EP0308933B1 - Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls - Google Patents

Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls Download PDF

Info

Publication number
EP0308933B1
EP0308933B1 EP88115595A EP88115595A EP0308933B1 EP 0308933 B1 EP0308933 B1 EP 0308933B1 EP 88115595 A EP88115595 A EP 88115595A EP 88115595 A EP88115595 A EP 88115595A EP 0308933 B1 EP0308933 B1 EP 0308933B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
ultrasonic
container
pressure
ultrasonic actuators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88115595A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0308933A1 (de
Inventor
Klaus Prof. Dr.-Ing. Bauckhage
Norbert Kunert
Peter Dipl.-Ing. Schreckenberg
Hermann Dr. Phil. Vetters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Original Assignee
Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25860019&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0308933(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG filed Critical Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Priority to AT88115595T priority Critical patent/ATE61261T1/de
Publication of EP0308933A1 publication Critical patent/EP0308933A1/de
Application granted granted Critical
Publication of EP0308933B1 publication Critical patent/EP0308933B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a device for atomizing at least one jet of a liquid substance, in particular molten metal, according to the preamble of claim 1 and to a method using the device according to claim 4.
  • the low ultrasound power when atomizing liquid metals means that the associated cooling of the melt to temperatures below the solidus point cannot take place quickly enough. This results in an uncontrolled cooling of the atomized particles and the associated unfavorable grain sizes and properties.
  • the object of the invention is to create a device of the type mentioned at the outset, as a result of which an increased atomization performance and better atomization of the atomized metal particles is ensured when atomizing liquid metal, and the method also additionally increases the atomization performance.
  • a particularly high-energy ultrasound field is created by using at least two active transducers, that is, a pair of transducers.
  • further pairs of transducers can be provided, which expediently have the same data and also superpositionable parameters with regard to power, frequency and amplitude of the transducers and are arranged such that their standing ultrasonic field has one or more common pressure node areas.
  • the melt jet generated in the crucible By passing the melt jet generated in the crucible through this pressure node region, the atomization takes place where the ultrasound fields are superpositioned, that is to say the greatest energy density is present.
  • the device according to the invention enables a considerably larger flow of melt mass to be atomized and a more economical use associated therewith.
  • the superposition of several ultrasound fields also achieves a rapid quenching required to form a microstructure.
  • the use of two active transducers also effectively prevents atomized particles from sticking to the transducer surface.
  • the position of the ultrasonic transducers is changed jointly in such a way that the (horizontal) transducer axis is given any inclinations. This makes it possible to specifically deflect the atomized particles from a vertical path. It is thus advantageously possible to compact complex workpieces.
  • a nozzle is arranged downstream of the melt exit from the crucible, which is preferably designed like a Laval nozzle.
  • the oscillators are assigned to the nozzle in such a way that the node area of the superpositioned ultrasonic fields is slightly offset towards the crucible compared to the narrowest cross section of the nozzle. This not only accelerates the substances due to atomization in the node area of the ultrasonic fields, but also assigns a direction through the nozzle, which narrows after the node area.
  • the pressure vessel can be used to hold an application surface or application form for compacting the atomized and quenched micro-metal particles.
  • the entire device can also be accommodated in a pressure vessel. This results in particular in pressure relief in the crucible.
  • Such a device is also particularly suitable for carrying out the method described at the outset, because it enables the gaseous carrier medium for the ultrasonic wave to be compressed in a simple manner both in the region of the nozzle and in the region of the pressure vessel.
  • the energy density in the ultrasound node area serving for atomization is thus optimally designed by a combination of several narrow-casting measures, namely the superposition of several ultrasound fields and the increase in energy transmission in the compressed medium.
  • the atomization capacity increased by the method according to the invention also results in better quenching of the atomized metal particles, since these receive a greater momentum from the high-energy ultrasound field, which leads to an increased "slip" of the metal particles in the pressurized medium in which the atomization takes place. This prevents a veil of heated gas from forming around the metal particles; rather, the metal particles can be brought into constant contact with fresh, not yet preheated, ambient gas due to their action by a higher impulse.
  • the method it is proposed to compact the atomized metal particles immediately after quenching and atomizing to form a semi-finished product or a desired molded part.
  • the quenched metal particles are preferably "shot" onto a corresponding base using their superplastic properties with the aid of pressure, the individual metal particles being welded together.
  • the compacting is expediently carried out when the atomized metal particles have reached a solid phase and have cooled to such an extent that, on the one hand, a structural change no longer takes place and, on the other hand, the metal particles are still warm enough to be welded.
  • the material produced by the process according to the invention with the aid of the device described above has particularly favorable properties, since this produces a particularly homogeneous crystalline or amorphous structure with globular grains, which can be ⁇ 0.1 ⁇ m.
  • Such a material has superplastic properties that enable isotropic deformability.
  • the rapid cooling also leads to the integration of the Impurities in the globular microgranules formed from the atomized metal particles.
  • the device shown here is used to atomize a jet of liquid metal for the production of a metallic powder, tools, semi-finished products and finished parts.
  • the device is composed of a crucible 10, an adjoining nozzle 11 and, in the present exemplary embodiment, two ultrasonic vibrators 12 and a pressure vessel 13 arranged downstream of the latter.
  • the crucible 10 at the upper region of the device is bottle-shaped here with a downwardly tapering outlet opening 14.
  • the crucible 10 is filled to the level 15 with the raw material to be melted and atomized from powdered or granular metallic Granules 16.
  • the outlet opening 14 of the crucible 10 arranged in the middle with respect to an upright longitudinal central axis 18 of the device opens into an upright inlet funnel 19 of the nozzle 11.
  • This is designed here in a laval nozzle-like manner, namely has an upper acceleration section 20 tapering along a circumferential arc adjoining tapering section 21 and a lower frustoconical outlet section 22.
  • a gas supply channel opens from the side, which in the present exemplary embodiment is designed as a radially circumferential annular channel 23.
  • a gaseous process medium preferably an inert or reaction gas cooled to a temperature below room temperature, can be fed through this under pressure of the device.
  • the two ultrasonic oscillators 12 are arranged opposite the central tapering section 21 of the nozzle 11, in such a way that they lie on a common, horizontal oscillator axis 24 which intersects the longitudinal central axis 18 of the device.
  • the front sections of the ultrasonic vibrators 12 are inserted into the tapering section 21 of the nozzle through corresponding through openings 25.
  • the through openings 25 each provided with a corresponding, circumferential collar 26.
  • the ultrasound transducers 12 are fixed separately in a suitable manner, not shown, outside the front heads of the ultrasound transducers 12, and are decoupled in terms of vibrations.
  • the relative position of the oscillator axis 24 with respect to the individual sections of the nozzle 11 is here such that the oscillator axis 24 is located approximately in the tapering section 21, that is to say approximately in the end region of the acceleration section 20.
  • the two ultrasonic vibrators 12 are of identical design, in particular they have the same powers, frequencies and amplitudes, namely they produce the same, superimposed ultrasonic fields 27 of approximately 20 kHz with a vibrating power of 250 to 3000 W.
  • the two ultrasonic vibrators 12 a distance of six quarter waves, whereby they form three pressure note areas 28 and 29, of which the middle, lying on the oscillator axis 24 and the longitudinal central axis 18 node region 29 is used to atomize the jet emerging from the crucible 10 of the melt to be atomized.
  • the nozzle 11 has at its lower edge an annular flange 30 to which the pressure vessel 13 can be fastened with a corresponding connecting flange 31, preferably releasably by means of screws, not shown.
  • the pressure vessel can consist, as shown, of a cylindrical jacket 32 and a flat, horizontal bottom 33.
  • the bottom 33 can serve to accommodate a carrier plate 34 shown in FIG. 1, onto which the atomized Metal particles can be applied, preferably for compacting.
  • FIG. 2 shows a negative mold 35 arranged on the bottom 33 of the pressure vessel 13.
  • finished workpieces of any shape can be produced in the pressure vessel by compacting in the superplastic state of the metal particles.
  • rotationally symmetrical parts can preferably be produced. So that they get an almost uniform wall thickness, the negative mold 35 in the pressure vessel 13 can be rotated continuously about its (vertical) axis of rotation by a suitable drive.
  • Fig. 3 shows an alternative arrangement of a plurality of ultrasonic transducers 12, such that a plurality of pairs of transducers from opposing ultrasonic transducers 12 are provided to further increase performance.
  • the pair of transducers from the two ultrasonic transducers 12 are assigned three further pairs of transducers, shown in dash-dotted lines, whose transducer axes 24 lie in a common horizontal plane for generating further ultrasound fields, all of which lie in the (central) knot region 29 on the longitudinal central axis 18 of the device.
  • the device shown enables a particularly high atomization performance and high quenching rates by a plurality of ultrasonic vibrators 12, each of which generates the same ultrasonic field 27, results in a high energy density in the node region 29 and, moreover, the ultrasonic wave 27 is passed through a compressed gaseous medium with high energy transmission properties.
  • the device shown in FIG. 1 works as follows:
  • the acceleration of the metal particles by atomization causes the metal particles to "slip" in the gaseous medium. This results in a rapid quenching of the atomized metal particles.
  • the rapid quenching is further increased according to the invention in that, on the one hand, the atomization takes place in a compressed gaseous medium, which means that a higher energy can be applied by the ultrasonic wave 27 and, on the other hand, the nozzle 11 through the ring channel 23 with excess pressure of inert gas (nitrogen) or reaction gas (hydrogen ) that can be cooled down to _200 ° C.
  • the metal particles atomized and rapidly quenched in the manner described above have very small, predominantly globular grains ( ⁇ 0.1 ⁇ m) which have cooled to such an extent that no structural change takes place, but the grains are welded using the superplastic properties, if they are compacted, that is to say applied to the carrier plate 34 or the negative mold 35 on the bottom 33 of the pressure vessel 13 in a pressure-assisted manner.
  • Fig. 4 shows a further embodiment of the device according to the invention, which differs from that of FIGS. 1 to 3 in that the ultrasonic vibrators 12 are assigned to the nozzle 11 in a variable position.
  • the position of the ultrasonic transducers can be changed equally, but in opposite directions in relation to the nozzle 11 or with part of it, in such a way that the oscillator axis 24 can be pivoted out of the (normal) horizontal.
  • the atomized metal particles can be compared after reaching the node area 29 deflect the longitudinal central axis 18 in a direction deviating from the vertical.
  • the cone formed by the atomized metal particles and originating in the node 29 can thus be pivoted out of the longitudinal central axis 18 as a whole.
  • the ultrasonic vibrators 12 are arranged wholly or partially in a section of the nozzle 11 designed as a bellows 36.
  • Exemplary embodiment is assigned to the upper half of the ultrasonic vibrators 12 of the bellows 36, so that it forms the acceleration section 20 or the tapering section 21 of the nozzle 11.
  • the lower half of the ultrasonic oscillators 12 is assigned to a fixed section of the nozzle 11, namely approximately to the outlet section 22, which can be pivoted together with the ultrasonic oscillators 12.
  • FIG. 5 shows a third embodiment of the device.
  • This device enables a particularly high atomization capacity, in which all pressure node areas 28 and 29 of the ultrasonic field 27 serve to atomize the jets of liquid metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
EP88115595A 1987-09-22 1988-09-22 Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls Expired - Lifetime EP0308933B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88115595T ATE61261T1 (de) 1987-09-22 1988-09-22 Verfahren und vorrichtung zum zerstaeuben mindestens eines strahls eines fluessigen stoffs, vorzugsweise geschmolzenen metalls.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3731866 1987-09-22
DE3731866 1987-09-22
DE3735787 1987-10-10
DE19873735787 DE3735787A1 (de) 1987-09-22 1987-10-22 Verfahren und vorrichtung zum zerstaeuben mindestens eines strahls eines fluessigen stoffs, vorzugsweise geschmolzenen metalls

Publications (2)

Publication Number Publication Date
EP0308933A1 EP0308933A1 (de) 1989-03-29
EP0308933B1 true EP0308933B1 (de) 1991-03-06

Family

ID=25860019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88115595A Expired - Lifetime EP0308933B1 (de) 1987-09-22 1988-09-22 Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls

Country Status (4)

Country Link
US (1) US5164198A (enrdf_load_stackoverflow)
EP (1) EP0308933B1 (enrdf_load_stackoverflow)
JP (1) JPH01301810A (enrdf_load_stackoverflow)
DE (2) DE3735787A1 (enrdf_load_stackoverflow)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194596A (en) * 1989-07-27 1993-03-16 California Biotechnology Inc. Production of vascular endothelial cell growth factor
DE3939178A1 (de) * 1989-11-27 1991-05-29 Branson Ultraschall Vorrichtung zum zerstaeuben von fluessigen und festen stoffen, vorzugsweise geschmolzenen metalls
US5503372A (en) * 1989-11-27 1996-04-02 Martin Marietta Energy Systems, Inc. Nozzle for electric dispersion reactor
DE4015605A1 (de) * 1990-05-15 1991-11-21 Nied Roland Verfahren zur erzeugung feinster partikel und vorrichtung zur durchfuehrung des verfahrens
DE4022648C2 (de) * 1990-07-17 1994-01-27 Nukem Gmbh Verfahren und Vorrichtung zur Herstellung von kugelförmigen Teilchen aus flüssiger Phase
FR2665849B1 (fr) * 1990-08-20 1995-03-24 Dynamad Dispositif ultrasonique pour la production en continu de particules.
DE4242645C2 (de) * 1992-12-17 1997-12-18 Deutsche Forsch Luft Raumfahrt Verfahren und Einrichtung zur Herstellung von Metallkügelchen annähernd gleichen Durchmessers
DE4444525A1 (de) * 1994-11-30 1996-06-05 Hielscher Gmbh Ultraschallzerstäuber
US5667749A (en) * 1995-08-02 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for the production of fibers and materials having enhanced characteristics
US5811178A (en) * 1995-08-02 1998-09-22 Kimberly-Clark Worldwide, Inc. High bulk nonwoven sorbent with fiber density gradient
US5711970A (en) * 1995-08-02 1998-01-27 Kimberly-Clark Worldwide, Inc. Apparatus for the production of fibers and materials having enhanced characteristics
AU1022397A (en) * 1995-12-15 1997-07-14 Kimberly-Clark Corporation High temperature, high speed rotary valve
US5864578A (en) 1996-04-29 1999-01-26 Golden Bridge Technology, Inc. Matched filter-based handoff method and apparatus
DE19801832C2 (de) * 1998-01-14 2000-01-20 Juergen Schulze Verfahren und Vorrichtung zur Herstellung von kugelförmigen Teilchen nahezu gleichen Durchmessers
DE19926464A1 (de) * 1999-06-10 2000-12-21 Siemens Ag Mikrodosiervorrichtung und Verfahren zum Ausstoß einer Flüssigkeit
DE19929709C2 (de) * 1999-06-24 2001-07-12 Lueder Gerking Verfahren zur Herstellung von im Wesentlichen endlosen feinen Fäden und Verwendung der Vorrichtung zur Durchführung des Verfahrens
DE10059594A1 (de) 2000-11-30 2002-06-06 Solarworld Ag Verfahren und Vorrichtung zur Erzeugung globulärer Körner aus Reinst-Silizium mit Durchmessern von 50 mum bis 300 mum und ihre Verwendung
DE10245324A1 (de) * 2002-09-27 2004-04-08 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10245326A1 (de) * 2002-09-27 2004-04-08 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10252437A1 (de) * 2002-11-12 2004-05-27 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10327429A1 (de) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10327430A1 (de) 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10327431A1 (de) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
JP2005199239A (ja) * 2004-01-19 2005-07-28 Kyocera Corp 微小粒子の製造方法および製造装置
DE102009018021B4 (de) 2009-04-18 2013-09-05 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Mikrodosiersystem mit einem gepulsten Laser
KR100983947B1 (ko) * 2010-05-26 2010-09-27 연규엽 구형미세마그네슘분말 제조장치
DE102012107076A1 (de) 2011-08-24 2013-02-28 Technische Hochschule Wildau Verfahren und Vorrichtung zum thermischen Spritzen von Beschichtungswerkstoffen
US20160228991A1 (en) * 2015-02-05 2016-08-11 Siemens Energy, Inc. Acoustic manipulation and laser processing of particles for repair and manufacture of metallic components
CN105252010B (zh) * 2015-10-27 2018-08-03 上海航天精密机械研究所 基于热-磁-超声效应的金属雾化喷嘴
SE541122C2 (en) 2017-08-25 2019-04-16 Saab Ab Method of combusting aluminium and system therefor
CN109434126A (zh) * 2018-12-25 2019-03-08 西安赛隆金属材料有限责任公司 一种耦合超声旋转电极制粉装置及方法
CN112974801A (zh) * 2021-02-04 2021-06-18 东睦新材料集团股份有限公司 一种粉末冶金零件的制备方法
JP2022177424A (ja) * 2021-05-18 2022-12-01 シンフォニアテクノロジー株式会社 加熱溶解装置
CN113953519A (zh) * 2021-09-29 2022-01-21 西安交通大学 一种热-磁-超声金属雾化制粉系统及方法
CN114147231B (zh) * 2021-11-22 2024-02-27 哈尔滨工业大学 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法
CN118788969A (zh) * 2024-08-15 2024-10-18 杭州夸克新材料技术有限公司 一种气雾化耦合超声金属制粉设备及工艺方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1250065B (enrdf_load_stackoverflow) * 1967-09-14
DE1099239B (de) * 1958-07-07 1961-02-09 Philips Nv Ultraschall-Vibrator zum Dispergieren von Fluessigkeiten in einem Gas
US3081946A (en) * 1962-07-09 1963-03-19 Astrosonics Inc Sonic spray nozzle
US3397258A (en) * 1965-12-15 1968-08-13 Sinclair Koppers Co Process for extruding spherical expandable particles
DE1558356A1 (de) * 1966-02-03 1970-07-23 Horn Dr Lutz Mittels Ultraschalleinwirkung auf eine Metallschmelze durch Zerstaeubung des Metalls hergestelltes Pulver und Verfahren zu seiner Herstellung
DE2337812C3 (de) * 1973-07-25 1981-01-15 Pjotr Stepanovitsch Dserschinsk Voloschin Einrichtung zum Verspritzen von Flüssigkeiten
GB1472939A (en) * 1974-08-21 1977-05-11 Osprey Metals Ltd Method for making shaped articles from sprayed molten metal
JPS5146546A (ja) * 1974-10-18 1976-04-21 Tokuriki Honten Kk Ginrogokin
SE394604B (sv) * 1974-12-18 1977-07-04 Uddeholms Ab Forfarande och anordning for pulvertillverkning genom granulering av en smelta
CA1050832A (en) * 1976-02-12 1979-03-20 Joseph A. Kovacs Continuous metal coating process and apparatus
DE2656330C2 (de) * 1976-12-13 1984-03-15 Battelle-Institut E.V., 6000 Frankfurt Verfahren und Vorrichtung zur Herstellung von Pulvern oder Granulaten aus Metallen und Legierungen
JPS5468764A (en) * 1977-11-12 1979-06-02 Mizusawa Industrial Chem Production of particulate article comprising low melting metal
DE2802083A1 (de) * 1978-01-18 1979-07-19 Innung Des Kraftfahrzeughandwe Zerstaeuberduese fuer fluessigkeiten
DE2842232C2 (de) * 1978-09-28 1985-04-18 Battelle-Institut E.V., 6000 Frankfurt Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten, Suspensionen und Emulsionen, agglomerierten Stäuben bzw. Pulvern sowie Mischungen derselben
IT1148877B (it) * 1980-06-30 1986-12-03 Francesco Mario Vota Apparecchiatura adatta per la generazione e la regolazione automatica di onde ultrasoniche, impiegate nei processi di trattamento dei fluidi
GB2098498B (en) * 1980-10-27 1984-08-22 Secr Defence Separating particles from fluid
US4553917A (en) * 1982-12-21 1985-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling
DE3305810A1 (de) * 1983-02-19 1984-08-23 Bayer Ag, 5090 Leverkusen Duesenziehverfahren und ziehduese zur zerteilung von schmelzen
DE3311343C2 (de) * 1983-03-29 1987-04-23 Alfred Prof. Dipl.-Ing.Dr.-Ing. 7830 Emmendingen Walz Verfahren zur Herstellung von feinen Metallpulvern sowie Vorrichtung zur Durchführung des Verfahrens
DE3319508A1 (de) * 1983-05-03 1984-11-08 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Vorrichtung und verfahren zur zerstaeubung von fluessigen metallen zwecks erzeugung eines feinkoernigen pulvers
CA1235367A (en) * 1984-04-05 1988-04-19 Gary J. Green Method and apparatus for producing uniform liquid droplets
GB8417241D0 (en) * 1984-07-06 1984-08-08 Unilever Plc Transducers and control means
US4659014A (en) * 1985-09-05 1987-04-21 Delavan Corporation Ultrasonic spray nozzle and method
DE3641437A1 (de) * 1985-12-04 1987-06-11 Canon Kk Feinteilchen-blasvorrichtung
GB8604328D0 (en) * 1986-02-21 1986-03-26 Ici Plc Producing spray of droplets of liquid
US4767492A (en) * 1986-04-18 1988-08-30 Pola Chemical Industries, Inc. Ultrasonic fuse-bonding sealing apparatus with improved contact surfaces
DE3637631C1 (de) * 1986-11-05 1987-08-20 Philips Patentverwaltung Verfahren zum Aufbringen kleiner schmelzfluessiger,tropfenfoermiger Lotmengen aus einer Duese auf zu benetzende Flaechen und Vorrichtung zur Durchfuehrung des Verfahrens

Also Published As

Publication number Publication date
JPH01301810A (ja) 1989-12-06
DE3735787C2 (enrdf_load_stackoverflow) 1992-02-27
DE3861942D1 (de) 1991-04-11
EP0308933A1 (de) 1989-03-29
DE3735787A1 (de) 1989-03-30
US5164198A (en) 1992-11-17

Similar Documents

Publication Publication Date Title
EP0308933B1 (de) Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls
DE69312484T2 (de) Vibrationsringeinrichtung zum zufuehren von pulver
DE69106278T2 (de) Ultraschallgerät zur kontinuierlichen herstellung von Teilchen.
DE2528999C2 (de) Verfahren und Vorrichtung zur Herstellung von hochreinem Metallpulver mittels Elektronenstrahlbeheizung
EP0124023B1 (de) Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers
DE3732325A1 (de) Vorrichtung zum zerstaeuben eines fluessigen mediums mit hilfe von ultraschall
EP1022078B1 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver durch Gasverdüsung
DE2725849C3 (de) Vorrichtung zur Herstellung von kugelförmigen Teilchen
DE4242645C2 (de) Verfahren und Einrichtung zur Herstellung von Metallkügelchen annähernd gleichen Durchmessers
EP0361396B1 (de) Verfahren und Vorrichtung zum Herstellen eines Pulvers von amorphen Partikeln einer keramischen oder metallischen Substanz
DE2555715A1 (de) Verfahren und vorrichtung zur pulverherstellung durch verspruehen eines geschmolzenen materials
DE3341184A1 (de) Verfahren zum erzeugen von ultrafeinen festen metallteilchen
DE602004005070T2 (de) Vorrichtung zum füllen eines formwerkzeugs mit einem pulver oder einem pulvergemisch
WO2021058374A1 (de) Vorrichtung zur verdüsung eines schmelzstromes mittels eines gases
EP0434980B1 (de) Vorrichtung zum Zerstäuben von flüssigen und festen Stoffen, vorzugsweise geschmolzenen Metalls
DE1458080A1 (de) Verfahren sowie Ringlochduese zum Zerstaeuben von Stoffen aus dem Schmelzfluss
DE3913649A1 (de) Verfahren und anlage zum herstellen metallischer pulver aus einer metallschmelze durch gasverduesen
DE3883788T2 (de) Vorrichtung und verfahren zur mikroatomisierung von flüssigkeiten, insbesondere schmelzen.
DE3124200C2 (de) Verfahren zur Herstellung von Schwefel in Granulatform
DE2057862C3 (de) Verfahren und Vorrichtung zur Herstellung eines Metallpulvers
DE3150221A1 (de) Verfahren und vorrichtung zur herstellung von metallpulver aus einer schmelze
DE1964584A1 (de) Verfahren und Vorrichtung zum Herstellen von Metallpulvern
DE3731150C2 (de) Verfahren und Vorrichtung zum Granulieren von Schwefel
DE1153228B (de) Verfahren und Vorrichtung zum Bearbeiten, insbesondere zum Zerkleinern oder Aufschliessen eines Materials
DE19801832A1 (de) Verfahren und Vorrichtung zur Herstellung von kugelförmigen Teilchen nahezu gleichen Durchmessers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19890921

17Q First examination report despatched

Effective date: 19900227

ITF It: translation for a ep patent filed
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRANSON ULTRASCHALL NIEDERLASSUNG DER EMERSON TECH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 61261

Country of ref document: AT

Date of ref document: 19910315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3861942

Country of ref document: DE

Date of ref document: 19910411

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO SEDE;BRANSON ULTRASCHALL NIEDERLASSUNG DER

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

26N No opposition filed
26 Opposition filed

Opponent name: BATTELLE-INSTITUT E.V.

Effective date: 19911203

NLR1 Nl: opposition has been filed with the epo

Opponent name: BATTELLE-INSTITUT E.V.

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19931206

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980306

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980327

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980922

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980922

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050922