EP0331929B1 - Verfahren zur Herstellung eines Schutzgases für die Wärmebehandlung von Eisen und Nichteisenmetallen - Google Patents

Verfahren zur Herstellung eines Schutzgases für die Wärmebehandlung von Eisen und Nichteisenmetallen Download PDF

Info

Publication number
EP0331929B1
EP0331929B1 EP89102430A EP89102430A EP0331929B1 EP 0331929 B1 EP0331929 B1 EP 0331929B1 EP 89102430 A EP89102430 A EP 89102430A EP 89102430 A EP89102430 A EP 89102430A EP 0331929 B1 EP0331929 B1 EP 0331929B1
Authority
EP
European Patent Office
Prior art keywords
combustion
gas
protective gas
methanol
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89102430A
Other languages
English (en)
French (fr)
Other versions
EP0331929A1 (de
Inventor
Gottfried Dipl.-Ing. Böhm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Priority to AT89102430T priority Critical patent/ATE78877T1/de
Publication of EP0331929A1 publication Critical patent/EP0331929A1/de
Application granted granted Critical
Publication of EP0331929B1 publication Critical patent/EP0331929B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • the invention relates to a method for producing a protective gas for the heat treatment of iron and non-ferrous metals.
  • Protective gas for the heat treatment of metals is conventionally produced in generators by burning combustion gases containing hydrocarbons. This type of production is very complex. A cheaper alternative is the reaction in jacket pipes, which is carried out with the help of catalysts.
  • Mantle jet tubes are used in industrial furnace construction to heat heat treatment systems with artificial atmospheres. They can be heated with gas or electrically.
  • a jacket jet pipe consists essentially of three pipes, namely the outer jacket pipe for heating the furnace chamber, the inner or combustion pipe in which the combustion takes place and the gas supply pipe to the combustion chamber in the combustion pipe.
  • a substoichiometric combustion in the jacket jet pipe would result in reducing components in the exhaust gas (protective gas), but would lead to sooting and to the pipes burning.
  • Another way of generating protective gas is to spray nitrogen-methanol mixtures into the annealing furnace. At temperatures above 750 ° C, the methanol decomposes according to the equation CH3DH ⁇ 2H2 + CO.
  • a carburizing agent such as propane or natural gas can also be added to this cracked gas.
  • This type of protective gas production is very inexpensive, but it requires an externally heated annealing furnace with operating temperatures above 750 ° C.
  • From DE-A-3 422 608 it is also known to produce a protective gas from nitrogen and methanol with the aid of a jacket jet pipe, by decomposing the methanol in a space heated by the jet pipe and shielded from the furnace atmosphere and together with the nitrogen is passed into the furnace interior.
  • the jet pipe is heated electrically or by burning a fuel.
  • the invention has for its object to provide a method which enables the production of inert gas by combustion of a hydrocarbon-containing fuel gas in a jacket jet tube even in those cases in which no external heat is supplied.
  • the invention is based on the knowledge that it is possible to feed a nitrogen-methanol mixture in sufficient quantity into the combustion chamber of a jacket jet tube operated with a stoichiometric ratio of ⁇ equal to or close to 1, on the one hand to obtain a desired protective gas atmosphere without on the other hand Oven temperature of 750 ° C is required.
  • the jacket jet In the case of stoichiometric combustion, on the other hand, the jacket jet always has temperatures above 750 ° C.
  • the advantages of the method according to the invention lie above all in the annealing of non-ferrous metal, because it offers an inexpensive alternative to protective gas generated by the generator and to hydrogen-nitrogen mixtures.
  • the method according to the invention is also suitable for bright annealing steel, but drying must be carried out afterwards.
  • a jacket jet is shown in a very simplified form, in which natural gas is burned with air to generate protective gas.
  • the natural gas is supplied through a gas supply pipe 1, which is surrounded concentrically by the combustion pipe 2.
  • the combustion air flows through the combustion tube 2 and forms the flame 4 with the natural gas in the combustion chamber 3.
  • the fuel tube 2 is surrounded concentrically on all sides by the jacket tube 5, but leaves the outlet from the fuel tube 2 free.
  • the flue gases therefore flow back outside the combustion tube 2 and leave the jacket jet pipe through the nozzle 6 as a protective gas, which reaches the furnace directly at high temperature.
  • a nitrogen-methanol mixture is sprayed into the combustion chamber 3.
  • the amount of nitrogen-methanol is measured so that the combustion temperature in combustion chamber 3 does not drop below 750 ° C.
  • the methanol could also be pumped into the jacket tube in pure form and sprayed into the combustion chamber 3.
  • the combustion temperature in combustion chamber 3 is approximately 850 ° C.
  • this shielding gas for example, copper can be bright annealed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Schutzgases für die Wärmebehandlung von Eisen und Nichteisenmetallen.
  • Die Herstellung von Schutzgas für die Wärmebehandlung von Metallen erfolgt herkömmlich in Generatoren durch Verbrennung kohlenwasserstoffhaltiger Brenngase. Diese Herstellungsart ist sehr aufwendig. Eine kostengünstigere Alternative bietet die Reaktion in Mantelstrahlrohren, die mit Hilfe von Katalysatoren durchgeführt wird.
  • Diese Alternative erfordert bei unterstöchiometrischer Verbrennung zur Herstellung von Endogas die Verbrennung unter äußerer Wärmezufuhr.
  • Mantelstrahlrohe dienen im Industrieofenbau zur Beheizung von Warmbehandlungsanlagen mit künstlichen Atmosphären. Sie können mit Gas oder elektrisch beheizt werden. Ein Mantelstrahlrohr besteht im wesentlichen aus drei Rohren, nämlich dem äußeren Mantelrohr zur Beheizung des Ofenraumes, dem Innen- oder Brennrohr, in dem die Verbrennung stattfindet und dem Gaszuleitungsrohr zum Verbrennungsraum im Brennrohr. Eine unterstöchiometrische Verbrennung im Mantelstrahlrohr ergäbe zwar reduzierende Bestandteile im Abgas (Schutzgas), würde aber zu Verrußungen und zum Durchbrennen der Rohre führen. Eine weitere Möglichkeit zur Schutzgaserzeugung ist das Einsprühen von Stickstoff-Methanolgemischen in den Glühofen. Bei Temperaturen oberhalb 750°C zersetzt sich das Methanol hierbei nach der Gleichung

            CH₃DH → 2H₂ + CO.

  • Insbesondere zum Aufkohlen kann diesem Spaltgas noch ein Aufkohlungsmittel wie Propan oder Erdgas zugemischt werden. Diese Art der Schutzgaserzeugung ist zwar sehr preiswert, setzt aber einen fremdbeheizten Glühofen mit Betriebstemperaturen oberhalb 750°C voraus. Aus der DE-A-3 422 608 ist es ferner bekannt ein Schutzgas aus Stickstoff und Methanol mit Hilfe eines Mantelstrahlrohres herzustellen, indem das Methanol in einem vom Strahlrohr erhitzten und gegen die Ofenatmosphäre abgeschirmten Raum zersetzt und zusammen mit dem Stickstoff in den Ofeninnenraum geleitet wird. Das Strahlrohr wird hierbei elektrisch oder durch Verbrennen eines Brennstoffes beheizt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, welches die Schutzgasherstellung durch Verbrennung eines kohlenwasserstoffhaltigen Brenngases in einem Mantelstrahlrohr auch in solchen Fällen ermöglicht, in denen keine äußere Wärmezufuhr erfolgt.
  • Insbesondere gilt dies für Buntmetallöfen, bei denen der Einsatz von reduzierenden Wasserstoff-Stickstoff-Gemischen zu teuer ist.
  • Das oben genannte Problem wird durch die Merkmale des Anspruchs 1 gelöst. Bevorzugte Lösungen sind in den abhängigen Ansprüchen 2 und 3 offenbart.
  • Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
  • Die Erfindung beruht auf der Erkenntnis, daß es möglich ist, in den Verbrennungsraum eines mit einem stöchiometrischen Verhältnis von χ gleich oder nahe 1 betriebenen Mantelstrahlrohres ein Stickstoff-Methanolgemisch in genügend großer Menge einzuspeisen, um einerseits eine gewünschte Schutzgasatmosphäre zu erhalten, ohne daß andererseits eine Ofentemperatur von 750°C erforderlich wird. Im Mantelstrahlrohr herrschen bei stöchiometrischer Verbrennung dagegen immer Temperaturen über 750°C.
  • Die Vorteile des erfindungsgemäßen Verfahrens liegen vor allem beim Glühen von Buntmetall, weil es eine kostengünstige Alternative zu generatorerzeugtem Schutzgas und zu Wasserstoff-Stickstoff-Gemischen bietet. Das erfindungsgemäße Verfahren eignet sich auch zum Blankglühen von Stahl, allerdings muß hierbei eine Trocknung nachgeschaltet werden.
  • Ein Ausführungsbeispiel der Erfindung soll anhand der beigefügten Zeichnung erläutert werden.
  • In der Zeichnung ist in sehr vereinfachter Form ein Mantelstrahlrohr dargestellt, in welchem Erdgas mit Luft zur Schutzgaserzeugung verbrannt wird.
  • Das Erdgas wird durch ein Gaszuleitungsrohr 1 zugeführt, welches konzentrisch vom Brennrohr 2 umgeben ist. Durch das Brennrohr 2 strömt die Verbrennungsluft, welche mit dem Erdgas im Vebrennungsraum 3 die Flamme 4 bildet. Hierbei ist ein stöchiometrisches Brennstoff-Luft-Verhältnis von χ = 1 eingestellt. Das Brennrohr 2 wird konzentrisch vom Mantelrohr 5 allseitig umgeben, läßt aber den Austritt aus dem Brennrohr 2 frei. Die Rauchgase strömen daher außerhalb des Brennrohres 2 zurück und verlassen das Mantelstrahlrohr durch den Stutzen 6 als Schutzgas, welches direkt mit hoher Temperatur in den Ofen gelangt.
  • Erfindungsgemäß wird ein Stickstoff-Methanolgemisch in den Verbrennungsraum 3 eingesprüht. Hierzu dient das Sprührohr 7, welches innerhalb des Brennrohres 2 parallel zum Gaszuleitungsrohr 1 angeordnet ist und kurz vor dem Verbrennungsraum 3 mündet. Die Stickstoff-Methanolmenge wird dabei so bemessen, daß die Verbrennungstemperatur im Verbrennungsraum 3 nicht unter 750°C sinkt. Das Methanol könnte auch in reiner Form mittels einer Pumpe in das Mantelstrahlrohr gefördert und in den Verbrennungsraum 3 gesprüht werden. Eine ausreichend feine Verteilung des Methanols läßt sich hierbei jedoch nur schwer erreichen, weshalb die Zufuhr eines Stickstoff-Methanol-Gemisches bei weitem vorzuziehen ist.
  • Nachfolgend ein Zahlenbeispiel:
    4m³/h Erdgas der Zusammensetzung 81,3% CH₄, 14,4% N₂, 3,5% Cn/Hm und 0,8% CO₂ werden mit 33,52 m³/h Luft in dem in der Zeichnung dargestellten Mantelstrahlrohr verbrannt. Hierbei entstehen 37,452 m³/h Abgas, bestehend aus 3,628 m³/h CO₂, 6,848 m³/h H₂O und 26,976 m³/h N₂.
  • Die Verbrennungstemperatur im Verbrennungsraum 3 beträgt hierbei ca. 850°C.
  • Erfindungsgemäß werden durch das Sprührohr 7 4 l/h Methanol mit 4m³/h N₂ in den Verbrennungsraum 3 eingesprüht. Hierbei zersetzt sich das Methanol zu H₂ und CO. Der Wasserstoff reagiert gleichzeitig gemäß der Wassergasreaktion H₂ + CO₂ ⇄ H₂O + CO mit dem Verbrennungsprodukt CO₂, so daß schließlich 37m³/h Abgas mit folgender Zusammensetzung in Vol.% erhalten wird:

            7,2% CO₂



            9,1% H₂



            5,0% CO



            14,5% H₂O



            64,2% N₂

  • Dieses Gas wird mit 100m³/h Stickstoff vermischt. Dieser Stickstoff wird flüssig in die Kühlstrecke eingesprüht, um die Temperatur zu senken. Es ergibt sich zum Glühen eine Schutzgasatmosphäre mit folgender Zusammensetzung:

            1,9% CO₂



            2,5% H₂



            1,4% CO



            3,9% H₂O



            90,3% N₂

  • Mit diesem Schutzgas kann beispielsweise Kupfer blankgeglüht werden.

Claims (3)

1. Verfahren zur Herstellung eines Schutzgases für die Wärmebehandlung von Eisen und Nichteisenmetallen, bei dem ein kohlenwasserstoffhaltiges Brenngas in einem Mantelstrahlrohr mit Luft verbrannt, mit verdampftem Methanol ohne Katalysator zur Reaktion gebracht und das auf diese Weise gebildete Abgas für die Erzeugung des Schutzgases verwendet wird, wobei ein Gemisch aus Stickstoff und Methanol in den Verbrennungsraum des Mantelstrahlrohres eingesprüht wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß eine Verbrennungstemperatur von 750°C im Mantelstrahlrohr nicht unterschritten wird.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die Verbrennung des kohlenwasserstoffhaltigen Brenngases bei einem stöchiometrischen Verhältnis von χ = 1 erfolgt.
EP89102430A 1988-03-11 1989-02-13 Verfahren zur Herstellung eines Schutzgases für die Wärmebehandlung von Eisen und Nichteisenmetallen Expired - Lifetime EP0331929B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89102430T ATE78877T1 (de) 1988-03-11 1989-02-13 Verfahren zur herstellung eines schutzgases fuer die waermebehandlung von eisen und nichteisenmetallen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3808146 1988-03-11
DE3808146A DE3808146A1 (de) 1988-03-11 1988-03-11 Verfahren zur herstellung eines schutzgases fuer die waermebehandlung von eisen und nichteisenmetallen

Publications (2)

Publication Number Publication Date
EP0331929A1 EP0331929A1 (de) 1989-09-13
EP0331929B1 true EP0331929B1 (de) 1992-07-29

Family

ID=6349493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102430A Expired - Lifetime EP0331929B1 (de) 1988-03-11 1989-02-13 Verfahren zur Herstellung eines Schutzgases für die Wärmebehandlung von Eisen und Nichteisenmetallen

Country Status (3)

Country Link
EP (1) EP0331929B1 (de)
AT (1) ATE78877T1 (de)
DE (1) DE3808146A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308803A1 (de) * 1993-03-19 1994-09-22 Leybold Durferrit Gmbh Verfahren und Vorrichtung zum Herstellen einer kohlenstoffhaltigen gasförmigen Behandlungsatmosphäre
DE19536706A1 (de) * 1995-10-02 1997-04-03 Lbe Beheizungseinrichtungen Mantelstrahlheizrohr
TW201418476A (zh) * 2012-11-01 2014-05-16 Metal Ind Res & Dev Ct 用於小型熱處理爐之爐氣產生裝置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1106787B (de) * 1956-04-26 1961-05-18 Renault Vorrichtung zum Speisen einer Gruppe von Waermebehandlungsoefen fuer Metalle mit Schutzgas aus Daempfen organischer Fluessigkeiten, die mit Stickstoff angereichert sind
US4139375A (en) * 1978-02-06 1979-02-13 Union Carbide Corporation Process for sintering powder metal parts
DE3037643A1 (de) * 1980-10-04 1982-05-13 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zum entkohlenden oder kohlungsneutralen gluehen von metallteilen
DE3104280C2 (de) * 1981-02-07 1982-10-21 Daimler-Benz Ag, 7000 Stuttgart Verfahren zur Erzeugung von Schutzgas aus dem Abgas von strahlrohrbeheizten Öfen
GB2145503B (en) * 1983-08-24 1987-03-11 Golding Ivor Lawrence Sydney Process of producing protective atmosphere in heat treatment furnaces and ovens
DE3422608A1 (de) * 1984-06-18 1985-12-19 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zum herstellen einer kohlenmonoxid und wasserstoff enthaltenden gasatmosphaere

Also Published As

Publication number Publication date
DE3808146A1 (de) 1989-09-21
EP0331929A1 (de) 1989-09-13
ATE78877T1 (de) 1992-08-15

Similar Documents

Publication Publication Date Title
DE1433735B1 (de) Verfahren zur Erzielung einer Ofenatmosphaere,mit der eine oxydationsfreie Waermebehandlung von Werkstuecken aus Stahl unter gleichzeitiger Beeinflussung des Kohlenstoffgehalts durchfuehrbar ist
EP0331929B1 (de) Verfahren zur Herstellung eines Schutzgases für die Wärmebehandlung von Eisen und Nichteisenmetallen
EP0261461A2 (de) Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
EP0430313B1 (de) Verfahren und Einrichtung zum Herstellen einer Schutzgasatmosphäre
DE3631389C2 (de)
DE4308803A1 (de) Verfahren und Vorrichtung zum Herstellen einer kohlenstoffhaltigen gasförmigen Behandlungsatmosphäre
EP0703994B1 (de) Verfahren und vorrichtung zum wärmebehandeln von werkstücken
DE3422608C2 (de)
EP0049488B1 (de) Verfahren und Vorrichtung zum entkohlenden oder kohlungsneutralen Glühen von Metallteilen
DE632935C (de) Verfahren und Einrichtung zur Oberflaechenkohlung von Eisen und Stahl
DE2419997C2 (de) Verfahren und Einrichtung zur Erzeugung härtbarer bzw. verschleißfester Oberflächenschichten von Stahlteilen in einem Glühofen
EP0364709B1 (de) Verfahren zur Herstellung einer Behandlungsgasatmosphäre in einer Wärmebehandlungseinrichtung
EP0794263B1 (de) Verfahren zur Schutzgasversorgung eines Wärmebehandlungsofens und Wärmebehandlungsanlage
DE2822048C2 (de) Anlage zur Erzeugung von Behandlungsgas für die Behandlung metallischer Gegenstände
DE10012051A1 (de) Verfahren zur Wärmerückgewinnung bei Hochtemperaturprozessen durch Brenngaserzeugung aus Kohlenwasserstoffen und einem Teilstrom heißer Verbrennungsabgase
EP0647726A1 (de) Verfahren zum Behandeln von Teilen
DE2512178A1 (de) Vorrichtung und verfahren zum einbringen heisser reduktionsgase in einen schachtofen
DE14196C (de) Neuerungen in der Erzeugung einer gegen Rost schützenden Decke auf Gegenständen aus Eisen und Stahl nebst den dazu verwendeten Oefen
DE4034235C2 (de) Berußen von Werkstücken zur kohlungsneutralen Wärmebehandlung
DE641596C (de) Verfahren zur Erzeugung praktisch sauerstoff- und stickoxydfreier Gemische von Stickstoff und Wasserstoff
DE2524177A1 (de) Verfahren zum herstellen von heissen reduzierenden gasen
AT258335B (de) Ofen zum Glühen von Gußstücken, insbesondere Tempergußstücken
DE19618277A1 (de) Verfahren und Vorrichtung zur Erzeugung von Behandlungsgas zur Wärmebehandlung
EP0096104A1 (de) Verfahren zum Herstellen einer Stickstoff und Wasserstoff enthaltenden Gasatmosphäre
EP1284924A1 (de) Gasgenerator und verfahren zur erzeugung eines co- und h2-haltigen behandlungsgases für die wärmebehandlung von metallischem gut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT FR GB IT

17P Request for examination filed

Effective date: 19900219

17Q First examination report despatched

Effective date: 19910806

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB IT

REF Corresponds to:

Ref document number: 78877

Country of ref document: AT

Date of ref document: 19920815

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950203

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950210

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950214

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960213

Ref country code: AT

Effective date: 19960213

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050213