EP0333048B1 - Procédé pour l'obtention de revêtements sur le magnésium et les alliages de magnésium résistant la corrosion et à l'usure - Google Patents

Procédé pour l'obtention de revêtements sur le magnésium et les alliages de magnésium résistant la corrosion et à l'usure Download PDF

Info

Publication number
EP0333048B1
EP0333048B1 EP89104236A EP89104236A EP0333048B1 EP 0333048 B1 EP0333048 B1 EP 0333048B1 EP 89104236 A EP89104236 A EP 89104236A EP 89104236 A EP89104236 A EP 89104236A EP 0333048 B1 EP0333048 B1 EP 0333048B1
Authority
EP
European Patent Office
Prior art keywords
magnesium
process according
protective layer
direct current
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89104236A
Other languages
German (de)
English (en)
Other versions
EP0333048A1 (fr
Inventor
Edith Luise Schmeling
Benno Prof.Dr.-Ing. Röschenbleck
Michael Hans Weidemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Chemical Engineering GmbH
Original Assignee
Electro Chemical Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Chemical Engineering GmbH filed Critical Electro Chemical Engineering GmbH
Priority to AT89104236T priority Critical patent/ATE89613T1/de
Publication of EP0333048A1 publication Critical patent/EP0333048A1/fr
Application granted granted Critical
Publication of EP0333048B1 publication Critical patent/EP0333048B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Definitions

  • Various methods are known for increasing the corrosion resistance and wear resistance of the surface of magnesium and magnesium alloys. These processes include chemical and electrochemical processes such as chromating and anodizing.
  • the degreased magnesium parts connected as anode are immersed in an electrolyte bath. If a current flows in this electrolyte, the negatively charged anions migrate to the anode and are discharged there. This creates atomic oxygen, which leads to the formation of magnesium oxide. This anodic coating is firmly anchored to the magnesium surface.
  • the oxidizing agents or peroxy compounds used in the known processes for the anodic oxidation of magnesium or magnesium alloys contain transition metals such as e.g. Chromium, vanadium or manganese. This has proven to be disadvantageous because some of these transition metal compounds are built into the protective layer produced on the magnesium surface, which can be seen from the color. The installation of these transition metal compounds leads to a reduction in the corrosion and wear resistance of the protective layer.
  • anodizing solution for anodic oxidation of magnesium or its alloys which is produced by dissolving silicate, carboxylate and alkali hydroxide in water and which can additionally contain borate, fluoride and phosphate (DE-A-37 15 663).
  • This anodizing solution is alkali-rich.
  • the object of the present invention is therefore to provide a method for producing a protective layer on magnesium or magnesium alloys by anodic oxidation, in which a protective layer with increased corrosion resistance and wear resistance.
  • a particularly corrosion-resistant and wear-resistant protective layer can be produced by anodic oxidation on magnesium or magnesium alloys if the conditions specified in the main claim are met at the same time.
  • borate or sulfate anions are used according to the invention which form peroxides, which decompose easily, but which easily replicate due to the high current density in the pores of the protective layer formed.
  • Borate and Sulfate anions have proven to be particularly suitable here, since they only reach the cathode to a small extent as a result of the transfer and are reduced there.
  • the electrolyte must contain such anions that form poorly soluble compounds with the magnesium to be oxidized.
  • phosphate ions in combination with fluoride ions are suitable here. If, according to the invention, a magnesium-aluminum alloy is anodically oxidized, the aluminum illuminations formed result which, with magnesium ions, result in a poorly soluble magnesium aluminate.
  • the protective layer that forms must also have pores or conductive points so that a sufficient current flow is ensured. This is achieved by the fluoride ions added to the electrolyte bath according to the invention.
  • the bath is therefore adjusted to a pH of 5 to 12, preferably between 8 and 9, in particular by adding buffering substances.
  • the desired concentration of anions to be incorporated into the protective layer in the vicinity of the surface to be coated can be achieved by supplying a briefly interrupted direct current instead of a constant direct current or by reversing the polarity for a short time, in order to prevent the formation of magnesium phosphate and magnesium fluoride and - If a magnesium alloy containing aluminum is oxidized - to enable the formation of magnesium aluminate.
  • the current density is in particular 1 to 2 A / dm2. It is preferable to work with a constant direct current with superimposed alternating current with a frequency of two 10 and 100 Hz.
  • the superimposition is carried out by connecting the direct current source and the sine current source in series, the alternating voltage component of which is 15-30% of the direct voltage component.
  • Frequency adjustable frequency can be generated to superimpose the direct current with the help of frequency converters.
  • These are, for example, motor-generator units with adjustable speed, in which a change in the speed leads to a proportional change in frequency.
  • the AC voltage is adjusted to the desired percentage of the DC voltage by means of a regulating transformer in accordance with the DC voltage.
  • the frequency with which the alternating current is available from the network is preferably selected, for example in the Federal Republic of Germany at 50 Hz or in the USA at 60 Hz.
  • the anodic oxidation according to the invention can also be carried out with rectified alternating current, the frequency of which is 50 Hz or 60 Hz, with a ripple of 15 to 35%.
  • the rectification can take place both through one-way circuit M1, preferably through center circuit M2 (according to DIN draft 41 761).
  • the current generated in this way is smoothed by suitable inductances, which reduce the ripple to 15 - 35% (literature e.g.: R. Jäger, Power Electronics Fundamentals and Applications, Berlin 1977), page 75).
  • a direct current pulsed at 30 to 70 Hz the switch-off time between two voltage pulses being equal to or twice as long as the duration of the voltage pulses.
  • the pulsing of the direct current can take place both by electronic and mechanical switches which are controlled by a frequency generator. Suitable electronic switches are e.g. Switching thyristors.
  • a similar current profile can also be generated by one-way rectification M1 (according to DIN Draft 41 761) of an alternating current from 30 to 70 Hz with leading edge.
  • the length of the voltage pulses can be controlled by changing the phase gating angle (literature e.g.: O. Limann, Electronics without Ballast, Kunststoff 1973, page 347).
  • Amines which react weakly alkaline and generally have dissociation constants between 10 ⁇ 2 and 10 ⁇ 7 are particularly suitable for buffering the electrolyte bath.
  • Cyclic amines such as pyridine, ⁇ -picoline, piperidine and piperazine are particularly suitable as such amines. These amines are usually readily water soluble.
  • Other readily water-soluble amines that can be used are, for example, sodium sulfanilate, dimethylamine, ethylamine, diethylamine or triethylamine. Hexamethylenetetramine is used in a particularly preferred manner.
  • the voltage rises to 400 volts.
  • a low-alkali aqueous electrolyte bath according to the invention is preferably to be understood as one which contains less than 100 mg / l alkali ions.
  • the ions to be avoided are those of the alkali metals lithium, sodium, potassium etc.
  • the ammonium ion is not considered an alkali ion here.
  • the content of the borate or sulfate ions in the aqueous electrolyte bath is preferably 10 to 80 g / l.
  • the content of phosphate ions calculated as H3PO4 is preferably between 10 and 70 g / l.
  • the amount of the fluoride ions to be used in combination with the phosphate ions is calculated as HF 5 to 35 g / l.
  • the workpieces made of magnesium or magnesium alloys are subjected to the usual chemical pretreatments for degreasing, in particular an alkaline cleaning with a strongly alkaline bath. This is usually followed by acid pickling, for example with dilute aqueous solutions of phosphoric acid and sulfuric acid and, if necessary, also activation with hydrofluoric acid.
  • the protective layers produced according to the invention on the surface of the magnesium alloys or the pure magnesium are preferably also painted or subjected to an aftertreatment.
  • the protective layers produced according to the invention form a very good primer for lacquers, as are common for workpieces made of magnesium, aluminum or zinc.
  • These include Two-component paints based on polyurethane, acrylic resin, epoxy resin and phenolic resin paints.
  • Products 3, 4, 5 and 6 showed a clearly recognizable increase in the corrosion resistance of the layers.
  • the layer treated in product 6 also resulted in a significant reduction in the coefficient of friction.
  • an aftertreatment can also be carried out with a solid lubricant which can anchor itself in the existing pores.
  • lubricants are, for example, fluorinated and / or chlorinated aliphatic and aromatic hydrocarbon compounds as well as molybdenum disulfide and graphite.
  • a preferred aftertreatment of the protective layers according to the invention is carried out with the aqueous solution of an alkali silicate.
  • the Mg (OH) 2 present in the protective layer reacts with the alkali silicate to form sparingly soluble magnesium silicate and alkali hydroxide.
  • the workpiece with the protective layer removed from the alkali silicate bath is preferably exposed to an atmosphere rich in carbon dioxide.
  • the remaining "water glass” forms from the silicate treatment with the CO2 of the atmosphere SiO2 and alkali carbonate, since the stronger carbonic acid displaces the weaker silica from its compound.
  • the pores of the protective layer are closed by the SiO2, this process being accelerated by the gassing with CO2. Since with the use of stronger acids in the outer region of the pores, SiO2 precipitates rapidly, the alkali silicate located in the interior of the pores can then no longer react. The continuous precipitation of SiO2 in the pores by the weak carbonic acid, however, results in a much better protection against corrosion.
  • the present invention further relates to magnesium alloys coated with a protective layer containing magnesium phosphate and magnesium fluoride with a thickness of 15 to 30 ⁇ m and a wear resistance, measured with the Taber abraser (CS 10, 10 N), of less than 20 mg mass loss after 10,000 revolutions are.
  • a protective layer containing magnesium phosphate and magnesium fluoride with a thickness of 15 to 30 ⁇ m and a wear resistance, measured with the Taber abraser (CS 10, 10 N), of less than 20 mg mass loss after 10,000 revolutions are.
  • a protective layer which meets these conditions can be applied, for example, using the method according to the invention described above.
  • the corrosion resistance of the magnesium alloys according to the invention is preferably less than 10 corrosion points / dm 2 after a sample of the alloy has been exposed to an exposure time of 240 h in a salt spray test in accordance with DIN 50021 SS.
  • the magnesium casting alloys of the ASTM designations AS41, AM 60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, are particularly suitable for the process according to the invention for producing corrosion-resistant and wear-resistant protective layers.
  • the protective layer preferably additionally contains hydroxide, borate, aluminate, phenolate or silicate ions.
  • the protective layer preferably contains, in particular in the pores, silicon dioxide, which can be obtained by the after-treatment of the protective layer described above with an aqueous solution of an alkali silicate.
  • the color of the protective layer applied to the magnesium alloys according to the invention is preferably white to whitish-gray or beige.
  • the surfaces of magnesium or magnesium alloys to be treated were first pretreated in an alkaline cleaning bath.
  • This cleaning bath had the following composition: Sodium hydroxide 50 g / l Trisodium phosphate 10 g / l Wetting agent / synthetic soap 1 g / l
  • the pickling was carried out at a temperature of 20 ° C., the treatment time being about 30 seconds. After pickling, the surface sample was activated in hydrofluoric acid.
  • the anodic oxidation was then carried out to produce the protective layer according to the invention.
  • An electrolyte bath with the following composition was used: HF 30 g / l H3PO4 60 g / l H3BO3 70 g / l
  • the anodic oxidation was carried out with a direct current superimposed with an alternating current of 50 Hz. A voltage rising to 240 V was used. The duration of the anodic oxidation was approximately 15 minutes. The layer thickness of the protective layer produced on the treated surfaces was approximately 20 ⁇ m.
  • the magnesium alloy AZ 91 was anodized in an electrolyte of the following composition and under the specified conditions: Hydrofluoric acid (H2F2) (40%) 28 g / l Phosphoric acid (H3PO4) (98%) 58 g / l Boric acid (H3BO3) 35 g / l Hexamethylenetetramine 360 g / l pH value: 7.0 - 7.3 adjusted with NH4OH (25%) Current density: 1.4 A / dm2 (rectified alternating current, ripple approx. 28%) Final voltage: 325 V Electrolyte temperature: 15 ° C Exposure time: 15 minutes
  • the layer thickness obtained was 21 ⁇ m.
  • the wear resistance in the Taber Abraser test was 30 mg mass loss after 104 revolutions.
  • the corrosion and wear resistance of the layer obtained was analogous to that described in Example 2.

Claims (15)

  1. Procédé d'obtention de revêtements protecteurs résistant à la corrosion et à l'usure sur du magnésium ou sur des alliages de magnésium par oxydation anodique, caractérisé en ce qu'on utilise un bain aqueux d'électrolytes qui contient
    a) 10 à 80 g/l d'ions borate ou sulfate,
    b) 10 à 70 g/l d'ions phosphate, et
    c) 5 à 35 g/l d'ions fluorure
    et moins de 100 mg/l d'ions alcalins et dont le pH peut être ajusté à une valeur de 5 à 11, de préférence de 7 à 9,
    et en ce qu'on opère avec un courant continu en faisant croître la tension jusqu'à 400 volts et en interrompant brièvement le courant continu et en inversant sa polarité.
  2. Procédé suivant la revendication 1, caractérisé en ce qu'on opère avec un courant continu constant auquel on superpose un courant alternatif de 10 à 100 Hz dont la densité de courant s'élève à 15-35 % du courant continu.
  3. Procédé suivant la revendication 1, caractérisé en ce qu'on opère avec du courant alternatif redressé ayant une ondulation de 15 à 35 %.
  4. Procédé suivant la revendication 1, caractérisé en ce qu'on opère avec un courant continu pulsé de 30-70 Hz, le temps de coupure entre deux impulsions de tension étant aussi long et jusqu'à deux fois plus long que la durée des impulsions de tension.
  5. Procédé suivant l'une des revendications 1 à 4, caractérisé en ce que le bain est tamponné avec une amine.
  6. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce que le bain est tamponné par l'hexaméthylènetétramine.
  7. Procédé suivant l'une des revendications 1 à 6, caractérisé en ce qu'on opère avec une densité de courant de 1 à 2 A/dm².
  8. Procédé suivant l'une des revendications 1 à 7, caractérisé en ce que le revêtement est post-traité avec la solution aqueuse d'un silicate alcalin.
  9. Procédé suivant la revendication 8, caractérisé en ce que la pièce usinée portant le revêtement protecteur, retirée du bain de silicate alcalin, est exposée à une atmosphère riche en anhydride carbonique.
  10. Procédé suivant l'une des revendications 1 à 9, caractérisé en ce que la couche protectrice est recouverte de laque.
  11. Alliage de magnésium portant un revêtement d'oxyde protecteur contenant du phosphate de magnésium et du fluorure de magnésium, en une couche de 15 à 30 µm d'épaisseur et ayant une résistance à l'usure, mesurée avec l'appareil d'abrasion de Taber (CS 10, 10N) représentant une perte de masse de moins de 20 mg après 10 000 tours, pouvant être obtenu par le procédé suivant les revendications 1 à 10.
  12. Alliage de magnésium suivant la revendication 11, caractérisé par une résistance à la corrosion de moins de 10 points de corrosion au dm² après un temps d'exposition de 240 h dans l'essai de pulvérisation de sel selon la norme DIN 50 021 SS.
  13. Alliage de magnésium suivant la revendication 11 ou 12, caractérisé en ce que le revêtement protecteur contient en outre de l'hydroxyde, du borate, de l'aluminate, du phénate ou du silicate de magnésium.
  14. Alliage de magnésium suivant l'une des revendications 11 à 13, caractérisé en ce que le revêtement protecteur contient du dioxyde de silicium, en particulier dans les pores.
  15. Alliage de magnésium suivant l'une des revendications 11 à 14, caractérisé en ce que le revêtement protecteur produit a une couleur allant du blanc au gris blanchâtre ou au beige.
EP89104236A 1988-03-15 1989-03-10 Procédé pour l'obtention de revêtements sur le magnésium et les alliages de magnésium résistant la corrosion et à l'usure Expired - Lifetime EP0333048B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89104236T ATE89613T1 (de) 1988-03-15 1989-03-10 Verfahren zur erzeugung von korrosions- und verschleissbestaendigen schutzschichten auf magnesium und magnesiumlegierungen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3808609 1988-03-15
DE3808609A DE3808609A1 (de) 1988-03-15 1988-03-15 Verfahren zur erzeugung von korrosions- und verschleissbestaendigen schutzschichten auf magnesium und magnesiumlegierungen

Publications (2)

Publication Number Publication Date
EP0333048A1 EP0333048A1 (fr) 1989-09-20
EP0333048B1 true EP0333048B1 (fr) 1993-05-19

Family

ID=6349773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89104236A Expired - Lifetime EP0333048B1 (fr) 1988-03-15 1989-03-10 Procédé pour l'obtention de revêtements sur le magnésium et les alliages de magnésium résistant la corrosion et à l'usure

Country Status (5)

Country Link
US (1) US4978432A (fr)
EP (1) EP0333048B1 (fr)
JP (1) JPH01301888A (fr)
AT (1) ATE89613T1 (fr)
DE (2) DE3808609A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455754B2 (en) 2002-07-08 2008-11-25 Pro Aqua Diamantelektroden Produktion Gmbh & Co Keg Diamond electrode and method for production thereof

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470664A (en) * 1991-02-26 1995-11-28 Technology Applications Group Hard anodic coating for magnesium alloys
US5240589A (en) * 1991-02-26 1993-08-31 Technology Applications Group, Inc. Two-step chemical/electrochemical process for coating magnesium alloys
DE4143650C2 (de) * 1991-07-25 2003-09-18 Ahc Oberflaechentechnik Gmbh Anodisierte Gegenstände aus Magnesium mit in die Oxidschicht eingelagerten Fluorpolymeren und Verfahren zu deren Herstellung
DE4243164A1 (de) * 1992-12-19 1994-06-23 Deutsche Aerospace Airbus Verfahren zur anodischen Oxidation
US5756222A (en) * 1994-08-15 1998-05-26 Applied Materials, Inc. Corrosion-resistant aluminum article for semiconductor processing equipment
US5792335A (en) 1995-03-13 1998-08-11 Magnesium Technology Limited Anodization of magnesium and magnesium based alloys
US5683522A (en) * 1995-03-30 1997-11-04 Sundstrand Corporation Process for applying a coating to a magnesium alloy product
JP3598163B2 (ja) * 1996-02-20 2004-12-08 ソニー株式会社 金属の表面処理方法
DE19882231T1 (de) * 1997-03-24 2000-02-10 Magnesium Technology Ltd Anodisieren von Magnesium und Magnesiumlegierungen
DE19882233T1 (de) * 1997-03-24 2000-02-10 Magnesium Technology Ltd Färben von Gegenständen aus Magnesium oder Magnesiumlegierung
US6245436B1 (en) * 1999-02-08 2001-06-12 David Boyle Surfacing of aluminum bodies by anodic spark deposition
DE10022074A1 (de) * 2000-05-06 2001-11-08 Henkel Kgaa Elektrochemisch erzeugte Schichten zum Korrosionsschutz oder als Haftgrund
DE10026338B4 (de) * 2000-05-26 2004-06-09 Daimlerchrysler Ag Verfahren zur Beschichtung eines metallischen Bauteils
IL159222A0 (en) * 2001-06-28 2004-06-01 Algat Sherutey Gimur Teufati Method of anodizing of magnesium and magnesium alloys and producing conductive layers on an anodized surface
GB2395491B (en) * 2001-08-14 2006-03-01 Magnesium Technology Ltd Magnesium anodisation system and methods
US7578921B2 (en) * 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
US6916414B2 (en) 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US7569132B2 (en) * 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US7452454B2 (en) * 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US7820300B2 (en) 2001-10-02 2010-10-26 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
US6495267B1 (en) 2001-10-04 2002-12-17 Briggs & Stratton Corporation Anodized magnesium or magnesium alloy piston and method for manufacturing the same
DE50103781D1 (de) * 2001-10-11 2004-10-28 Franz Oberflaechentechnik Gmbh Beschichtungsverfahren für Leichtmetalllegierungsoberflächen
DE10163107C1 (de) * 2001-12-24 2003-07-10 Univ Hannover Magnesium-Werkstück und Verfahren zur Ausbildung einer korrosionsschützenden Deckschicht eines Magnesium-Werkstücks
US6887320B2 (en) * 2002-02-11 2005-05-03 United Technologies Corporation Corrosion resistant, chromate-free conversion coating for magnesium alloys
FR2835851B1 (fr) * 2002-02-13 2004-04-23 Univ Paris Curie Composition pour le traitement d'alliages de magnesium
US20060052824A1 (en) * 2003-06-16 2006-03-09 Ransick Mark H Surgical implant
US7780838B2 (en) * 2004-02-18 2010-08-24 Chemetall Gmbh Method of anodizing metallic surfaces
US20060016690A1 (en) * 2004-07-23 2006-01-26 Ilya Ostrovsky Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys
US20060102484A1 (en) * 2004-11-12 2006-05-18 Woolsey Earl R Anodization process for coating of magnesium surfaces
DE102005011322A1 (de) * 2005-03-11 2006-09-14 Dr.Ing.H.C. F. Porsche Ag Verfahren zur Herstellung von Oxyd- und Silikatschichten auf Metalloberflächen
DE102005023023B4 (de) * 2005-05-19 2017-02-09 Chemetall Gmbh Verfahren zur Vorbereitung von metallischen Werkstücken zum Kaltumformen, mit dem Verfahren beschichtete Werkstücke und ihre Verwendung
DE102006060501A1 (de) * 2006-12-19 2008-06-26 Biotronik Vi Patent Ag Verfahren zur Herstellung einer korrosionshemmenden Beschichtung auf einem Implantat aus einer biokorrodierbaren Magnesiumlegierung sowie nach dem Verfahren hergestelltes Implantat
JP5329848B2 (ja) 2007-06-12 2013-10-30 ヤマハ発動機株式会社 マグネシウム合金部材の製造方法
US20090278396A1 (en) * 2008-05-12 2009-11-12 Gm Global Technology Operations, Inc. Corrosion isolation of magnesium components
DE102008043970A1 (de) * 2008-11-21 2010-05-27 Biotronik Vi Patent Ag Verfahren zur Herstellung einer korrosionshemmenden Beschichtung auf einem Implantat aus einer biokorrodierbaren Magnesiumlegierung sowie nach dem Verfahren hergestelltes Implantat
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
DE102009039887A1 (de) 2009-09-03 2011-03-17 Innovent E.V. Verfahren zur Oberflächenbehandlung von magnesiumhaltigen Bauteilen
DE102010062357B4 (de) 2010-12-02 2013-08-14 Innovent E.V. Vorrichtung und Verfahren zur Herstellung eines mit zumindest einer Korrosionsschutzschicht beschichteten magnesiumhaltigen Substrats
US8608869B2 (en) * 2010-12-16 2013-12-17 GM Global Technology Operations LLC Surface treatment of magnesium alloy castings for corrosion protection
BR112014010980B1 (pt) * 2011-11-07 2019-09-24 Synthes Gmbh Método para produção de camadas de cerâmica em magnésio e suas ligas e implante revestido para reparo ósseo
PT106302A (pt) 2012-05-09 2013-11-11 Inst Superior Tecnico Revestimentos híbridos para otimização da proteção anti-corrosiva de ligas de magnésio
WO2016010541A1 (fr) * 2014-07-17 2016-01-21 Dolan Shawn E Revêtement électrocéramique pour alliages de magnésium
CN107004470A (zh) 2014-08-07 2017-08-01 汉高股份有限及两合公司 用于成束电力传输电缆中的电线的电瓷涂层

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE635720C (de) * 1935-06-01 1936-09-25 Siemens & Halske Akt Ges Verfahren zur Herstellung von Schutzueberzuegen auf Magnesium und seinen Legierungen
FR48802E (fr) * 1936-02-26 1938-07-12 Protection du magnésium contre la corrosion par vitrification
DE747371C (de) * 1937-03-26 1944-09-22 Siemens Ag Verfahren zur elektrolytischen Herstellung von oxydhaltigen UEberzuegen auf Magnesiumund Magnesiumlegierungen
DE893740C (de) * 1937-10-17 1953-10-19 Renault Verfahren zur Herstellung von Schutzueberzuegen auf Metallen, wie Magnesium und seinen Legierungen
US2880148A (en) * 1955-11-17 1959-03-31 Harry A Evangelides Method and bath for electrolytically coating magnesium
JPS5643394A (en) * 1979-09-14 1981-04-22 Lion Corp Dispersant for mixed fuel
US4744872A (en) * 1986-05-30 1988-05-17 Ube Industries, Ltd. Anodizing solution for anodic oxidation of magnesium or its alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455754B2 (en) 2002-07-08 2008-11-25 Pro Aqua Diamantelektroden Produktion Gmbh & Co Keg Diamond electrode and method for production thereof

Also Published As

Publication number Publication date
US4978432A (en) 1990-12-18
EP0333048A1 (fr) 1989-09-20
JPH01301888A (ja) 1989-12-06
DE58904381D1 (de) 1993-06-24
JPH0551679B2 (fr) 1993-08-03
ATE89613T1 (de) 1993-06-15
DE3808609A1 (de) 1989-09-28

Similar Documents

Publication Publication Date Title
EP0333048B1 (fr) Procédé pour l'obtention de revêtements sur le magnésium et les alliages de magnésium résistant la corrosion et à l'usure
EP0333049A1 (fr) Procédé pour le traitement de finissage de la surface du magnésium et d'alliages de magnésium
EP0545230B2 (fr) Procédé de préparation d'une couche d'oxyde céramique modifiée sur des métaux formant couche barrière.
DE19913242C2 (de) Chemisch passivierter Gegenstand aus Magnesium oder seinen Legierungen, Verfahren zur Herstellung und seine Verwendung
DE2555834C2 (de) Verfahren zur elektrolytischen Abscheidung von Chrom
EP1301656A1 (fr) Procede de traitement de surfaces de pieces en aluminium ou en alliages d'aluminium a l'aide de formulations contenant de l'acide alcanesulfonique
EP0578670B1 (fr) Procede de phosphatation de surfaces metalliques
EP0134895B1 (fr) Procédé et composés pour l'application accélérée et affinée de couches de phosphate sur des surfaces métalliques
EP0410497B1 (fr) Procédé pour le rinçage passif de couches de phosphates
EP0090268A2 (fr) Procédé d'anodisation de produits en aluminium et pièces aluminées
EP0675976A1 (fr) Procede d'encrage electrolytique de surfaces en aluminium a l'aide de courant alternatif.
DE2633212C3 (de) Verfahren zur Erzeugung einer grün gefärbten Oxidschicht auf Aluminium oder Aluminiumlegierungen
EP0264811B1 (fr) Procédé d'obtention de revêtements de phosphate
EP0347663A1 (fr) Procédé pour la densification de couches d'oxyde anodisées sur l'aluminium et ses alliages
EP0815293B1 (fr) Procede sans chrome permettant d'ameliorer l'adherence d'une peinture ou d'un vernis applique(e) par anodisation en couche mince
DE2432044C3 (de) Verfahren zur elektrolytischen Nachbehandlung von chromatisierten oder metallisch verchromten Stahlblechoberflächen
DE4232292A1 (de) Verfahren zum Phosphatieren von verzinkten Stahloberflächen
EP0351680B1 (fr) Utilisation d'acide p-toluène-sulfonique pour la coloration électrolytique de surfaces d'aluminium obtenues par voie anodique
DE764929C (de) Verfahren zum Erzeugen von fluoridhaltigen Schutzschichten auf Werkstuecken aus Magnesium und seinen Legierungen
DE3522117C2 (fr)
DE4037393A1 (de) Elektrolyt zur erzeugung thermoschockbestaendiger haftfester oxidkeramischer oberflaechenschichten
EP1433879B1 (fr) Procédé de revêtement de surfaces métalliques avec une solution de phosphate alcalin, concentré aqueux et utilisation des surfaces métalliques ainsi revêtues
EP1141449B1 (fr) Procede pour rendre plus sombre une couche superficielle d'un objet, cette couche contenant du zinc
DE692124C (de) Verfahren zur elektrolytischen Oxydation von Eisen und Stahl
DE102017011379A1 (de) Anti-Korrosionsbeschichtung für metallische Substrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19891104

17Q First examination report despatched

Effective date: 19910827

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930519

REF Corresponds to:

Ref document number: 89613

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 58904381

Country of ref document: DE

Date of ref document: 19930624

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940331

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89104236.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080314

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080318

Year of fee payment: 20

Ref country code: GB

Payment date: 20080320

Year of fee payment: 20

Ref country code: IT

Payment date: 20080321

Year of fee payment: 20

Ref country code: SE

Payment date: 20080313

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080314

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080526

Year of fee payment: 20

Ref country code: FR

Payment date: 20080314

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080430

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *ELECTRO CHEMICAL ENGINEERING G.M.B.H.

Effective date: 20090310

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090309

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090309