EP0311602A1 - Verfahren zum erzeugen von dünnen metallsträngen. - Google Patents

Verfahren zum erzeugen von dünnen metallsträngen.

Info

Publication number
EP0311602A1
EP0311602A1 EP86903224A EP86903224A EP0311602A1 EP 0311602 A1 EP0311602 A1 EP 0311602A1 EP 86903224 A EP86903224 A EP 86903224A EP 86903224 A EP86903224 A EP 86903224A EP 0311602 A1 EP0311602 A1 EP 0311602A1
Authority
EP
European Patent Office
Prior art keywords
metal
strand
melt
molten metal
metal profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86903224A
Other languages
English (en)
French (fr)
Other versions
EP0311602B1 (de
Inventor
Fritz-Peter Pleschiutschnigg
Lothar Parschat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Priority to AT86903224T priority Critical patent/ATE65436T1/de
Publication of EP0311602A1 publication Critical patent/EP0311602A1/de
Application granted granted Critical
Publication of EP0311602B1 publication Critical patent/EP0311602B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product

Definitions

  • the invention relates to a method and a device for producing thin metal strands, in particular made of steel, with thicknesses of less than 20 mm, in which an uncooled, cleaned metal profile of low energy potential is brought into contact with a metal melt at least on one side of its cross section and this is brought to crystallize , the thickness of the metal strand being adjusted by the length of the contact time.
  • the molten metal is crystallized on cooled surfaces without a connection between the cooled surfaces and the crystallized material. Continuous casting therefore prevents the casting material from binding to the molds used in order not to destroy the work result.
  • the technology of continuous casting is limited by the strand thicknesses that can be achieved, whereby a minimum strand thickness is taken into account and not an increasing strand thickness.
  • achievable strand thicknesses “upward” are approximately 300 mm with appropriately wide strands, cross-sectional formats of 300 mm by 2,100 mm being referred to as jumbo strands.
  • the limits of the continuous casting technology in the direction of the thinnest possible strands are drawn on the one hand by the pouring conditions of the casting materials into the continuous casting molds because the technology of the immersion spouts fails here for dimensional reasons.
  • the specified temperature of 1100 degrees C is not reached in the core of the steel strip, and no diffusion of the molten metal occurs in the steel strip. With wall thicknesses of 4.6 mm, the two materials were not even bonded.
  • the invention is therefore based on the object of proposing a method for producing thin meta strands, in particular made of steel with thicknesses of less than 20 mm, which is not only close to End product (sheets, strips, pipes, profiles) leads lying product and requires only a minimal amount of cold and hot molding, but can be produced in its structure homogeneously and in economical quantities.
  • the object is achieved according to the invention at the outset by the fact that a metal profile selected with wall thicknesses of 0.1 to 1.4 mm is kept in contact with the molten metal within such a time, which in function with an energy potential difference between the low
  • the energy potential of the uncooked metal profile and the higher energy potential of the molten metal is before the melting of the metal profile, and in accordance with the maximum permissible contact time, a metal strand with an approximately 6 to 10 times the total strand thickness, consisting of the metal profile and crystals and melt material deposited thereon (without phase limits) the molten metal is pulled out.
  • This process initially has three main advantages:
  • the material cycle is limited to ten times the total strand thickness to 10%, so that the process works economically.
  • large bundles of thin metal profiles can be handled more easily.
  • layer materials from several thin metal profiles.
  • the process also requires relatively little developer and can be carried out with relatively simple devices. It is particularly advantageous here that, for example, sheet-like and strip-shaped natural edges are created which support the rolling process.
  • the method according to the invention means minimal conversion costs from the liquid product (such as steel) to the finished product.
  • Another advantage is that the process can be carried out discontinuously and alternatively continuously.
  • a particular advantage is to set or control the thickness of the metal strand by changing the contact time between the uncooled metal body and the metal melt, in contrast to continuous casting.
  • continuous casting relatively complex devices are available here for adjusting the mating side plates of a continuous casting mold, so that the thickness cannot initially be changed during continuous casting.
  • the thin metal profiles also make it possible not only to use completely identical materials of the molten metal with respect to the metal profile.
  • a metal profile strand with a fixed cross-section and with a fixed structural state is introduced into a related metal melt and is passed through on all sides in the defined time, in which it is at maximum at the solidus temperature inside is heated and that then the metal profile strand surrounded by the molten metal is subjected to controlled cooling outside the molten metal.
  • the metal profile strand is moved from bottom to top through the molten metal. As a result, a constant thickness of the melt material applied is achieved over the circumference of the cross section.
  • the metal profile strand is moved in several cycles by a metal melt in each case. This process step serves to produce particularly thick metal strands.
  • the invention also allows thin strands of metal to be constructed from different layers of material. For this purpose, it is provided that the metal profile strand is moved through different melt pool containers in several cycles.
  • An advantageous device for carrying out the method is designed in such a way that a metal melt container is provided which has an inlet opening for the metal profile strand and an outlet for the entire strand, that a melt inlet is present and that the inlet opening and / or the outlet opening for the metal profile strand against the Metal melt is sealed.
  • Temperature control of the molten metal located in the molten metal tank takes place in that the molten metal tank is provided with heating and / or cooling elements.
  • FIG. 1 shows a vertical cross section through the melt container
  • FIG. 2 shows a cross section through the uncooled metal body or the uncooled metal profile strand
  • FIG. 3 shows the cross section through the metal profile strand according to FIG. 2
  • FIG. 4 a metal profile strand provided with a thicker cross section
  • FIG. 5 the overall strand obtained belonging to FIG. 4, FIG. 6 a vertical cross section through an alternative
  • the process for producing thin metal strands takes place in a molten metal container (1), the content of which can be regulated to the desired temperature by the heating and / or cooling elements (2), so that the higher energy potential mentioned Metal melt (4) can be provided. If necessary, the molten metal (4) can be circulated by an electromagnetic stirring device (3) to add an additional To achieve temperature uniformity in the molten metal (4).
  • the uncooled metal profile (5) has a low energy potential, even if it is introduced preheated.
  • An uncooled metal profile strand (5a) which has a predetermined, defined cross section (5b) and a solid structural state, is used for a continuous process.
  • Metal melt (4) and metal profit (5) or metal profile strand (5a) normally show an essentially identical analysis. During the pulling through the metal melt (4), such a contact time is maintained that the metal profile (5) or the metal profile strand (5a) inside (5c) is heated to at most solidus temperature.
  • a rectangular cross-section (5b), ie a strip cross-section is assumed as the metal profile (5).
  • the metal profile strand (5a) is moved from below through the inlet opening (1a) upwards, through the molten metal (4).
  • the entire strand (6) can be kept in an atmosphere protecting against oxidation until it has cooled or has entered a molding machine in which the entire strand (6) is subjected to a hot-forming and / or a cold-shaping process.
  • the thickness of the entire strand (6) can be increased by several cycles as described, the metal istrang also cooling between the cycles in a space filled with inert gas. This cooling should be kept within limits in order to apply the melt material (free of phase boundaries) to the metal strand after each cycle.
  • molten metal (4) with different materials in the individual melt pool containers (1), ie to produce so-called layered materials.
  • the metal melt (4) consumed in the process is continuously fed under the appropriate metallostatic pressure through a melt inlet (7). replaced, the metal melt skewer (7a) being checked.
  • Escaping the molten metal (4) through the molten metal container (1) made of refractory materials is prevented by a refractory seal (8) with a pressing device (8a), through a pressure container (9) surrounding it, in which an inert gas, such as argon, is subjected to excess pressure is introduced, sealed.
  • the pressure vessel (9) has gas inlets (10) for this purpose and a lip seal (11) is arranged on the inlet opening (1a) to prevent gas leakage.
  • the cross section (5b) of the metal profile strand (5a) is selected to be rectangular, but there is still a natural edge (13) for the total strand thickness (12) on the broad sides, as has been determined by tests.
  • the natural edge (13) is particularly advantageous for further rolling of the metal strand.
  • the process described here can be repeated a number of times, with new metal melt (4) being transferred to the underlying, already solidified or solidified layers at the latest after the rolling process.
  • FIG. 6 shows the melt container (1) as described.
  • the container base (14) around the rollers (15) and (16) is either curved (right half of the drawing) or the roller (16) forms the container base (14).
  • the Rollers (15) and (16) can be driven in opposite directions.
  • the roller can consist of metal and, if necessary, be cooled.
  • the roller (15) consists of ceramic or poorly heat-conducting materials.
  • the rolls (15) and (16) can do hot forming work.
  • the feed direction of the metal profile (5) or of the metal profile strand (5a) from top to bottom that is to say contrary to the exemplary embodiment according to FIG. 1.
  • a capacitive utilization of the energy potential is relatively cold metal body in contrast to the conductive heat dissipation during continuous casting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Wire Processing (AREA)
  • Metal Rolling (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Conductive Materials (AREA)
  • Adornments (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Verfahren und Einrichtung zum Erzeugen von dünnen Metallsträngen Beschreibung:
Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Erzeugen von dünnen Metallsträngen, insbesondere aus Stahl, mit Dicken unter 20 mm, bei dem ein ungekühltes, gereinigtes Metallprofil niedrigen Energiepotentials zumindest auf einer Seite seines Querschnitts in Berührung mit einer Metallschmelze und diese zum flnkristallisieren gebracht wird, wobei durch die Länge der Kontaktzeit die Dicke des Metallstranges eingestellt wird.
Beim Stranggießen von Metallen, wie z.B. von Stahl, wird die Metallschmelze an gekühlten Flächen ankristallisiert, ohne daß eine Verbindung zwischen den gekühlten Flächen und dem ankristallisierten Werkstoff stattfindet. Das Stranggieβen vermeidet daher eine Bindung des Gießwerkstoffes an die verwendeten Gießformen, um das Arbeitsergebnis nicht zu zerstören.
Der Technologie des Stranggießens sind jedoch Grenzen gesetzt durch die erreichbaren Strangdicken, wobei eine minimale Strangdicke in Betracht gezogen wird und nicht eine sich erhöhende Strangdicke. Nach dem Stand der Technik betragen erzielbare Strangdicken "nach oben" ca. 300 mm bei entsprechend breiten Strängen, wobei Querschnittsformate von 300 mm mal 2.100 mm als Jumbo-Stränge bezeichnet werden. Die Grenzen der Stranggießtechnologie in Zielrichtung auf möglichst dünne Stränge (Veränderung der Strangdicke "nach unten") sind einerseits durch die Eingießverhältnisse der Gießwerkstoffe in die Stranggießkokillen gezogen, weil die Technik der Tauchausgüsse hier aus Abmessungsgründen versagt. Andererseits sind bislang mehrere Vorschläge zum Stranggießen von dünnen Metallsträngen bekanntgeworden, deren Durchführung zwar erfolgversprechend erscheint, deren Entwicklung bis zur Produktionsreife jedoch erhebliche Mittel erfordert. Das vorstehend beschriebene Stranggießverfahren unter Ankristallisieren an gekühlten Flächen ist aus dem Buch "Stranggießen" von Dr. Waldemar Schwarzmaier, Vertag Berliner Union Stuttgart, Seite 44 und 45, bekannt.
Das eingangs bezeichnete Verfahren zum Erzeugen von dünnen MetalIsträngen ist aus dem CH-Patent 301,042 bekannt. Wie sich ferner aus dem "Handbuch des Stranggießens" von Dr. Erhard Herrmann, Aluminium-Verlag, Düsseldorf, 1. Auflage 1958, Seite 105 ergibt, wurden im Jahre 1951 Versuche zu einer alternativen Methode zum Stranggießen durchgeführt, über die M.P. Newby in "Development of Continuous Casting of Steel, 21 (1954), Seiten 506 bis 508," berichtet. Es wurden Stahlstreifen von 3,2 mm Dicke durch ein Stahlbad von 1600 Grad C bei einer Eintauchdauer von 0,5 sec. mit einer Geschwindigkeit von 160 m/min. auf eine Länge von 1,5 m gezogen. Hierbei stellte sich eine Dickenzunahme auf 6,4 mm, d.h. auf das Doppelte, ein. Der Kern des Stahlstreifens erreichte allerdings lediglich eine Temperatur von 1100 Grad C. Aus diesem Ergebnis wird die Lehre gezogen, die Eintauchdauer steige mit dem Quadrat der geringsten Querschnittsabmessung, so müsse bei einem Stahtstreifen von 4,8 mm Dicke mit einer Eintauchdauer von mehr als einer Sekunde gerechnet werden.
Wie sich neuerdings in Versuchen gezeigt hat, wird weder die angegebene Temperatur von 1100 Grad C im Kern des Stahlstreifens erreicht, noch tritt eine Diffusion der Metallschmelze in den Stahlstreifen ein. Bei Wanddicken von 4,6 mm wurde noch nicht einmal eine Verbindung der beiden Werkstoffe erzielt .
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Erzeugen von dünnen Metatisträngen, insbesondere aus Stahl mit Dicken unter 20 mm vorzuschlagen, das nicht nur zu einem nahe am Endprodukt (Bleche, Bänder, Rohre, Profile) liegenden Erzeugnis führt und nur noch einen minimalen Kalt- und Warmformgebungsaufwand erfordert, sondern das in seiner Struktur homogen und in wirtschaftlichen Mengen erzeugt werden kann.
Die gestellte Aufgabe wird aufgrund des eingangs bezeichneten Verfahrens erfindungsgemäß dadurch gelöst, daß ein mit Wanddicken von 0,1 bis 1,4 mm ausgewähltes Metallprofil maximal innerhalb einer solchen Zeit in Kontakt mit der Metallschmelze gehalten wird, die in Funktion mit einer Energiepotentialdifferenz zwischen dem niedrigen Energiepotential des ungekühtten Metallprofils und dem höheren Energiepotential der Metallschmelze vor dem Aufschmelzen des Metallprofils steht und wobei entsprechend der maximal zulässigen Kontaktzeit ein Metallstrang mit einer etwa 6 bis 10fachen Gesamtstrangdicke, bestehend aus dem Metal Iprofil und an diesem (phaseπgrenzeπfrei) abgelagerten Kristallen und Schmelzenwerkstoff, aus der Metallschmelze herausgezogen wird. Dieses Verfahren weist zunächst drei Hauptvorteile auf:
a) Die geringen Wanddicken des Metallprofils erlauben trotz der anfänglichen Abschreckung der kontaktierten Metallschmelze ein durchdringendes Aufheizen;
b) es entsteht ein homogenes Gefüge des erzielten Metallstranges, bei dem die Metallschmelze so weit in das Metal Iprofil diffundiert, daß später durch Walzen eine ausreichend gleichmäßige Struktur erreicht wird;
c) der Materialkreislauf beschränkt sich bei dem Zehnfachen der Gesamtstrangdicke auf 10 %, so daß das Verfahren wirtschaftlich arbeitet. Außerdem können große Bunde des dünnen Metal Iprofils leichter gehandhabt werden. Es ist außerdem möglich, aus mehreren dünnen Metallprofilen sog. Schichtwerkstoffe herzustellen. Das Verfahren erfordert außerdem relativ geringe Entwicklungsmittel und kann mit relativ einfachen Vorrichtungen ausgeführt werden. Besonders vorteilhaft ist es hierbei, daß z.B. bei Blechen und Bändern walzgerechte Naturkanten entstehen, die den Walzvorgang unterstützen. Insgesamt betrachtet bedeutet das erfindungsgemäße Verfahren minimale Umwandlungskosten vom Flüssigprodukt (wie z.B. Stahl) zum Fertigprodukt.
Ein weiterer Vorteil besteht darin, daß das Verfahren ohne weiteres diskontinuierlich und alternativ kontinuierlich durchgeführt werden kann.
Ein besonders hervorzuhebender Vorteil besteht jedoch darin, im Gegensatz zum Stranggießen alteine über die Rnderung der Kontaktzeit zwischen dem ungekühlten Metallkörper und der Metallschmelze die Dicke des Metallstranges einzustellen bzw. zu kontrollieren. Beim Stranggießen stehen hier relativ aufwendige Einrichtungen zur Verstellung der Schmatseitenplatten einer Stranggießkokille zur Verfügung, so daß beim Stranggießen zunächst nicht die Dicke geändert werden kann. Die dünnen Metallprofile erlauben außerdem, nicht nur vollkommen gleichartige Werkstoffe der Metallschmelze in bezug auf das MetalIprofil einzusetzen.
Für die kontinuierliche Erzeugung von dünnen Metallsträngen ist nach der weiteren Erfindung vorgesehen, daß ein MetalIprofilstrang mit festgelegtem Querschnitt und mit festem Gefügezustand in eine artverwandte Metallschmelze eingeführt und in der festgelegten Zeit von der Metallschmelze allseitig umgeben hindurchgeführt wird, in der er im Innern maximal auf Solidustemperatur erwärmt wird und daß danach der mit der Metallschmelze umgebene Metallprofilstrang außerhalb der Metallschmelze einer gesteuerten Abkühlung unterzogen wird.
Besonders vorteilhaft ist ferner, daß der Metallprofilstrang von unten nach oben durch die Metallschmelze bewegt wird. Dadurch wird über den Umfang des Querschnitts eine gleichbleibende Dicke des aufgebrachten Schmelzenwerkstoffes erzielt.
In Weiterbildung der Erfindung ist vorgesehen, daß der Metallprofilstrang in mehreren Zyklen durch jeweils eine Metallschmelze bewegt wird. Dieser Verfahrensschritt dient der Erzeugung von besonders dicken Metallsträngen.
Entsprechend lange Kontaktzeiten werden nach einem weiteren Merkmal der Erfindung dadurch erzielt, daß der Metallprofilstrang auf einem vorgeschriebenen Weg durch die Metallschmelze bewegt wind.
Die Erfindung gestattet außerdem, dünne Metallstränge aus unterschiedlichen Werkstoffschichten aufzubauen. Hierzu ist vorgesehen, daß der Metallprofilstrang in mehreren Zyklen jeweils durch unterschiedliche Schmelzbadbehälter bewegt wird.
Ein weiterer Nachteil des Stranggießens war bislang die Gießgeschwindigkeit. Bei den entsprechend höheren Ziehgeschwindigkeiten des unge- kühlten Metallkörpers bzw. des ungekühlten Metallprofilstranges eröffnet sich nunmehr die Möglichkeit, daß der Gesamtstrang unmittelbar nach dem Austreten aus der Metallschmelze einem Warmformgebungs- und/oder einem Kaltformgebungsprozeß unterworfen wird. Ein vorteilhafte Einrichtung zur Durchführung des Verfahrens ist dahingehend gestaltet, daß ein Metallschmelzenbehälter vorgesehen ist, der eine Eingangsöffnung für den Metallprofilstrang und einen Ausgang für den Gesamtstrang aufweist, daß ein Schmelzenzulauf vorhanden ist und daß die Eingangsöffnung und/oder die Ausgangsöffnung für den Metallprofilstrang gegen die Metaltschmelze abgedichtet ist.
Eine Temperaturregelung der im Metallschmelzenbehälter befindlichen Metallschmelze findet dadurch statt, daß der Metallschmelzenbehälter mit Heiz- und/ oder Kühlelementen versehen ist.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben. Es zeigen
Fig. 1 einen senkrechten Querschnitt durch den Schmelzenbehälter, Fig. 2 einen Querschnitt durch den ungekühlten Metallkorper bzw. den ungekühlten Metallprofilstrang, Fig. 3 den aufgrund des Metallprofilstranges gemäß Fig. 2 erzielten
Gesamtstrang, Fig. 4 einen mit dickerem Querschnitt versehenen Metallprofilstrang und Fig. 5 den zu Fig. 4 gehörenden erzielten Gesamtstrang, Fig. 6 einen senkrechten Querschnitt durch einen alternativen
Schmelzenbehälter.
Das Verfahren zum Erzeugen von dünnen Metallsträngen, insbesondere aus Stahl, findet in einem Metallschmelzenbehälter (1) statt, dessen Inhalt durch die Heiz- und/oder Kühlelemente (2) auf die jeweils gewünschte Temperatur geregelt werden kann, so daß das erwähnte höhere Energiepotential der Metallschmelze (4) vorgesehen werden kann. Erforderlichenfalls kann die Metallschmelze (4) durch eine elektromagnetische Rühreinrichtung (3) umgewälzt werden, um zusätzlich eine Temperaturvergleichmäßigung in der Metallschmelze (4) zu erzielen.
Das ungekühlte Metallprofil (5) weist ein niedriges Energiepotential auf, auch wenn er vorgewärmt eingebracht wird. Für ein kontinuierliches Verfahren dient ein ungekühlter Metallprofilstrang (5a), der einen vorherbestimmten, festgelegten Querschnitt (5b) und einen festen Gefügezustand aufweist. Metallschmelze (4) und Metallprofit (5) bzw. Metallprofilstrang (5a) weisen im Normalfall eine im wesentlichen übereinstimmende Analyse auf. Während des Hindurchziehens durch die Metallschmelze (4) wird eine solche Kontaktzeit eingehalten, daß das Metallprofil (5) bzw. der Metallprofilstrang (5a) im Inneren (5c) höchstens auf Solidustemperatur erwärmt wird. In dem dargestellten Beispiel gemäß Fig. 1 wird als Metallprofil (5) ein rechteckförmiger Querschnitt (5b), d.h. ein Bandquerschnitt vorausgesetzt. Der Metallprofilstrang (5a) wird von unten durch die Eiπgangsöffnung (1a) nach oben, durch die Metallschmelze (4) bewegt. Nach Verlassen des Ausgangs (1b) kann der Gesamtstrang (6) in einer gegen Oxidation schützenden Atmosphäre bis zum Erkalten oder bis zum Eintritt in eine Verformungsmaschine gehalten werden, in der der Gesamtstrang (6) einem Warmformgebungsund/oder einem Kaltformgebungsprozeß unterworfen wird. Die Dicke des Gesamtstranges (6) kann noch durch mehrere Zyklen wie beschrieben gesteigert werden, wobei der Metal Istrang zwischen den Zyklen ebenfalls in einem mit Inertgas gefüllten Raum abkühlt. Diese Abkühlung soll in Grenzen gehalten werden, um nach jedem Zyklus den Schmelzenwerkstoff (phasengrenzenfrei) auf den Metallstrang aufzubringen. Hierbei ist sogar möglich, in den einzelnen Schmelz- badbehältern (1) Metallschmelze (4) mit unterschiedlichen Werkstoffen aufzubringen, d.h. sog. Schichtwerkstoffe zu erzeugen. Die hierbei verbrauchte Metallschmelze (4) wird fortlaufend unter dem entsprechenden metallostatischen Druck durch einen Schmelzenzulauf (7) ersetzt, wobei der MetalIschmelzenspieget (7a) kontrolliert wird. Ein Austreten der Metallschmelze (4) durch den aus Feuerfestmaterialien hergestellten Metallschmelzenbehälter (1) wird durch eine Feuerfestdichtung (8) mit Andrückvorrichtung (8a), durch einen diese umgebenden Druckbehälter (9), in dem ein inertes Gas, wie z.B. Argon, unter Überdruck eingeführt wird, abgedichtet. Der Druckbehälter (9) weist hierfür Gaseinführungen (10) auf und an der Eingangsäffnung (1a) ist noch gegen Gasaustritt eine Lippendichtung (11) angeordnet.
Der Querschnitt (5b) des Metal tprofilstranges (5a) ist zwar rechteckförmig gewählt, dennoch ergibt sich für die Gesamtstrangdicke (12) an den Breitseiten eine Naturkante (13), wie durch Versuche ermittelt worden ist. Die Naturkante (13) ist für eine weitere Verwalzung des Metallstranges besonders vorteilhaft.
Auch bei unterschiedlichen Metallschmelzen-Werkstoffen ergibt sich eine phasengrenzenfreie Werkstoffstruktur, indem die Metallschmelze (4) durch Diffusion in das aufgeweichte Innere (5c) des Gesamtstrangs (6) eindringt.
Der hier beschriebene Vorgang kann, wie bereits angedeutet, mehrfach wiederholt werden, wobei jeweils spätestens nach dem Walzvorgang eine phasengrenzenfreie Übertragung neuer Metallschmelze (4) auf darunterliegende, bereits erstarrte oder im Erstarren befindliche Schichten stattfindet.
Das alternative Ausführungsbeispiel gemäß Fig. 6 zeigt den Schmelzenbehälter (1) wie beschrieben. Am Ausgang (1b) ist der Behälterboden (14) um die Rollen (15) und (16) entweder gewölbt Crechte Zeichnungshälfte) oder die Rolle (16) bildet den Behälterboden (14). Die Rollen (15) und (16) sind gegenläufig antreibbar. Im Fall des gewölbten Behälterbodens kann die Rolle jeweils aus Metall bestehen und gegebenenfalls gekühlt sein. Im anderen Fall (linke Zeichnungshälfte) besteht die Rolle (15) aus Keramik oder aus schlecht wärmeleitenden Werkstoffen. In beiden Fällen können die Rollen (15) und (16) Warmformgebungsarbeit leisten. Von besonderer Bedeutung ist hier die Zuführungsrichtung des Metallprofils (5) bzw. des Metallprofilstrang es (5a) von oben nach unten, also entgegengesetzt zum Ausführungsbeispiel gemäß Fig. 1. Auch bei diesem Ausführungsbeispiel gemäß Fig. 6 erfolgt eine kapazitive Ausnutzung des Energiepotentials eines relativ kalten Metallkörpers im Gegensatz zur konduktiven Wärmeabführung beim Stranggießen.

Claims

Patentansprüche -------------------------
1. Verfahren zum Erzeugen von dünnen MetalIsträngen, insbesondere aus Stahl, mit Dicken unter 20 mm, bei dem ein ungekühltes, gereinigtes Metallprofil niedrigen Energiepotentials zumindest auf einer Seite seines Querschnitts in Berührung mit einer Metallschmelze und diese zum Ankristallisieren gebracht wird, wobei durch die Länge der Kontaktzeit die Dicke des MetalIstranges eingestellt wird, dadurch gekennzeichnet, daß ein mit Wanddicken von 0,1 bis 1,4 mm ausgewähltes Metallprofit (5) maximal innerhalb einer solchen Zeit in Kontakt mit der Metallschmelze (4) gehalten wird, die in Funktion mit einer Energiepotentialdifferenz zwischen dem niedrigen Energiepotential des ungekühlten Metallprofils (5) und dem höheren Energiepotential der Metallschmelze (4) vor dem Aufschmelzen des Metallprofils (5) steht und wobei entsprechend der maximal zulässigen Kontaktzeit ein MetalIstrang mit einer etwa 6 bis 10fachen Gesamtstrangdicke (12,, bestehend aus dem Metallprofil (5) und an diesem (phasengrenzenfrei) abgelagerten Kristallen und Schmelzenwerkstoff, aus der Metallschmelze (4) herausgezogen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Metallprofilstrang C5a) mit festgelegtem Querschnitt (5b) und mit festem Gefügezustand in eine artverwandte Metallschmelze (4) eingeführt und in der festgelegten Zeit von der Metallschmelze (4) allseitig umgeben hindurchgeführt wird, in der er im Innern (5c) maximal auf Solidustemperatur erwärmt wird und daß danach der mit der Metallschmelze (4) umgebene Metallprofilstrang (5a) außerhalb der Metallschmelze (4) einer gesteuerten Abkühlung unterzogen wird.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Metallprofilstrang (5a) von unten nach oben durch die Metallschmelze (4) bewegt wird.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß der Metallprofilstrang (5a) in mehreren Zyklen durch jeweils eine Metallschmelze (4) bewegt wird.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß der Metallprofilstrang (5a) auf einem vorgeschriebenen Weg durch die Metallschmelze (4) bewegt wird.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der Metallprofilstrang (5a) in mehreren Zyklen jeweils durch unterschiedliche Schmelzbadbehälter (1) bewegt wird.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß der Gesamtstrang (6) unmittelbar nach dem Austreten aus der Metallschmelze (4) einem Warmformgebungs- und/oder einem Kaltformgebungsprozeß unterworfen wird.
6. Einrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß ein Metal lschmelzenbehälter (1) vorgesehen ist, der eine Eingangsöffnung (1a) für den Metallprofilstrang (5a) und einen Ausgang (1b) für den Gesamtstrang (6) aufweist, daß ein Schmelzenzulauf (7) vorhanden ist und daß die Eingangsöffnung (1a) und/oder die Ausgangsöffnung (1b) für den Metallprofilstrang (5a) gegen die Metallschmelze (4) abgedichtet ist.
9. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Metallschmelzenbehälter (1) mit Heiz- und/oder Kühlelementen (2) versehen ist.
EP86903224A 1986-05-27 1986-05-27 Verfahren zum erzeugen von dünnen metallsträngen Expired - Lifetime EP0311602B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86903224T ATE65436T1 (de) 1986-05-27 1986-05-27 Verfahren zum erzeugen von duennen metallstraengen.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE1986/000219 WO1987007192A1 (en) 1986-05-27 1986-05-27 Process and device for producing thin metal bar

Publications (2)

Publication Number Publication Date
EP0311602A1 true EP0311602A1 (de) 1989-04-19
EP0311602B1 EP0311602B1 (de) 1991-07-24

Family

ID=6790311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86903224A Expired - Lifetime EP0311602B1 (de) 1986-05-27 1986-05-27 Verfahren zum erzeugen von dünnen metallsträngen

Country Status (7)

Country Link
EP (1) EP0311602B1 (de)
JP (1) JP2655143B2 (de)
KR (1) KR950002966B1 (de)
AT (1) ATE65436T1 (de)
DE (2) DE3680547D1 (de)
DK (1) DK165581C (de)
WO (1) WO1987007192A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027464A1 (de) * 1995-03-07 1996-09-12 Mannesmann Ag Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche
EP0915181A1 (de) * 1997-11-04 1999-05-12 Inland Steel Company Verzinken unter Verwendung eines Stopfens von abgeschreckter Metallbeschichtung

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE503737C2 (sv) * 1987-10-23 1996-08-19 Sven Torbjoern Ekerot Förfarande och anordning för direktgjutning av metaller till långsträckta kroppar
FI901001A (fi) * 1990-02-28 1991-08-29 Outokumpu Oy Foerfarande och anordning foer framstaellning av metallmatriskomposit.
DE4319569C1 (de) * 1993-06-08 1994-06-16 Mannesmann Ag Verfahren und Vorrichtung zur Erzeugung von Halbzeug
DE4426705C1 (de) * 1994-07-20 1995-09-07 Mannesmann Ag Inversionsgießeinrichtung mit Kristallisator
DE19509691C1 (de) * 1995-03-08 1996-05-09 Mannesmann Ag Bodendurchführung eines Inversionsgießgefäßes
DE19519068C1 (de) * 1995-05-19 1996-09-26 Mannesmann Ag Verfahren und Vorrichtung zur Herstellung von metallischem Verbundwerkstoff
DE19545259A1 (de) * 1995-11-24 1997-05-28 Mannesmann Ag Verfahren und Vorrichtung zum Erzeugen von dünnen Metallsträngen
DE19638905C1 (de) * 1996-09-23 1998-01-02 Schloemann Siemag Ag Verfahren zur Erzeugung von beschichteten Metallsträngen, insbesondere Metallbändern und Beschichtungsanlage
DE19731124C1 (de) * 1997-07-19 1999-01-21 Schloemann Siemag Ag Verfahren und Vorrichtung zur Erzeugung von beschichtetem Warm- und Kaltband
DE19814988C2 (de) * 1998-01-23 2000-11-16 Sms Demag Ag Gießverfahren für ein dünnes Metallband

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB509456A (en) * 1938-06-22 1939-07-17 Walter Philip Williams The formation of metallic composite sheet stock by direct casting
CH301042A (fr) * 1951-03-07 1954-08-31 British Iron Steel Research Procédé pour la fabrication d'une pièce de métal de forme allongée.
US3264692A (en) * 1964-04-29 1966-08-09 Gen Electric Inlet orifice for continuous casting apparatus
US3470939A (en) * 1965-11-08 1969-10-07 Texas Instruments Inc Continuous chill casting of cladding on a continuous support
US3483030A (en) * 1966-12-19 1969-12-09 Texas Instruments Inc Chill cladding method and apparatus
JPS5250928A (en) * 1975-10-21 1977-04-23 Nippon Steel Corp Method for immersionnmoulding of steel
JPS60191655A (ja) * 1984-03-12 1985-09-30 Fujikura Ltd クラツド線条体の製造方法
JPS6186065A (ja) * 1984-10-03 1986-05-01 Sumitomo Metal Ind Ltd 鋼のデイツプ・フオ−ミング法
JPS6192770A (ja) * 1984-10-12 1986-05-10 Fujikura Ltd デイツプフオ−ミング法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8707192A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027464A1 (de) * 1995-03-07 1996-09-12 Mannesmann Ag Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche
EP0915181A1 (de) * 1997-11-04 1999-05-12 Inland Steel Company Verzinken unter Verwendung eines Stopfens von abgeschreckter Metallbeschichtung

Also Published As

Publication number Publication date
JP2655143B2 (ja) 1997-09-17
KR950002966B1 (ko) 1995-03-29
DK36688A (da) 1988-03-22
ATE65436T1 (de) 1991-08-15
KR880701148A (ko) 1988-07-25
EP0311602B1 (de) 1991-07-24
DE3690741D2 (en) 1989-08-17
DK36688D0 (da) 1988-01-26
WO1987007192A1 (en) 1987-12-03
DE3680547D1 (de) 1991-08-29
DK165581C (da) 1993-05-03
DK165581B (da) 1992-12-21
JPH01503046A (ja) 1989-10-19

Similar Documents

Publication Publication Date Title
EP0311602B1 (de) Verfahren zum erzeugen von dünnen metallsträngen
EP3495086B1 (de) Verfahren und vorrichtung zur herstellung eines bandförmigen verbundmaterials
DE1508876A1 (de) Kontinuierliches Stranggiessverfahren und Einrichtung zum Durchfuehren des Verfahrens
CH658809A5 (de) Verfahren zur kontinuierlichen herstellung eines laenglichen metallgegenstandes und vorrichtung zur durchfuehrung des verfahrens.
DE3440236C2 (de)
DE2548939C2 (de) Verfahren und Vorrichtung zum Stranggießen von Bändern
DE2213111B2 (de) Vorrichtung zur Herstellung von Metallbändern durch Stranggießen
DE2457423C2 (de) Verfahren und Vorrichtung zum Herstellen eines Stranges aus einer metallischen Schmelze
DE3440235C2 (de) Verfahren und Vorrichtung zum Bandstranggießen von Metallen, insbesondere von Stahl
DD141276A5 (de) Verfahren und anlage fuer den strangguss roehrenfoermiger erzeugnisse
WO1996027464A1 (de) Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche
EP0558739B1 (de) Verfahren und vorrichtung zur herstellung dünner schichten aus flüssigkeiten als beschichtung oder folie
DE1508809A1 (de) Verfahren und Durchlaufkokille zum Stranggiessen von Metallen,insbesondere in Form von Brammen,Platten oder Blechen
DE3247002C1 (de) Verfahren und Vorrichtung zum Angiessen von duennen Straengen aus Stahl beim Stranggiessen
DE2406252C3 (de) Verfahren und Vorrichtung zum Stranggießen und Weiterverarbeiten des gegossenen Strangs
DE19850213C2 (de) Gießverfahren für ein dünnes Metallband und zugehörige Gießvorrichtung
AT142197B (de) Verfahren und Vorrichtung zur direkten Formgebung von flüssigen Metallen.
WO1988002288A1 (en) Process and device for casting thin strip or foil from a molten mass
DE3346391C2 (de) Stranggießverfahren und Vorrichtung zum Herstellen von Mehrschichtwerkstoffen
DE1218120B (de) Vorrichtung zum kontinuierlichen Giessen von Metallstraengen
DE672731C (de) Verfahren zur katalytischen Reduktion des Kohlenoxyds zu mehrgliedrigen Kohlenwasserstoffen
DE1471952A1 (de) Verfahren und Einrichtung zur Herstellung von Flachglas
DE19815007C2 (de) Gießverfahren für einen Metallstrang
AT269391B (de) Verfahren zur Herstellung von überzogenem Metall
DE1558292A1 (de) Verfahren zum Herstellen einer Pressenplatte aus Gusseisen mit eingegossenen Stahlrohren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19891019

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 65436

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3680547

Country of ref document: DE

Date of ref document: 19910829

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86903224.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990413

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990419

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990421

Year of fee payment: 14

Ref country code: CH

Payment date: 19990421

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990422

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990426

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990427

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990428

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000527

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000527

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

BERE Be: lapsed

Owner name: MANNESMANN A.G.

Effective date: 20000531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000527

EUG Se: european patent has lapsed

Ref document number: 86903224.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040510

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201