. Such a low chloride content is usually unavoidable under industrial conditions due to contamination of the preparation salts.
  • the metal content removed must be continuously supplemented during operation. This is expediently carried out in such a way that the metal content in the electrolyte is supplemented by anodic dissolution of the metals in a separate container by pumping the electrolyte in a circuit from a plating container into the separate container and back, nickel being activated as the anode material by added elements is used.
  • the production of a chloride-free electrolyte is similarly quiet.
  • Nickel activated with sulfur has proven to be particularly suitable as anode material, nickel being advantageously used which contains about 0.03% sulfur, cf. A.C. Hart "The anodic dissolution of nickel in nickel sulfate / nickel chloride electrolytes", magazine “Metall Design” 4/74, pages 135-139.
  • the use of activated nickel in the anodic dissolution of the metals is particularly important in connection with the use of electrolytes that are as free of chloride as possible.
  • the prerequisite for carrying out the actual plating process is that the electrolyte is as chloride-free as possible.
  • This chloride-free electrolyte dissolves an electrolyte nickel anode only very slowly. While this is advantageous when carrying out the actual plating process, the passivation of the electrolytic nickel anode in anodic dissolution would prove to be unsuitable for supplementing the nickel removed from the electrolyte, because specifically in electrolyte-free or low-chloride electrolytes, the dissolution would prove unsuitable would go far too slowly.
  • nickel activated in such electrolytes with sulfur can be dissolved anodically quickly even at high current densities.
  • the cathodically deposited zinc and nickel are supplemented by chemical dissolution of zinc oxide or zinc carbonate and nickel carbonate in a separate container in the bypass. Since already small Foreign metal impurities such as lead, cadmium, copper, arsenic and antimony can impair the corrosion resistance of the deposited zinc-nickel alloy coatings, the metal salts used to supplement them must meet high purity requirements. In contrast, the anodic dissolution of zinc and activated nickel to supplement the extracted zinc and nickel ions is an inexpensive and environmentally friendly alternative. The costs for the metals are lower than for salts with the same high chemical purity. The anode metals have a high chemical purity.
  • the zinc and nickel contents of the electrolyte fluctuate only slightly.
  • the zinc and nickel content of the electrolyte can be supplemented and kept constant by the appropriate dimensioning of the electrode surfaces in the separate container and the level of the electrical current.
  • the electrolyte is circulated from the separate container through a filter into the plating container and back, keeping the concentration differences in the different containers low.
  • the anodic dissolution of the metals has the further advantage that no carcinogenic products, such as nickel carbonate, are used in this process.
  • the zinc-nickel content in the electrolyte can optionally also be supplemented by the anodic dissolution of zinc-nickel alloys.
  • the method according to the invention can be combined with the types of systems for electroplating with high current densities described in the patent literature (see, for example, EP-81-61 130 and EP-A1-101 429).
  • Zinc sulfate 10 - 70 g / l Zn2+ prefers 30 - 50 g / l Zn2+ Nickel sulfate 30 - 110 g / l Ni2+ " 50 - 80 g / l Ni2+ Sodium sulfate 0-150 g / l " 70-120 g / l PH value 0.8 - 2.2 " 1.5 - 2.0 chloride ⁇ 100 mg / l " ⁇ 30 mg / l Bath temperature 20 - 80 ° C " 40-65 ° C Electrolyte speed 10 - 500 m / min " 50-200 m / min Current density: Process bath 10 - 200 A / dm2 " 20 - 50 A / dm2 Complementary bath ⁇ 8 A / dm2 (pH 1.5) " ⁇ 5 A / dm2
  • a wetting agent can be added to the electrolyte.
  • a weak foaming wetting agent can be added to system types with a lowered electrolyte level (see eg EP-81-61 130 and EP-A1-101 429), e.g. Ethylhexyl sulfate 1 - 1000 mg / l prefers 50-200 mg / l.
  • strongly foaming wetting agents can also be added, such as Sodium lauryl sulfate anionic 1 - 1000 mg / l prefers 50-100 mg / l Fluorosurfactants 1 - 1000 mg / l " 50-100 mg / l.
  • Electrolyte approach 50 g / l Zn2+ as ZnSO4 60 g / l Ni 2+ as NiSO4 100 g / l Na2SO4 50 mg / l Ethylhexyl sulfate
  • Electrolysis conditions Bathing temperature 60 ° PH value 1.5 Current density: - Process bath 30 A / dm2 - Complementary bath 5 A / dm2
  • the nickel dissolution brought about by the anodic efficiency of the electrolytic nickel anode of 5% was considerably less than the amount of nickel required for the zinc 11% nickel deposition.
  • the zinc and nickel content of the electrolyte was kept constant by the anodic dissolution of zinc and S-nickel in the supplementary bath at current densities of 1 - 8 A / dm2. At these current densities, hydrogen is deposited cathodically with an efficiency of more than 95%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
EP89106006A 1988-05-13 1989-04-06 Verfahren zum galvanischen Abscheiden eines Zink-Nickel-Legierungsüberzuges auf einem Stahlband Withdrawn EP0341415A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3816419 1988-05-13
DE3816419A DE3816419C1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1988-05-13 1988-05-13

Publications (1)

Publication Number Publication Date
EP0341415A1 true EP0341415A1 (de) 1989-11-15

Family

ID=6354347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89106006A Withdrawn EP0341415A1 (de) 1988-05-13 1989-04-06 Verfahren zum galvanischen Abscheiden eines Zink-Nickel-Legierungsüberzuges auf einem Stahlband

Country Status (3)

Country Link
US (1) US4923573A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
EP (1) EP0341415A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
DE (1) DE3816419C1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336392A (en) * 1992-09-15 1994-08-09 Nippon Mining Co., Ltd. Method for preparation of a Zn-Ni electroplating or hot-dip galvanizing bath using a Zn-Ni alloy, and method for producing a Zn-Ni alloy
US5441628A (en) * 1992-09-15 1995-08-15 Japan Energy Corporation Method for preparation for a Zn-Ni electroplating or hot-dip galvanizing bath using a Zn-Ni alloy, and method for producing a Zn-Ni alloy
EP0739995B1 (en) * 1992-09-16 1998-08-19 Nippon Mining & Metals Co., Ltd. Use of a Zn-Ni alloy for preparation of Zn-Ni alloy hot-dip galvanizing bath
US6096183A (en) * 1997-12-05 2000-08-01 Ak Steel Corporation Method of reducing defects caused by conductor roll surface anomalies using high volume bottom sprays
DE10033433A1 (de) * 2000-07-10 2002-01-24 Basf Ag Verfahren zur elektrolytischen Verzinkung aus alkansulfonsäurehaltigen Elektrolyten
DE102006035233A1 (de) * 2006-07-26 2008-01-31 Mahle International Gmbh Galvanische Oberflächenbeschichtung eines Bauteils

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313802A (en) * 1979-02-15 1982-02-02 Sumitomo Metal Industries, Ltd. Method of plating steel strip with nickel-zinc alloy
JPS5839236B2 (ja) * 1979-03-30 1983-08-29 住友金属工業株式会社 合金電気メッキ方法
EP0061130B1 (de) * 1981-03-17 1985-02-13 Rasselstein AG Verfahren zum galvanischen Abscheiden eines Zink-Nickel-Legierungsüberzuges auf einem Metallgegenstand, insbesondere auf Bandstahl
DE3369861D1 (en) * 1982-08-05 1987-04-02 Andritz Ag Maschf Process for electrolytical coating with a metal layer and optionally electrolytical treatment of a metal strip

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 101, Nr. 26, 1984, Seite 428, Nr. 237349n, Columbus, Ohio, US; & JP-A-59 123 782 (KAWASAKI STEEL CORP.) 17-07-1984 *
METAL FINISHING, Dezember 1972, Seiten 52-56,58; S.R. RAJAGOPALAN: "Electrodeposition of nickel-zinc alloys" *

Also Published As

Publication number Publication date
US4923573A (en) 1990-05-08
DE3816419C1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1989-04-06

Similar Documents

Publication Publication Date Title
EP0862665B1 (de) Verfahren zur elektrolytischen abscheidung von metallschichten
DE19653681C2 (de) Verfahren zur elektrolytischen Abscheidung von Kupferschichten mit gleichmäßiger Schichtdicke und guten optischen und metallphysikalischen Eigenschaften und Anwendung des Verfahrens
DE670403C (de) Verfahren zur elektrolytischen Herstellung von im wesentlichen aus Zinn bestehenden UEberzuegen
DE4023444A1 (de) Cyanid-freies verfahren zur herstellung eines galvanischen kupferueberzuges
DE3012168C2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
EP0037535B1 (de) Galvanisches Bad zur Abscheidung von Gold- und Goldlegierungsüberzügen
DE3816419C1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
DE2208327A1 (de) Verfahren zur galvanischen Metallplattierung
EP2635724B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)-freien elektrolyten
EP3067444B1 (de) Abscheidung von dekorativen palladium-eisen-legierungsbeschichtungen auf metallischen substanzen
EP0149029A1 (de) Palladiumbad
EP3415665B1 (de) Verfahren zur galvanischen abscheidung von zink-nickel-legierungsüberzügen aus einem alkalischen zink-nickel-legierungsbad mit reduziertem abbau von additiven
US4297179A (en) Palladium electroplating bath and process
DE2352970A1 (de) Korrosionsbestaendige metallueberzuege, die galvanisch abgeschiedenes nickel und mikroporoeses chrom enthalten
DE2215737C3 (de) Wäßriges saures galvanisches Halbglanznickelbad
DE2232903C3 (de) Verfahren zur elektrolytischen Raffination von Kupfer unter Verwendung von Titanelektroden
DE3509367C1 (de) Bad und Verfahren zur galvanischen Abscheidung von Gold/Zinn-Legierungsueberzuegen
EP0612359B1 (de) Verfahren zur regeneration von altbeizen
US2623848A (en) Process for producing modified electronickel
DE2743847A1 (de) Verfahren zur galvanischen abscheidung von nickel und kobalt alleine oder als binaere oder ternaere legierungen
EP0619386A1 (de) Elektrolytische Abscheidung von Palladium oder Palladiumlegierungen
DE3132269C2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
DE19610361A1 (de) Bad und Verfahren für die galvanische Abscheidung von Halbglanznickel
DE2636552A1 (de) Verfahren zur galvanischen abscheidung einer ferro-nickel-legierung
DE3400139A1 (de) Galvanisches bad fuer die schnellabscheidung von palladium und ein verfahren zur galvanischen schnellabscheidung von palladium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE FR GB IT NL

17P Request for examination filed

Effective date: 19900503

17Q First examination report despatched

Effective date: 19910902

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19921112