EP0324068B1 - Procédé pour régler le trafic sur le palier principal d'une installation d'ascenceurs - Google Patents

Procédé pour régler le trafic sur le palier principal d'une installation d'ascenceurs Download PDF

Info

Publication number
EP0324068B1
EP0324068B1 EP88117726A EP88117726A EP0324068B1 EP 0324068 B1 EP0324068 B1 EP 0324068B1 EP 88117726 A EP88117726 A EP 88117726A EP 88117726 A EP88117726 A EP 88117726A EP 0324068 B1 EP0324068 B1 EP 0324068B1
Authority
EP
European Patent Office
Prior art keywords
cage
lift
load
algorithm
conveying performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117726A
Other languages
German (de)
English (en)
Other versions
EP0324068A1 (fr
Inventor
Richard Brenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to AT88117726T priority Critical patent/ATE70522T1/de
Publication of EP0324068A1 publication Critical patent/EP0324068A1/fr
Application granted granted Critical
Publication of EP0324068B1 publication Critical patent/EP0324068B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2458For elevator systems with multiple shafts and a single car per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/215Transportation capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/222Taking into account the number of passengers present in the elevator car to be allocated

Definitions

  • the invention relates to a method for coping with the building-filling passenger traffic at a main stop of an elevator group consisting of at least one elevator with an elevator car, the elevator cars being dispatched from the main stop as a function of the building-filling passenger traffic.
  • a dispatch control for an elevator group consisting of several elevators according to EP-A2 0 030 163 is known, in which the dispatch interval relates to an approximate round trip time of an elevator car or to an average round trip time which results from the three preceding, approximate round trip times.
  • the round trip time is divided by the number of elevator cars involved in the operation of the main stop. This results in an average sending interval time.
  • the approximate round trip time is the expected time that the elevator car needs for the ascent, the operation of the car calls registered at the main stop and for the return trip to the main stop and is calculated from building parameters, system parameters and operating parameters. If, after the calculated interval time, the elevator car has less than half the nominal load, the calculated interval time is reduced as a function of the cars available at the main stop. If, after the calculated interval time, the elevator car has at least half the nominal load, the calculated interval time is shortened in the same way, but with a different weighting of the available cars.
  • the disadvantage of this known control is that the current send interval time is determined on the basis of approximate round trip times calculated from the data of the past. At best, this can be used to estimate the sending interval required to cope with the actual volume of traffic.
  • Another disadvantage is that the control system only differentiates between a departure load that is less than half the nominal load and a departure load that is at least equal to half the nominal load, thereby reducing the interval time due to the cabins available at the main stop. This in turn results in an approximate adaptation to the effective fluctuations in traffic. Both disadvantages result in the elevator cabs not being used optimally.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, solves the problem of designing a method in such a way that quantitative and qualitative optimization of the filling traffic in buildings with elevator systems is ensured.
  • the advantages achieved by the invention are essentially to be seen in the fact that neither congestion nor gaps can form when handling passenger traffic at the main stop.
  • the cabin load is measured in such a way that the lift capacity of the elevator group and the actual traffic volume are in balance.
  • Another advantage is that if one or more elevator cars fail, the delivery capacity of the failed elevator cars is automatically allocated to the other elevator cars in the elevator group.
  • Another advantage is that, according to the method according to the invention, the transport offer at the main stop is also based on the transport demand in the case of non-upward peak traffic is voted.
  • Another advantage is that different nominal loads of the elevator cars are taken into account when allocating the conveying capacity.
  • Another advantage is that several elevator cars can execute their orders independently of one another.
  • the volume of traffic at the main stop is determined centrally and managed decentrally by the elevator cars.
  • a reference symbol indexed with .X refers to one of the sensors A; B ... N. Steps are shown in FIGS. 3 and 4 in which it is checked whether constants, status variables or variables satisfy the triangularly framed conditions positively or negatively. A positive result of a test is identified by the reference symbol J, a negative result of a test is identified by the reference symbol N in the respective test step.
  • a conveyor machine labeled MOTOR.1 drives an elevator car KABINE.1 of the elevator 1.
  • the MOTOR.1 carrier is supplied with electrical energy by a SYSTEM.1 drive system, which is controlled by an elevator control unit CONTROL.1.
  • load measuring devices or people counting devices are provided as design variants of a sensor SENSOR.1 arranged on the elevator car CABIN.1.
  • the sensor SENSOR.1 is connected to the elevator control CONTROL1.
  • elevator controls CONTROL.2; STEUERUNG.3 ... STEUERUNG.n, sensors SENSOR.2; SENSOR.3 ... SENSOR.n and the elevator cars, not shown, CABIN.2; KABINE.3 ... KABINE.n correspond in structure and function to elevator 1.
  • SENSOR.A; SENSOR.B ... SENSOR.N The designated sensors record the incoming, building-filling passenger traffic at the main stop MAIN STOP.
  • a process computer RECHNER stands with the elevator controls CONTROL 1; STEUERUNG.2 ... STEUERUNG.n, with the sensors SENSOR.A; SENSOR.B ...
  • REGLER implemented in the process computer RECHNER controls together with lower-level algorithms REGLER.1; REGLER.2 ... REGLER.n the building-filling passenger traffic at the main stop MAIN STOP.
  • RECHNER REGULATORS
  • CONTROLLER 1 REGLER.2 ... REGLER.n
  • the main stop, MAIN STOP has sensors SENSOR.A; for the detection of incoming, building-filling passenger traffic.
  • SENSOR.B ... SENSOR.N light barriers, turnstiles, infrared detectors, field detectors or call registration devices.
  • the building-filling passenger traffic departing from the main MAIN STOP station is served by the KABINE.1; KABINE.2 ... KABINE.n arranged sensors SENSOR.1; SENSOR.2 ... SENSOR.n recorded and sent to the elevator controls CONTROL1.
  • the higher-level algorithm REGULATOR regulates a corrected, total departure load ASL with a proportional, integral and differential control characteristic from the traffic volume UT and the actual departure load LFB, from which a total delivery rate TTC for the elevator group is derived.
  • a conveying capacity per PTC load component results from the total conveying capacity TTC and a total nominal load LC of the elevator group.
  • a delivery rate TC.x determined for the respective elevator car KABINE.x is calculated from the delivery rate per load share PTC and a load share LS.x dependent on the respective elevator car KABINE.x.
  • the higher-level algorithm REGLER checks whether the total delivery capacity TTC is sufficiently large for an allocation based on the nominal load and whether the nominal load-dependent output TC.x is at least one. Depending on the result of the test, the higher-level algorithm CONTROLLER allocates the delivery rate TC.x calculated from the total delivery rate TTC or a predetermined delivery rate TC.x.
  • the constants load component LS.1; LS.2 ... LS.n, total nominal load LC, sampling time ST, number of lifts NOC, gain factor GAN, integration time INT and calibration factor CF can be freely selected via the input / output unit TERMINAL.
  • the subordinate algorithm REGLER.x determines a round trip time RT.x for each trip and increases a number of trips CR.x by one. An average round trip time ART.x is then calculated from the sum of the previous round trip times and the number of trips. Combining the mean round trip time ART.x with the allocated, imported conveying capacity TC.x results in a target departure load SL.x for the respective elevator car KABINE.x. In a further step, the subordinate algorithm REGLER.x controls a corrected departure load ASL.x with a proportional, integral and differential control characteristic from the target departure load SL.x and the imported actual departure load LFB.x.
  • the subordinate algorithm REGLER.x continuously compares the actual departure load LFB.x with the corrected departure load ASL.x.
  • a subordinate algorithm REGLER.x exports a door closing command DC.x to the elevator control CONTROL.x.
  • the constants door opening time DT.x, statistical cycle time SRT.x, gain factor GAN.x, integration time INT.x, the status variables elevator entrance CA.x, elevator start CS.x and the variable actual departure load LFB.x are from the entrance / Output unit TERMINAL and data imported from the elevator control unit STEUERUNG.x.
  • the actual shutdown load LFB.x is exported for further processing by the subordinate algorithm REGLER.x according to the superordinate algorithm REGLER.
  • step S1 all the constants and variables used in the higher-level algorithm CONTROLLER are brought once to the initial state in a known manner.
  • the determination of the delivery rate begins with step S2, in which it is checked whether the constant sampling time ST imported from the input / output unit TERMINAL has expired.
  • a positive result of Check justifies entry into the import procedure shown in step S3. It takes over from the sensors SENSOR.A; SENSOR.B ... SENSOR.N generated traffic volume UT.A; UT.B ... UT.N and those of the subordinate algorithms REGLER.1; REGLER.2 ... REGLER.n exported actual departure loads LFB.1; LFB.2 ...
  • step S4 the traffic volume UT and the total actual departure load LFB for the elevator group are calculated.
  • the control process carried out in step S5 to correct the shutdown load ASL is explained in more detail in FIG. 5.
  • the departure load ASL multiplied by the calibration factor CF in step S6 gives the total conveying capacity TTC for the elevator group.
  • the nominal load-dependent distribution of the total conveying capacity to the subordinate algorithms REGLER.1; REGLER.2 ... REGLER.n takes place in steps S7; S8 ... S13.
  • step S7 the delivery rate per load component PTC is calculated by relating the total delivery rate TTC to the nominal load LC of the elevator group.
  • step S8 it is checked whether the total conveying capacity TTC is less than or equal to the number of elevators NOC.
  • a positive result of the test justifies entry into the selection procedure shown in step S9. It divides the total delivery rate TTC regardless of the nominal load in such a way that the delivery rates TC.1, TC.2 ... TC.n are at most one.
  • the symbol used in the selection procedure: means that the variable to the left of the symbol takes the variable value to the right of the symbol. If, for example, the total conveying capacity TTC has a value of two, the conveying capacity TC.1 and the conveying capacity TC.2 are each assigned an elevator passenger.
  • the other funding services TC.3; TC.4 ... TC.n is assigned a zero or no delivery rate.
  • step S10 the delivery rate TC.x is dependent determined by the load share LS.x of the respective elevator car KABINE.x.
  • the load share LS.x relates directly to the nominal load of the respective elevator car KABINE.x.
  • variable delivery rate TC.x is consequently overwritten after the end of step S10 with the value of the delivery rate TC.x calculated at the beginning of step S10 plus the value of the delivery rate error TCE.
  • the meaning of the delivery rate error TCE is explained in more detail in steps S12 and S13.
  • step S11 it is checked whether the conveying capacity TC.x to be allocated to the respective elevator car KABINE.x is less than one. A positive result of the test justifies the start of the actions listed in step S13.
  • the value of the delivery rate TC.x calculated in step S10 is assigned to the delivery rate error TCE together with the previous value of the delivery rate error TCE in step S13.
  • the TC.x output is then assigned the value zero or no output.
  • Step S13 is always important if there are nominal load-dependent delivery capacities that are less than one and therefore cannot be carried out.
  • each delivery rate calculation results in a delivery rate TC.x less than one. This would result in a non-allocation of elevator passengers registered at the main stop MAIN STOP. Therefore, in step S13, delivery capacities TC.x, which are less than one, are recorded with the variable delivery performance error TCE, if necessary summed up and taken into account in the subsequent calculation of the delivery performance TC.x.
  • a negative result of the test performed in step S11 justifies execution of the one shown in step S12 Action, namely the resetting of the delivery error TCE.
  • step S14 those from step S9 or from steps S10; S11 ... S13 resulting funding TC.1; TC.2 ... TC.n according to the subordinate algorithms REGLER.1; CONTROLLER.2 ... CONTROLLER.n exported.
  • REGLER.1; CONTROLLER.2 ... CONTROLLER.n exported.
  • step S1 shows the structure and the sequential sequence of the subordinate algorithm REGLER.x.
  • a step S2 all the constants, status variables and variables used in the subordinate algorithm REGLER.x are brought once to the initial state in a known manner.
  • the subordinate algorithm REGLER.x is activated, as shown in step S2, when the respective elevator car KABINE.x enters the main stop MAIN STOP. The entrance is checked using the elevator entry CA.x status variable imported from the elevator control unit CONTROL.x.
  • a positive result of the test justifies the execution of the test shown in step S3, in which it is determined whether the respective elevator car KABINE.x still has its first journey ahead of it or whether it is already integrated into normal elevator operation.
  • a positive result of the test justifies the sequence for normal operation starting with step S4.
  • step S6 A negative result of the test justifies the start of the process for the execution of the first trip.
  • step S3 the process to be followed for the execution of the first trip is explained, and then the process to be followed for normal operation is explained in more detail. If it is clear on the basis of the test carried out in step S3 that the respective elevator car KABINE.x has not yet carried out a journey, then steps S4 and S5 are skipped and the test shown in step S6 is initiated, which determines is whether the subordinate algorithm REGLER.x was really allocated funding to TC.x. The procedure that follows if the test is positive is explained in the handling of the procedure for normal operation. A negative result of the test carried out in step S6 justifies the execution of step S13.
  • step S15 is carried out in which the calculation of the target departure load for the first journey from the allocated conveying capacity TC.x and the statistically determined round trip time SRT.x takes place.
  • the subsequent execution of steps S16; S17 ... S24 are essentially responsible for checking and checking the cabin loading. Steps S16; S17 ... S24 are explained in more detail when dealing with the sequence for normal operation.
  • a negative result of the test carried out in step S25 justifies the execution of step S30, in which the variable number of trips CR.x is set from zero to one.
  • the actual departure load LFB.x which has been checked after the cabin loading, is then transmitted to the higher-level algorithm REGLER shown in step S31.
  • REGLER.x the sequence for executing the first trip is thus ended.
  • the normal operation procedure begins when the respective elevator car KABINE.x is re-entered at the MAIN STOP main stop.
  • the data obtained from the first trip serve as a loader for determining the variable values of the subsequent trips.
  • the first cabin loading only runs in a controlled manner and, together with the execution of the first trip, serves as the basis for the subsequent execution of the sequence for normal operation.
  • step S4 The sequence for normal operation begins with the renewed entry of the respective elevator car KABINE.x determined in step S2 at the main stop MAIN STOP. If the test carried out in step S3 is positive fails, step S4 is initiated. The round trip time RT.x of the previous trip is evaluated and in step S5 the average round trip time ART.x is determined from the sum of all round trip times and the number of trips CR.x.
  • the sequence that follows if the result of the test carried out in step S6 is positive is explained in the treatment of the sequence for zero delivery. A negative result of the test carried out in step S6 justifies the execution of step S13 and, since the first journey has already been carried out, of step S19.
  • step S19 With the start of the door opening time DT.x in step S19, the loading of the respective elevator car KABINE.x is initiated.
  • the iteration procedure of step S20 checks the current actual departure load LFB.x and the door opening time DT.x. As soon as the respective elevator car KABINE.x has an actual departure load LFB.x that corresponds to the corrected departure load ASL.x or as soon as the constant door opening time DT.x imported by the input / output unit TERMINAL has elapsed, the door closing command shown in step S21 becomes DC.x exported to the elevator control STEUERUNG.x.
  • step S22 checks the status variable Elevator Start CS.x until a value imported by the elevator control CONTROL.x meets the condition shown in step S22.
  • the round trip time RT.x is started in step S23 and the current actual departure load LFB.x is measured in step S24.
  • the sequence for normal operation continues with step S26, in which the target departure load SL.x is determined on the basis of the specified delivery rate TC.x and the mean round trip time ART.x.
  • step S27 it is checked whether the target departure load SL.x calculated in step S26 is smaller than an elevator passenger.
  • a positive result of the test results in the target departure load SL.x being set to one in step S28 and a reduction in the delivery capacity TC.x by one.
  • the in step S29 The control process carried out to correct the shutdown load ASL.x is explained in more detail in FIG. 6.
  • a cycle for normal operation of the subordinate algorithm REGLER.x is ended with the steps S30 and S31 explained in the sequence for the first trip. Another cycle begins as soon as the respective elevator car KABINE.x arrives at the MAIN STOP main stop.
  • step S6 A positive result of the check for zero delivery performance carried out in step S6 initiates a check for passengers in the cabin shown in step S7.
  • step S10 the control algorithm explained in FIG. 6 is brought into the initial state and the variable delivery rate TC.x is then checked in step S11. A renewed allocation of delivery performance triggers step S12.
  • step S12 justifies the calculation of the target departure load SL.x, which is necessary after a new allocation of the conveying capacity, on the basis of the previous average round trip time ART.x.
  • step S12 justifies step S15 explained in the sequence for the first trip.
  • the subsequent steps S16 and S17 correspond to the steps S27 and S28 explained in the sequence for normal operation.
  • step S18 the target departure load SL.x calculated in step S14 or S15 is allocated to the corrected departure load ASL.x for the first journey after a zero delivery rate. The rest of the process for zero delivery corresponds to the process for normal operation.
  • FIG. 5 shows the control algorithm of the higher-level algorithm REGLER and FIG. 6 shows the control algorithm of the subordinate algorithm REGLER.x.
  • Both control algorithms are structurally the same. They are dealt with below.
  • the shutdown load is regulated with a proportional, an integral and a not shown, differential control characteristic.
  • the differential control characteristic results from a differential departure load error and a differential component calculated on the basis of the differential departure load error, the amplification factor, the differentiation time and the sampling time.
  • a control algorithm with a dead-beat control characteristic is provided.
  • a control algorithm with a state / observer control characteristic is provided.
  • a shutdown load error SLE SLE.x from the difference between the traffic volume UT or the target departure load SL.x and the actual departure load LFB; LFB.x determined.
  • a proportional part PPA is calculated; PPA.x and in step S4 the calculation of an integral part IPA; IPA.x.
  • both components add up to the corrected departure load ASL; ASL.x.

Claims (26)

  1. Procédé pour gérer la circulation de personnes remplissant un bâtiment, sur un palier principal (PALIERPR) d'une installation d'ascenseurs formée d'au moins un ascenseur comportant une cabine, les cabines d'ascenseur (CABINE.1 ; CABINE.2... CABINE.n) étant envoyées à partir du palier principal (PALIERPR) en fonction de la circulation de personnes remplissant un bâtiment, caractérisé
    - en ce qu'un algorithme principal (REGULATEUR) définit, en fonction de la circulation de personnes remplissant le bâtiment, arrivant et partant sur le palier principal (PALIERPR), et à partir des données d'une mesure de circulation, une quantité de circulation (UT) et une charge de départ réelle totale (LFB) pour le groupe d'ascenseurs, et définit, à partir de cela, en fonction d'un algorithme de régulation, une capacité de transport totale (TTC) pour le groupe d'ascenseurs,
    - en ce que l'algorithme principal (REGULATEUR) définit, à partir de la capacité de transport totale (TTC) et en fonction d'un calcul, une capacité de transport (TC.x) d'une cabine d'ascenseur respective (CABINE.x), et l'attribue à un algorithme secondaire (REGULATEUR.x) de la cabine d'ascenseur respective (CABINE.x), la somme de toutes les capacités de transport TC.1 ; TC.2... TC.n attribuées correspondant à la capacité de transport totale (TTC), et
    - en ce que l'alorithme secondaire (REGULATEUR.x) envoie la cabine d'ascenseur respective (CABINE.x) en fonction de la capacité de transport (TC.x) attribuée, de son temps de rotation (RT.x) et de la circulation de personnes remplissant le bâtiment et déjà géré par lui.
  2. Procédé selon la revendication 1, caractérisé en ce que l'algorithme principal (REGULATEUR) limite, en fonction de la capacité de transport totale (TTC), le nombre de cabines d'ascenseur auxquelles est attribuée la capacité de transport (TC.x).
  3. Procédé selon la revendication 1, caractérisé en ce que les conditions préalables pour l'intégration de la cabine d'ascenseur respective (CABINE.x) dans le fonctionnement habituel des ascenseurs sont créées lors d'un premier trajet.
  4. Procédé selon la revendication 1, caractérisé en ce que, en l'absence d'attribution de la capacité de transport (TC.x), l'algorithme secondaire (REGULATEUR.x) suit un déroulement qui permet, en cas de nouvelle attribution de la capacité de transport (TC.x), de continuer le déroulement habituel.
  5. Procédé selon la revendication 1, caractérisé en ce que, en présence d'une charge de départ de consigne (SL.x) inférieure à un passager d'ascenseur, conditionnée par une faible capacité de transport (TC.x), l'algorithme secondaire (REGULATEUR.x) suit un déroulement qui permet l'envoi régulé de la cabine d'ascenseur respective (CABINE.x) avec un passager, et, une fois que la capacité de transport (TC.x) attribuée est atteinte, suit le déroulement en l'absence d'attribution de capacité de transport (TC.x).
  6. Procédé selon la revendication 1, caractérisé en ce que l'algorithme secondaire (REGULATEUR.x) définit un temps de rotation (RT.x) pour la cabine d'ascenseur respective (CABINE.x), et en ce que ledit algorithme secondaire (REGULATEUR.x) définit, en fonction d'un calcul, un temps de rotation moyen (ART.x) pour la cabine d'ascenseur respective (CABINE.x).
  7. Procédé selon la revendication 1, caractérisé en ce que l'algorithme secondaire (REGULATEUR.x) définit, à partir de la capacité de transport (TC.x) attribuée et du temps de rotation moyen (ART.x) et en fonction d'un calcul, une charge de départ de consigne (SL.x) pour la cabine d'ascenseur respective (CABINE.x).
  8. Procédé selon la revendication 1, caractérisé en ce que l'algorithme secondaire (REGULATEUR.x) définit, à partir de la charge de départ de consigne (SL.x) et de la charge de départ réelle (LFB.x) et en fonction d'un algorithme de régulation, une charge de départ corrigée (ASL.x) pour la cabine d'ascenseur respective (CABINE.x).
  9. Procédé selon la revendication 1, caractérisé en ce que l'algorithme secondaire (REGULATEUR.x) compare en permanence, pendant le chargement de la cabine d'ascenseur respective (CABINE.x), la charge de départ réelle (LFB.x) avec la charge de départ corrigée (ASL.x).
  10. Procédé selon la revendication 1, caractérisé en ce que l'algorithme secondaire (REGULATEUR.x) envoie à une commande d'ascenseur (COMMANDE.x) un ordre de fermeture de porte (DC.x) lors du chargement de la cabine d'ascenseur respective (CABINE.x), lorsque la charge de départ corrigée (ASL.x) est atteinte ou après écoulement d'un temps d'ouverture de porte (DT.x).
  11. Procédé selon la revendication 1, caractérisé en ce que l'algorithme secondaire (REGULATEUR.x) vérifie, lors du départ de la cabine d'ascenseur respective (CABINE.x) du palier principal (PALIERPR), la charge de départ réelle (LFB.x) et la met à disposition en vue d'une correction de la charge de départ (ASL.x) et de la charge de départ totale (ASL).
  12. Procédé selon la revendication 1, caractérisé en ce que la quantité de circulation (UT) est calculée suivant l'équation UT = UT.A + UT.B + ... + UT.N, dans laquelle UT.A désigne le nombre de passagers d'ascenseur remplissant le bâtiment détectés pour chaque cycle par un a-ième détecteur (DETECTEUR.A), UT.B le nombre de passagers détectés, de même, par un b-ième détecteur (DETECTEUR.B) et UT.B le nombre de passagers détectés, de même, par un nième détecteur (DETECTEUR.N), et en ce que la charge de départ totale (LFB) est calculée suivant l'équation LFB = LFB.1 + LFB.2 + ... + LFB.n, dans laquelle LFB.1, LFB.2 et LFB.n désigne respectivement la charge de départ réelle des première, seconde et nième cabines d'ascenseur pour chaque cycle.
  13. Procédé selon la revendication 1, caractérisé en ce que la capacité de transport totale (TTC) est calculée suivant l'équation TTC= ASL.CF, dans laquelle ASL désigne la charge de départ totale corrigée et CF un facteur de calibrage nécessaire pour normaliser la capacité de transport.
  14. Procédé selon la revendication 13, caractérisé en ce que la charge de départ totale (ASL) soumise à une régulation suivant des caractéristiques de régulation proportionnelle, intégrale et différentielle.
  15. Procédé selon la revendication 13, caractérisé en ce que la charge de départ totale (ASL) est soumis à une régulation suivant une caractéristique apériodique.
  16. Procédé selon la revendication 13, caractérisé en ce que la charege de départ totale (ASL) est soumise à une régulation suivant une caractéristique d'état-/d'observation.
  17. Procédé selon la revendication 1, caractérisé en ce que la capacité de transport (TC.x) est calculée pour la cabine d'ascenseur respective (CABINE.x) suivant l'équation
    Figure imgb0005
    dans laquelle LS.x désigne une part de charge dépendant de la charge nominale de la cabine d'ascenseur respective (CABINE.x), TTC la capacité de transport totale et LC une charge nominale du groupe d'ascenseurs.
  18. Procédé selon la revendication 2, caractérisé en ce que, pour une capacité de transport totale (TTC) ne dépassant pas le nombre d'ascenseurs (NOC), un passager soit à chaque fois attribué au nombre de cabines correspondant à la capacité de transport totale (TTC).
  19. Procédé selon la revendication 2, caractérisé en ce que, pour une capacité de transport totale (TTC) supérieure au nombre d'ascenseurs (NOC), aucune capacité de transport (TTC) n'est attribuée aux cabines d'ascenseur pour lesquelles le calcul selon la revendication 21 donne une capacité de transport (TC.x) inférieure à un, cette capacité de transport (TC.x) étant attribuée à la cabine d'ascenseur suivante (CABINE.x+1).
  20. Procédé selon la revendication 3, caractérisé en ce que l'algorithme secondaire (REGULATEUR.x) suit, pour l'exécution du premier trajet de la cabine d'ascenseur respective (CABINE.x), un déroulement pour lequel des données sont mises à disposition pour le fonctionnement normal suivant.
  21. Procédé selon la revendication 5, caractérisé en ce que, après l'envoi de la cabine d'ascenseur respective (CABINE.x) avec un passager, la capacité de transport (TC.x) de ladite cabine respective (CABINE.x) est diminuée de un.
  22. Procédé selon la revendication 6, caractérisé en ce que le temps de rotation moyen (ART.x) est calculé, pour la cabine d'ascenseur respective (CABINE.x), suivant l'équation
    Figure imgb0006
    dans laquelle Σ RT.x désigne une somme des temps de rotation précédents et CR.x un nombre de trajet précédents de la cabine d'ascenseur respective (CABINE.x).
  23. Procédé selon la revendication 7, caractérisé en ce que la charge de départ de consigne (SL.x) est calculée, pour la cabine d'ascenseur respective (CABINE.x), suivant l'équation SL.x = TC.x ART.x, dans laquelle TC.x désigne la capacité de transport et ART.x le temps de rotation moyen de ladite cabine respective (CABINE.x).
  24. Procédé selon la revendication 8, caractérisé en ce que la charge de départ (ASL.x) pour la cabine d'ascenseur respective (CABINE.x) est soumise à une régulation suivant des caractéristiques de régulation proportionnelle, intégrale et différentielle.
  25. Procédé selon la revendication 8, caractérisé en ce que la charge de départ (ASL.x) pour la cabine d'ascenseur respective (CABINE.x) est soumise à une régulation suivant une caractéristique de régulation apériodique.
  26. Procédé selon la revendication 8, caractérisé en ce que la charge de départ (ASL.x) pour la cabine d'ascenseur respective (CABINE.x) est soumise à une régulation suivant une caractéristique de régulation d'état/d'observation.
EP88117726A 1988-01-14 1988-10-25 Procédé pour régler le trafic sur le palier principal d'une installation d'ascenceurs Expired - Lifetime EP0324068B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88117726T ATE70522T1 (de) 1988-01-14 1988-10-25 Verfahren zur bewaeltigung des personenverkehrs auf der haupthaltestelle einer aufzugsanlage.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH10888 1988-01-14
CH108/88 1988-01-14

Publications (2)

Publication Number Publication Date
EP0324068A1 EP0324068A1 (fr) 1989-07-19
EP0324068B1 true EP0324068B1 (fr) 1991-12-18

Family

ID=4179452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117726A Expired - Lifetime EP0324068B1 (fr) 1988-01-14 1988-10-25 Procédé pour régler le trafic sur le palier principal d'une installation d'ascenceurs

Country Status (10)

Country Link
US (1) US4930603A (fr)
EP (1) EP0324068B1 (fr)
JP (1) JP2592516B2 (fr)
CN (1) CN1015700B (fr)
AT (1) ATE70522T1 (fr)
CA (1) CA1313714C (fr)
DE (1) DE3867058D1 (fr)
ES (1) ES2029312T3 (fr)
FI (1) FI97796C (fr)
HK (1) HK21493A (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235143A (en) * 1991-11-27 1993-08-10 Otis Elevator Company Elevator system having dynamically variable door dwell time based upon average waiting time
US5329076A (en) * 1992-07-24 1994-07-12 Otis Elevator Company Elevator car dispatcher having artificially intelligent supervisor for crowds
FI118732B (fi) 2000-12-08 2008-02-29 Kone Corp Hissi
US6439349B1 (en) 2000-12-21 2002-08-27 Thyssen Elevator Capital Corp. Method and apparatus for assigning new hall calls to one of a plurality of elevator cars
DK1397304T3 (da) 2001-06-21 2008-08-04 Kone Corp Elevator
US9573792B2 (en) 2001-06-21 2017-02-21 Kone Corporation Elevator
FI119234B (fi) * 2002-01-09 2008-09-15 Kone Corp Hissi
KR101286320B1 (ko) 2005-08-04 2013-07-15 인벤티오 아게 엘레베이터 시스템에 사용자를 할당하는 방법
US8534426B2 (en) 2007-08-06 2013-09-17 Thyssenkrupp Elevator Corporation Control for limiting elevator passenger tympanic pressure and method for the same
WO2009024853A1 (fr) 2007-08-21 2009-02-26 De Groot Pieter J Système de commande d'ascenseur de destination intelligent
CN103663015A (zh) * 2013-12-06 2014-03-26 江苏蒙哥马利电梯有限公司 一种电梯停车控制方法
EP3604194A1 (fr) * 2018-08-01 2020-02-05 Otis Elevator Company Service de suivi de l'état mécanique pendant l'encapsulation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422928A (en) * 1964-04-23 1969-01-21 Otis Elevator Co Analog computer variable interval dispatcher for an elevator system with trip time as a measure of traffic
US4112419A (en) * 1975-03-28 1978-09-05 Hitachi, Ltd. Apparatus for detecting the number of objects
US4058187A (en) * 1975-09-04 1977-11-15 United Technologies Corporation Limited stop elevator dispatching system
US4305479A (en) * 1979-12-03 1981-12-15 Otis Elevator Company Variable elevator up peak dispatching interval
JPS59153770A (ja) * 1983-02-21 1984-09-01 三菱電機株式会社 エレベ−タの管理装置
US4846311A (en) * 1988-06-21 1989-07-11 Otis Elevator Company Optimized "up-peak" elevator channeling system with predicted traffic volume equalized sector assignments

Also Published As

Publication number Publication date
CA1313714C (fr) 1993-02-16
EP0324068A1 (fr) 1989-07-19
FI886041A (fi) 1989-07-15
FI97796B (fi) 1996-11-15
JP2592516B2 (ja) 1997-03-19
CN1039229A (zh) 1990-01-31
DE3867058D1 (de) 1992-01-30
ES2029312T3 (es) 1992-08-01
CN1015700B (zh) 1992-03-04
ATE70522T1 (de) 1992-01-15
JPH01209290A (ja) 1989-08-23
FI97796C (fi) 1997-02-25
US4930603A (en) 1990-06-05
HK21493A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
EP0321657B1 (fr) Procédé pour la commande des départs de cabines d'ascenseurs depuis le palier principal lors des pointes de trafic
EP0324068B1 (fr) Procédé pour régler le trafic sur le palier principal d'une installation d'ascenceurs
EP0443188B1 (fr) Méthode et dispositif de distribution directe d'appels de groupes d'ascenseurs, basés sur des charges de service et sur des facteurs bonus/malus variables
EP0356731B1 (fr) Commande groupée avec attribution immédiate des appels
DE3611173C2 (de) Fahrstuhlanlage mit mehreren Doppelabteil-Kabinen
DE112009002258B4 (de) Fahrstuhlgruppen-Verwaltungssystem
EP0246395B1 (fr) Commande d'un groupe d'ascenceur
EP0091554B1 (fr) Commande d'un groupe d'ascenseurs comportant un dispositif pour la commande d'une pointe de trafic descendante
EP0032213A2 (fr) Commande d'un groupe d'ascenseurs
EP0301173B1 (fr) Commande d'un groupe d'ascenceurs
EP0440967A1 (fr) Commande de groupes pour ascenseurs avec distribution directe d'appels d'une entrée d'appels située sur l'étage
EP0365782B1 (fr) Dispositif et méthode de commande d'un groupe d'ascenseurs pour cabines à compartiments doubles
EP0378834B1 (fr) Commande d'un groupe d'ascenseurs avec attribution immédiate des appels
EP0291553A1 (fr) Méthode pour régler une balance de dosage différentielle, en particulier pour matériaux en vrac, et une balance de dosage différentielle pour l'application de la méthode
EP0419802B1 (fr) Méthode de traîtement des appels de destination faits en cabine d'ascenseur
DE2411824C2 (de) Verfahren zum Betreiben einer Aufzugsanlage
EP0308590B1 (fr) Commande d'un groupe d'ascenceurs avec attribution immédiate des appels
EP0407731B1 (fr) Méthode de traitement d'appels enregistrés en cabine d'ascenseur
WO2005034062A1 (fr) Procede pour evaluer et stabiliser des resultats de classification dans le temps
DE112013007085B4 (de) Aufzugsteuersystem
EP2591647A1 (fr) Dispositif électronique doté d' un dispositif de refroidissement
DE112015007178B4 (de) Aufzugsteuervorrichtung und Aufzugsteuerverfahren
EP0735786A2 (fr) Procédé pour défense de surcharge dans un réseau de communication
DE10138240A1 (de) Adaptionsverfahren für die Steuerung von Schaltelementen
WO2000067031A1 (fr) Procede pour depister des processus osteoporotiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19891216

17Q First examination report despatched

Effective date: 19910205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 70522

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3867058

Country of ref document: DE

Date of ref document: 19920130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2029312

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071030

Year of fee payment: 20

Ref country code: DE

Payment date: 20071025

Year of fee payment: 20

Ref country code: NL

Payment date: 20071016

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20071015

Year of fee payment: 20

Ref country code: IT

Payment date: 20071025

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071023

Year of fee payment: 20

Ref country code: FR

Payment date: 20071016

Year of fee payment: 20

Ref country code: CH

Payment date: 20080117

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081025

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20081025

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081024