EP0339298A1 - Verfahren zur Herstellung eines Regenerators für eine Tieftemperatur-Kältemaschine und nach diesem Verfahren hergestellter Regenerator - Google Patents

Verfahren zur Herstellung eines Regenerators für eine Tieftemperatur-Kältemaschine und nach diesem Verfahren hergestellter Regenerator Download PDF

Info

Publication number
EP0339298A1
EP0339298A1 EP89105775A EP89105775A EP0339298A1 EP 0339298 A1 EP0339298 A1 EP 0339298A1 EP 89105775 A EP89105775 A EP 89105775A EP 89105775 A EP89105775 A EP 89105775A EP 0339298 A1 EP0339298 A1 EP 0339298A1
Authority
EP
European Patent Office
Prior art keywords
regenerator
threads
wound
fabric
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89105775A
Other languages
English (en)
French (fr)
Inventor
Wilhelm Strasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Publication of EP0339298A1 publication Critical patent/EP0339298A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/057Regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator

Definitions

  • a single-stage refrigerator essentially comprises a chamber with a displacer.
  • the chamber is alternately connected to a high pressure and a low pressure gas source, so that during the reciprocating movement of the displacer the thermodynamic cycle (Sterling process, Gifford Mac Mahon process etc.) takes place, the working gas in is carried out in a closed circuit. The result is that heat is extracted from a certain area of the chamber.
  • two-stage refrigerators of this type and helium as the working gas e.g. B. generate temperatures below 10 K.
  • regenerator An essential part of a refrigerator is the regenerator through which the working gas flows before and after the expansion.
  • the regenerator can be arranged in a separate housing or - as shown in DE-A 13 01 343 - within the cylindrically designed displacer.
  • the regenerator should have the highest possible heat storage capacity and the largest possible internal surface for heat exchange. The heat transfer conditions must also be good. At the same time, however, the regenerator should have poor heat conduction in the direction of flooding, ie the temperature gradient should be large, so that heat exchange between the ends of the refrigerator is largely avoided.
  • the present invention is based on the object of specifying a method for producing a regenerator which is simple and in which there is no longer any risk of leakage of displacement material.
  • regenerator is produced by a winding process.
  • a regenerator produced according to this method expediently consists of wound threads, a wound fabric band or even wound wound perforated metal sheets.
  • a regenerator designed in this way can be produced without loss from a fabric band. It is in one piece after its manufacture, so that the risk of leakage of regenerator material from the Regenerator room no longer exists. Nevertheless, the surfaces available for heat transfer are relatively large.
  • the material from which the fabric tape is used to manufacture the regenerator by winding is that it is suitable for regenerator purposes.
  • the use of fabric tapes made of copper, bronze, aluminum, stainless steel, lead or the like is particularly advantageous.
  • Another advantageous measure is to use a blended fabric in such a way that the threads extending parallel to the axis of the cylindrical regenerator are made of poorly heat-conducting material and the threads extending perpendicularly thereto are made of good heat-conductive material. This achieves a uniform load on the regenerator with poor heat conduction in the direction of flow.
  • a two-stage refrigerator 1 is partially shown in section in FIG.
  • a valve system is accommodated in a manner not known per se, which, in a certain order, has a high-pressure and a low-pressure gas source, which are connected to the connecting pieces 3 and 4, with the channels 5, 6 and 7 connects.
  • the channel 6 opens into a cylinder 8, in which a drive piston 12 is located with the displacer 9 of the first stage 11 of the refrigerator.
  • a ring sealing the piston 12 against the inner wall of the cylinder 8 is designated by 13.
  • the displacer 9 is moved back and forth in the chamber 15 formed by the cylindrical housing 14.
  • the displacer 17 of the second stage 18 of the refrigerator is fastened to the displacer 9 of the first stage, so that the displacer 17 is also formed by the cylindrical housing 19 Chamber 21 reciprocates.
  • the axis of the entire system is labeled 10.
  • the displacers 9 and 17 are essentially cylindrical. Their inner cavities 22 and 23 serve to accommodate the regenerators to be described in more detail.
  • the working gas is supplied or discharged via channels 5 and 7. It flows through the bores 24 through the regenerator of the displacer 9 into the expansion space 25, which is the lower part of the chamber 15. There the working gas expands and extracts heat from this area of the first stage 11 of the refrigerator.
  • the precooled gas continues to flow through the bore 27 into the displacer 17 of the second stage 18, through the regenerator located in the interior 23 of this displacer 17 and through the bore 28 at the lower end of the displacer 17 into the expansion chamber 29 of the second stage 18. There takes place further expansion with this area of the second stage cooling effect. In the same way, the gas flows back and cools the regenerator materials, so that the gases flowing in again in the next cycle are pre-cooled in the regenerator.
  • Sealing rings 31 and 32 which are accommodated in external grooves 33 and 34, serve to seal the displacers 9 and 17 from their associated chamber walls 14 and 19.
  • regenerators 35 and 36 are located in the cavities 22 and 23, displacers 9 and 17. These are wound from a fabric band section 37 (FIG. 2).
  • a central mandrel 38 is provided for this purpose, which is fastened to the underside 39 of the displacer housing and projects into the cavity 22.
  • regenerator 36 which is also wound into a roll. There is no mandrel. Since the regenerator material In the second stage of the lead material, the fabric from which the regenerator 36 is wound is suitably made of lead threads.
  • FIG. 3 shows an enlarged section of the fabric belt 37, in which threads parallel to the winding axis are denoted by 41 and threads perpendicular to it are denoted by 42.
  • a simple linen fabric is shown.
  • Other types of tissue, body tissue, braid tissue or the like can also be used.
  • the threads forming the fabric can consist of metal (copper, bronze, aluminum, stainless steel, lead or the like) or of plastic (nylon, teflon, polyester or the like).
  • a mixed fabric is particularly expedient in which the threads 41 made of poorly heat-conducting material (e.g. plastic) extending parallel to the winding or cylinder axis 10 and the threads extending perpendicularly thereto made of good heat-conductive material (e.g. metal) consist. A uniform throughput with poor heat transfer in the direction of flow is achieved.
  • the thickness of the threads forming the fabric band is on the order of 0.04 to 0.1 mm. This results in a relatively large inner surface of the regenerator according to the invention.
  • the invention has been illustrated with the aid of an exemplary embodiment with a fabric band 37.
  • a fabric band 37 instead of the fabric band, the use of perforated metal sheets, eg. B. made of copper, bronze or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Woven Fabrics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Eine Herstellung ist dadurch möglich, daß der Regenerator durch einen Wicklungsprozeß hergestellt ist; zweckmäßig hat er eine im wesentlichen zylindrische Form und besteht aus gewickelten Fäden, einem gewickelten Gewebeband (37) oder aus einem gewickelten perforierten Blech.

Description

  • Tieftemperatur-Kältemaschinen, in denen zur Erzeugung der Kälte thermodynamische Kreisprozesse ablaufen (vgl. z. B. die US-PS 29 06 101), werden häufig auch als Refrigeratoren bezeich­net. Ein einstufiger Refrigerator umfaßt im wesentlichen eine Kammer mit einem Verdränger. Die Kammer wird in bestimmter Weise alternierend mit einer Hochdruck- und einer Niederdruck-Gasquelle verbunden, so daß während der Hin- und Herbewegung des Verdrän­gers der thermodynamische Kreisprozeß (Sterling-Prozeß, Gifford Mac Mahon-Prozeß usw.) abläuft, wobei das Arbeitsgas in einem geschlossenen Kreislauf geführt wird. Die Folge ist, daß einem bestimmten Bereich der Kammer Wärme entzogen wird. Mit zweistu­figen Refrigeratoren dieser Art und Helium als Arbeitsgas lassen sich z. B. Temperaturen bis unter 10 K erzeugen.
  • Wesentlicher Bestandteil eines Refrigerators ist der Regenerator, durch den das Arbeitsgas vor und nach der Entspannung strömt. Der Regenerator kann in einem separaten Gehäuse oder - wie es die DE-As 13 01 343 zeigt - innerhalb des zylindrisch gestalteten Verdrängers angeordnet sein. Der Regenerator soll eine möglichst hohe Wärmespeicherkapazität und eine möglichst große innere Oberfläche zum Wärmetausch haben. Die Wärmeübergangsverhältnisse müssen ebenfalls gut sein. Gleichzeitig soll aber der Regenerator eine schlechte Wärmeleitung in Durchflutungsrichtung haben, d. h. der Temperaturgradient soll groß sein, so daß eine Wärmeaustausch zwischen den Enden des Refrigerators weitestgehend vermieden ist.
  • Es ist bekannt, als Regeneratormaterialien Bronzewolle oder Kugeln aus Bronze oder Blei zu verwenden. Das Füllen der Regene­rator-Gehäuse mit diesen Materialien ist aufwendig. Bronzewolle erlaubt keinen definierten Durchsatz und damit keinen definierten Wärmeübergang. Kugeln haben ebenfalls diesen Nachteil, da sie untereinander keine mechanische Verbindung haben. Bei Bleikugeln besteht die Gefahr der Deformation, die zu einer Durchlaßredu­zierung führen würde. Weiterhin besteht die Gefahr, daß diese Regeneratormaterialien in den Verdrängerraum austreten und dort Schäden an den Gleitflächen verursachen.
  • Aus der DE-OS 30 44 427 ist es bekannt, zylindrische Sintermate­rialkörper zu verwenden. Diese sind relativ aufwendig in der Herstellung.
  • Schließlich ist es bekannt, zylindrische Regeneratoren aus Stapeln von kreisförmig geschnittenen Bronze-Netzen aufzubauen. Die Herstellung dieser Netze ist mit einem relativ hohen Sieb­verschnitt verbunden, der in der Größenordnung von 40% liegt. Außerdem ist der Montage- und Füllaufwand hoch. Die Gefahr, daß kurze Rand-Drahtabschnitte in den Verdrängerraum gelangen und dort Schäden verursachen, ist noch vorhanden.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Regenerators anzugeben, das einfach ist und bei dem die Gefahr des Austretens von Verdrän­germaterial nicht mehr besteht.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß der Regenerator durch einen Wicklungsprozeß hergestellt wird. Zweck­mäßig besteht ein nach diesem Verfahren hergestellter Regenerator aus gewickelten Fäden, einem gewickelten Gewebeband oder sogar aus gewickelten perforierten Blechen. Ein in dieser Weise ausge­bildeter Regenerator kann verlustfrei aus einem Gewebeband hergestellt werden. Er ist nach seiner Herstellung einstückig, so daß die Gefahr des Austretens von Regeneratormaterial aus dem Regeneratorraum nicht mehr besteht. Dennoch sind die dem Wärme­übergang zur Verfügung stehenden Oberflächen relativ groß.
  • An das Material, aus dem der Herstellung des Regenerators durch Wickeln dienende Gewebeband besteht, ist nur die Forderung zu stellen, daß es für Regeneratorzwecke geeignet ist. Besonders vorteilhaft ist die Verwendung von Gewebebändern aus Kupfer, Bronze, Aluminium, Edelstahl, Blei oder dergleichen. Eine weitere vorteilhafte Maßnahme besteht darin, ein Mischgewebe zu verwen­den, und zwar derart, daß die sich parallel zur Achse des zylin­drischen Regenerators erstreckenden Fäden aus schlecht wärmelei­tendem Material und die sich senkrecht dazu erstreckenden Fäden aus gut wärmeleitendem Material bestehen. Dadurch wird eine gleichmäßige Belastung des Regenerators bei gleichzeitig schlechter Wärmeleitung in Durchflutungsrichtung erreicht.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand der in den Figuren dargestellten Ausführungsbeispielen erläutert werden.
  • In der Figur 1 ist ein zweistufiger Refrigerator 1 teilweise im Schnitt dargestellt. Im Gehäuse 2 ist in nicht näher darge­stellter, an sich bekannter Weise, ein Ventilsystem unterge­bracht, das in einer bestimmten Reihenfolge eine Hochdruck- und eine Niederdruck-Gasquelle, die an den Anschlußstutzen 3 und 4 angeschlossen sind, mit den Kanälen 5, 6 und 7 verbindet. Der Kanal 6 mündet in einen Zylinder 8, in dem sich ein mit dem Verdränger 9 der ersten Stufe 11 des Refrigerators befindliche Antriebskolben 12 befindet. Ein den Kolben 12 gegenüber der Innenwand des Zylinders 8 abdichtender Ring ist mit 13 bezeich­net. Mit Hilfe dieses Antriebes wird der Verdränger 9 in der vom zylindrischen Gehäuse 14 gebildeten Kammer 15 hin- und herbewegt. An dem Verdränger 9 der ersten Stufe ist der Verdränger 17 der zweiten Stufe 18 des Refrigerators befestigt, so daß auch der Verdränger 17 in der vom zylindrischen Gehäuse 19 gebildeten Kammer 21 eine Hin- und Herbewegung ausführt. Die Achse des gesamten Systems ist mit 10 bezeichnet.
  • Die Verdränger 9 und 17 sind im wesentlichen zylindrisch gestal­tet. Ihre inneren Hohlräume 22 und 23 dienen der Unterbringung der im einzelnen noch genauer zu beschreibenden Regeneratoren.
  • Über die Kanäle 5 und 7 wird das Arbeitsgas zu- bzw. abgeführt. Es strömt über die Bohrungen 24 durch den Regenerator des Ver­drängers 9 in den Expansionsraum 25, welcher der untere Teil der Kammer 15 ist. Dort expandiert das Arbeitsgas und entzieht diesem Bereich der ersten Stufe 11 des Refrigerators Wärme. Das vorge­kühlte Gas strömt weiter durch die Bohrung 27 in den Verdränger 17 der zweiten Stufe 18, durch den im Innenraum 23 dieses Ver­drängers 17 liegenden Regenerator und durch die Bohrung 28 am unteren Ende des Verdrängers 17 in den Expansionsraum 29 der zweiten Stufe 18. Dort erfolgt eine weitere Expansion mit diesem Bereich der zweiten Stufe abkühlender Wirkung. Auf dem gleichen Weg strömt das Gas zurück und kühlt die Regeneratormaterialien ab, so daß die im nächsten Zyklus wieder einströmenden Gase im Regenerator vorgekühlt werden.
  • Zur Abdichtung der Verdränger 9 und 17 gegenüber ihren zugehö­rigen Kammerwandungen 14 und 19 dienen Dichtringe 31 und 32, die in Außennuten 33 und 34 untergebracht sind.
  • In den Hohlräumen 22 und 23 Verdränger 9 und 17 befinden sich die Regeneratoren 35 und 36. Diese sind aus einem Gewebebandab­schnitt 37 (Figur 2) gewickelt. Beim Verdränger 9 der ersten Stufe ist dazu ein zentraler Dorn 38 vorgesehen, der an der Unterseite 39 des Verdrängergehäuses befestigt ist und in den Hohlraum 22 hineinragt.
  • Im Hohlraum 23 des Verdrängers 17 der zweiten Stufe 18 befindet sich ein ebenfalls zu einer Rolle gewickelter Regenerator 36. Ein Dorn ist nicht vorhanden. Da sich als Regeneratormaterial der zweiten Stufe der Werkstoff Blei besonders eignet, besteht das Gewebe, aus dem der Regenerator 36 gewickelt ist, zweckmäßig aus Bleifäden.
  • Figur 3 zeigt einen vergrößerten Ausschnitt des Gewebandes 37, bei dem sich parallel zur Wickelachse Fäden mit 41 und senkrecht dazu verlaufende Fäden mit 42 bezeichnet sind. Dargestellt ist ein einfaches Leinengewebe. Auch andere Gewebe­arten, Körpergewebe, Tressengewebe oder dergleichen können verwendet werden.
  • Die das Gewebe bildenden Fäden können aus Metall (Kupfer, Bronze, Aluminium, Edelstahl, Blei o. dgl.) oder aus Kunststoff (Nylon, Teflon, Polyester o. dgl.) bestehen. Besonders zweckmäßig ist ein Mischgewebe, bei dem die sich parallel zur Wickel- bzw. Zylin­derachse 10 erstreckenden Fäden 41 aus schlecht wärmeleitendem Material (z. B. Kunststoff) und die sich senkrecht dazu erstrek­kenden Fäden aus gut wärmeleitendem Material (z. B. Metall) bestehen. Ein gleichmäßiger Durchsatz bei gleichzeitig schlechtem Wärmedurchgang in Durchflutungsrichtung wird dadurch erreicht.
  • Die Stärke der das Gewebeband bildenden Fäden liegt in der Größenordnung von 0,04 bis 0,1 mm. Dieses hat eine relativ große innere Oberfläche des erfindungsgemäßen Regenerators zur Folge.
  • Dargestellt wurde die Erfindung anhand eines Ausführungsbei­spieles mit einem Geweband 37. Anstelle des Gewebebandes ist auch der Einsatz von perforierten Blechen, z. B. aus Kupfer, Bronze oder dergleichen möglich.

Claims (10)

1. Verfahren zur Herstellung eines Regenerators für eine Tieftemperatur-Kältemaschine (1), dadurch ge­kennzeichnet, daß er durch einen Wicklungsprozeß hergestellt wird.
2. Nach einem Verfahren nach Anspruch 1 hergestellter Regene­rator für eine Tieftemperatur-Kältemaschine (1), dadurch gekennzeichnet, daß er aus gewickelten Fäden, einem gewickelten Gewebeband oder aus einem perforierten Blech besteht.
3. Regenerator nach Anspruch 2, dadurch gekenn­zeichnet, daß er eine im wesentlichen zylindrische Form hat und daß ein Gewebeband (37) oder ein perforiertes Blechband um seine zylindrische Achse (10) gewickelt ist.
4. Regenerator nach Anspruch 2 oder 3, dadurch ge­kennzeichnet, daß das Gewebeband (37) um einen zentralen Dorn (38) gewickelt ist.
5. Regenerator nach Anspruch 4 für einen Verdränger mit zylin­drischen Regeneratorraum, dadurch ge­kennzeichnet, daß der zentrale Dorn an einem Teil (39) des Verdrängergehäuses befestigt ist.
6. Regenerator nach Anspruch 3, 4 oder 5, dadurch ge­kennzeichnet, daß das Gewebeband (37) Metallfäden enthält.
7. Regenerator nach einem der 6 vorhergehenden Ansprüche, dadurch gekenzeichnet, daß das den Regenerator bildende Band (37) ein Metallgewebe ist, dessen Fäden aus Kupfer, Bronze, Aluminium, Edelstahl, Blei und/­oder dergleichen bestehen.
8. Regenerator nach der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß die sich parallel zur Zylinderachse (10) erstreckenden Fäden (41) des gewickelten Regenerators aus schlecht wärmeleitendem Material und die sich senkrecht zur Zylinderachse erstreckenden Fäden (42) des Regenerators aus gut wärmeleitendem Werkstoff bestehen.
9. Regenerator nach Anspruch 8, dadurch gekenn­zeichnet, daß die sich parallel zur Zylinderachse erstreckenden Fäden aus Kunststoff oder Edelstahl und die sich senkrecht zur Zylinderachse erstreckenden Fäden aus Metall bestehen.
10. Regenerator nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß der Regenerator aus einem Geweband (37) gewickelt ist, das als Leinen-, Körper- oder Tressengewebe gestaltet ist.
EP89105775A 1988-04-14 1989-04-01 Verfahren zur Herstellung eines Regenerators für eine Tieftemperatur-Kältemaschine und nach diesem Verfahren hergestellter Regenerator Withdrawn EP0339298A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3812427 1988-04-14
DE19883812427 DE3812427A1 (de) 1988-04-14 1988-04-14 Verfahren zur herstellung eines regenerators fuer eine tieftemperatur-kaeltemaschine und nach diesem verfahren hergestellter regenerator

Publications (1)

Publication Number Publication Date
EP0339298A1 true EP0339298A1 (de) 1989-11-02

Family

ID=6351972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89105775A Withdrawn EP0339298A1 (de) 1988-04-14 1989-04-01 Verfahren zur Herstellung eines Regenerators für eine Tieftemperatur-Kältemaschine und nach diesem Verfahren hergestellter Regenerator

Country Status (3)

Country Link
EP (1) EP0339298A1 (de)
JP (1) JPH01305271A (de)
DE (1) DE3812427A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747767A1 (fr) * 1996-04-23 1997-10-24 Cryotechnologies Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat
US5968637A (en) * 1996-05-07 1999-10-19 Thomson-Csf Use of nitride barrier to prevent the diffusion of silver in glass
WO2002044630A1 (fr) * 2000-11-30 2002-06-06 Sharp Kabushiki Kaisha Moteur stirling
CN109469989A (zh) * 2018-12-28 2019-03-15 浙江荣捷特科技有限公司 用于-160℃~0℃温区斯特林制冷机的非金属回热器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4322321B2 (ja) * 1996-10-30 2009-08-26 株式会社東芝 極低温用蓄冷材,それを用いた冷凍機および熱シールド材
JP2002295914A (ja) * 2001-03-30 2002-10-09 Ekuteii Kk シート型蓄冷材およびその製造方法、並びにそれを使用した蓄冷器および冷凍機
JP2003065620A (ja) * 2001-08-22 2003-03-05 Sharp Corp スターリング機械用再生器、それを用いたスターリング冷凍機及び流動ガスの熱再生システム
DE10234401B4 (de) * 2002-07-29 2008-08-07 Pasemann, Lutz, Dr. Regenerator für das Arbeitsgas eines Stirlingmotors
JP2007255734A (ja) * 2006-03-20 2007-10-04 Sumitomo Heavy Ind Ltd コールドヘッド
WO2008108460A1 (ja) * 2007-03-08 2008-09-12 Sharp Kabushiki Kaisha スターリング機関用再生器及びこれを用いるスターリング機関
DE202009017731U1 (de) 2009-11-15 2010-05-12 Quasar Engineering Gmbh Segmentierter Regenerator für das Arbeitsgas eines Stirlingmotors in Sandwich Bauweise
JP2011117698A (ja) * 2009-12-07 2011-06-16 Aisin Seiki Co Ltd 蓄冷器
CN102331105B (zh) * 2011-09-23 2013-06-19 浙江大学 带自预冷脉管的脉管制冷机
US11749551B2 (en) 2021-02-08 2023-09-05 Core Flow Ltd. Chuck for acquiring a warped workpiece
EP4092354A3 (de) * 2021-05-20 2023-03-29 Cryo Tech Ltd. Expandereinheit mit magnetfeder für eine geteilte stirling-kryokältevorrichtung

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE11168C (de) * B. KUNZE in Berlin N, Oranienburgerstrafse 70 Doppelt wirkende Hochdruck-Luftmaschine
DE50836C (de) * J. A. WOOD-BURY, J. MERRILL, G. PATTEN und E. F. WOOD-BURY in Boston, 8 Exchange Place, Mass., V. St.A Heifsluftmaschine
DE52196C (de) * H. ROBINSON in Manchester, Albert Square, England Geschlossene Luftmaschine
DE804010C (de) * 1947-06-20 1951-04-16 Philips Nv Regenerator
DE876494C (de) * 1950-10-03 1953-05-15 Philips Nv Verfahren zur Herstellung einer Regeneratorfuellmasse
FR1078801A (fr) * 1952-06-16 1954-11-23 Philips Nv Récupérateur de chaleur pour circuits gazeux
DE931015C (de) * 1952-04-04 1955-07-28 Philips Nv Regenerator, insbesondere zur Verwendung in Heissgaskolbenmaschinen
US2833523A (en) * 1951-11-27 1958-05-06 Philips Corp Regenerator for use in hot gas reciprocating engines
FR1294514A (fr) * 1961-07-07 1962-05-26 Philips Nv Régénérateurs thermiques
US3045982A (en) * 1958-12-12 1962-07-24 Philips Corp Thermal regenerator
US3367406A (en) * 1964-08-20 1968-02-06 Philips Corp Helical wound strip regenerator
DE1286807B (de) * 1966-04-05 1969-01-09 Leybold Heraeus Gmbh & Co Kg Heissluftmotor bzw. Waermepumpe nach dem Stirling-Prinzip
DE1451156A1 (de) * 1964-09-16 1969-02-06 Linde Ag Waerme- und Stoffaustauschelement
FR2015704A1 (de) * 1968-08-15 1970-04-30 Philips Nv
GB1490036A (en) * 1976-01-13 1977-10-26 United Stirling Ab & Co Wire gauze element for a hot gas engine thermal regenerator unit and a method of making the element
US4619112A (en) * 1985-10-29 1986-10-28 Colgate Thermodynamics Co. Stirling cycle machine
US4722201A (en) * 1986-02-13 1988-02-02 The United States Of America As Represented By The United States Department Of Energy Acoustic cooling engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH313862A (de) * 1952-02-28 1956-05-15 Philips Nv Verfahren zur Herstellung eines Regenerators für Kolbengasmaschinen und dergleichen
DE1238274B (de) * 1961-11-06 1967-04-06 Harald Schulze Heissluftmotor
GB1484799A (en) * 1975-03-06 1977-09-08 Raetz K Stirling cycle heat pump
DE2633271A1 (de) * 1976-07-23 1978-01-26 Linde Ag Waermetauscher
CH628730A5 (de) * 1977-06-02 1982-03-15 Alusuisse Band zur herstellung von koerpern zum austausch von fuehlbarer und latenter waerme in einem regenerativen waermeaustauscher.
JPS62190391A (ja) * 1986-02-14 1987-08-20 Toshiba Corp 熱交換器

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50836C (de) * J. A. WOOD-BURY, J. MERRILL, G. PATTEN und E. F. WOOD-BURY in Boston, 8 Exchange Place, Mass., V. St.A Heifsluftmaschine
DE52196C (de) * H. ROBINSON in Manchester, Albert Square, England Geschlossene Luftmaschine
DE11168C (de) * B. KUNZE in Berlin N, Oranienburgerstrafse 70 Doppelt wirkende Hochdruck-Luftmaschine
DE804010C (de) * 1947-06-20 1951-04-16 Philips Nv Regenerator
DE876494C (de) * 1950-10-03 1953-05-15 Philips Nv Verfahren zur Herstellung einer Regeneratorfuellmasse
US2833523A (en) * 1951-11-27 1958-05-06 Philips Corp Regenerator for use in hot gas reciprocating engines
DE931015C (de) * 1952-04-04 1955-07-28 Philips Nv Regenerator, insbesondere zur Verwendung in Heissgaskolbenmaschinen
FR1078801A (fr) * 1952-06-16 1954-11-23 Philips Nv Récupérateur de chaleur pour circuits gazeux
US3045982A (en) * 1958-12-12 1962-07-24 Philips Corp Thermal regenerator
FR1294514A (fr) * 1961-07-07 1962-05-26 Philips Nv Régénérateurs thermiques
US3367406A (en) * 1964-08-20 1968-02-06 Philips Corp Helical wound strip regenerator
DE1451156A1 (de) * 1964-09-16 1969-02-06 Linde Ag Waerme- und Stoffaustauschelement
DE1286807B (de) * 1966-04-05 1969-01-09 Leybold Heraeus Gmbh & Co Kg Heissluftmotor bzw. Waermepumpe nach dem Stirling-Prinzip
FR2015704A1 (de) * 1968-08-15 1970-04-30 Philips Nv
GB1490036A (en) * 1976-01-13 1977-10-26 United Stirling Ab & Co Wire gauze element for a hot gas engine thermal regenerator unit and a method of making the element
US4619112A (en) * 1985-10-29 1986-10-28 Colgate Thermodynamics Co. Stirling cycle machine
US4722201A (en) * 1986-02-13 1988-02-02 The United States Of America As Represented By The United States Department Of Energy Acoustic cooling engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747767A1 (fr) * 1996-04-23 1997-10-24 Cryotechnologies Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat
EP0803687A1 (de) * 1996-04-23 1997-10-29 Cryotechnologies Kryostat für Tiefsttemperatur-Kälteanlage und Kälteanlagen mit einem solchen Kryostat
US5968637A (en) * 1996-05-07 1999-10-19 Thomson-Csf Use of nitride barrier to prevent the diffusion of silver in glass
WO2002044630A1 (fr) * 2000-11-30 2002-06-06 Sharp Kabushiki Kaisha Moteur stirling
US6779342B2 (en) 2000-11-30 2004-08-24 Sharp Kabushiki Kaisha Stirling engine
CN109469989A (zh) * 2018-12-28 2019-03-15 浙江荣捷特科技有限公司 用于-160℃~0℃温区斯特林制冷机的非金属回热器

Also Published As

Publication number Publication date
DE3812427A1 (de) 1989-10-26
JPH01305271A (ja) 1989-12-08

Similar Documents

Publication Publication Date Title
DE4220840C2 (de) Pulsationsrohr-Kühlsystem
EP0339298A1 (de) Verfahren zur Herstellung eines Regenerators für eine Tieftemperatur-Kältemaschine und nach diesem Verfahren hergestellter Regenerator
DE112011100912B4 (de) Kryogenische Expansionsmaschine mit Gasausgleich
DE1301343B (de) Tieftemperaturkaeltemaschinen
DE3044427C2 (de) Verdränger für Tieftemperatur-Kältemaschinen
DE102010011500A1 (de) Regenerative Kühlvorrichtung
EP0890063B1 (de) Mehrstufige tieftemperaturkältemaschine
DE60010175T2 (de) Stirling und Pulsrohr vereinigender hybrider Entspanner mit Einzelmedium
DE3135566A1 (de) Kryogene kaeltemaschine
DE68925113T2 (de) Dichtungsvorrichtung
DE3034474C2 (de) Kühlvorrichtung
DE3049993T1 (de) Cryogenic apparatus
DE68903774T2 (de) Gaskaeltemaschine.
DE69622967T2 (de) Stirling-kältevorrichtung
DE2225816A1 (de) Kühlsystem
DE19502190C2 (de) Wärme- und Kältemaschine
DE19841686A1 (de) Entspannungseinrichtung
DE69003738T2 (de) Kryokälteanlage.
DE69207801T2 (de) Tiefsttemperaturkälteanlage
DE10229311A1 (de) Refrigerator mit Regenerator
DE3936914C2 (de) Mehrstufige Gaskältemaschine
DE3943640C2 (de) Mehrstufige Gaskältemaschine
DE1501098A1 (de) Anlage zum Erzeugen von Kaelte bei niedrigen Temperaturen und zur Anwendung in dieser Anlage gut geeignete Kaltgas-Kuehlmaschine
DE19628205C2 (de) Vorrichtung zur Durchführung eines Kühlverfahrens mittels tiefsiedender Gase nach dem Patent 195 25 638
DE3120233A1 (de) Refrigerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19900201

17Q First examination report despatched

Effective date: 19910115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910729