EP0295431A1 - Vorrichtung zum Verändern des statischen, elektrischen Potentials durch Koronaentladung an der aus Isoliermaterial gebildeten Oberfläche eines bewegten Elements - Google Patents

Vorrichtung zum Verändern des statischen, elektrischen Potentials durch Koronaentladung an der aus Isoliermaterial gebildeten Oberfläche eines bewegten Elements Download PDF

Info

Publication number
EP0295431A1
EP0295431A1 EP88107681A EP88107681A EP0295431A1 EP 0295431 A1 EP0295431 A1 EP 0295431A1 EP 88107681 A EP88107681 A EP 88107681A EP 88107681 A EP88107681 A EP 88107681A EP 0295431 A1 EP0295431 A1 EP 0295431A1
Authority
EP
European Patent Office
Prior art keywords
fibers
face
corona electrode
consist
corona
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88107681A
Other languages
English (en)
French (fr)
Other versions
EP0295431B1 (de
Inventor
Till Keesmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE8708551U external-priority patent/DE8708551U1/de
Priority claimed from DE19873738279 external-priority patent/DE3738279A1/de
Application filed by Individual filed Critical Individual
Priority to AT88107681T priority Critical patent/ATE70926T1/de
Publication of EP0295431A1 publication Critical patent/EP0295431A1/de
Application granted granted Critical
Publication of EP0295431B1 publication Critical patent/EP0295431B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices

Definitions

  • the invention relates to a device for changing the static, electrical potential on the surface of a moving element formed from insulating material by corona discharge with the aid of an electrode made of electrically conductive fibers.
  • DE-OS 3 343 063 discloses a device of this type in which a film web is guided and deflected on the circumference of a rotating hollow roller made of insulating material.
  • a brush electrode connected to a high-voltage source is arranged on the inner wall of the hollow roller, the bristles of which are arranged consist of a carbon fiber. The bristles grind on the hollow roller.
  • This brush electrode opposite and opposite the outer surface of the film web is a knife-shaped counter electrode.
  • a desired corona field should form on the exposed surface of the film web, starting with the counter electrode and extending somewhat in the conveying direction.
  • An undesired corona field should be able to form on the inner surface of the hollow roller in the area of the brush electrode, and means for avoiding this are indicated.
  • the object of the invention is to design a device of the type mentioned at the outset in such a way that the greatest possible change in potential can be achieved with the simplest possible means.
  • the corona electrode has non-metallic fibers which are arranged in tufts, individually alongside one another, that the fibers of a tuft end in a common exposed end face, that 10,000 to 500,000, preferably about 100,000, fiber ends or tips are arranged per square centimeter of the end face, that the discharge is in the manner of a peak discharge from these fiber ends is based on the fact that the end face of the corona electrode is exposed and that the end face of the corona electrode faces the surface in a contact-free manner and at a distance from the surface.
  • Irregularities in the corona formation are to be expected when using fewer peaks.
  • the large number of tips enables an even effect over a larger working width.
  • the working width can extend over several decimeters.
  • the fibers are preferably close together, largely parallel to one another and in a bundle of several hundred to many len thousand fibers embedded in a carrier, preferably in heat-resistant, electrically insulating plastic or ceramic.
  • the ends of these fibers protrude from the carrier material on the end face, which forms the surface of the ionizing element. They form a multitude of peaks at which corona discharge can take place.
  • a distance is provided between the fiber ends and the surface of the insulating material to be treated. Despite this distance, the desired change in potential can take place with sufficient intensity due to the other characteristics of the invention.
  • the distance requires a desirable equalization of the change in potential on the surface and, above all, avoids abrasion of the fiber tips, as would be inevitable in the event of contact with the moving surface. Such abrasion takes place unevenly and, after a short period of operation, leads to an uneven end face of the fiber tuft and thus also to an uneven potential formation. This then requires repair.
  • the ends of the fibers that protrude from the carrier are preferably not in direct electrical contact with one another in the interest of peak discharge, but they are connected to the same high-voltage electrical pole over a longer piece of the respective fiber.
  • Electrically conductive, non-metallic materials suitable for the fibers are known and easy, at least easier than many metals, to process into the desired fine fiber structure.
  • the fibers consist of polycrystalline, single-phase or multi-phase Carbon, preferably with a graphite-like structure.
  • the fibers consist of polymers or polymer derivatives which have been made conductive by strong doping, the undoped monomers of which essentially consist of carbon atoms and hydrogen atoms and optionally have some nitrogen atoms or sulfur atoms, the monomers of which are linked to form chains in which the carbon atoms alternate are linked by single and double bonds.
  • the fibers consist of one of the substances listed below or a mixture of these substances, these substances being made conductive by strong notation: polyacetylene, polyparaphenylene, polypyrrole, polythiophene, polyaniline.
  • the conductivity takes place along the chains formed from the monomers.
  • This development is characterized in that the chains formed from the monomers extend along the fiber length, so that the fibers consist of bundled chains oriented in the same direction.
  • the invention takes advantage of the fact that certain polymers are excellent insulators in the native state and can be converted into electrically conductive charge transfer complexes in the solid state, as described under the title "Polymers with metal-like conductivity - a Overview of synthesis, structure and properties "by Gerhard Wegner, Angew. Chem. 93, pages 352 - 371, Jg, 1981. None appropriately converted polymers gain a metal-like conductivity and are therefore also referred to as organic metals.
  • the metallic conductivity is caused by a charge transfer complex, or CT complex for short, which can be made conductive using the processes of plastics technology to form films, foils, other workpieces and fibers.
  • the production of these conductive polymers does not require lengthy syntheses or complex processes. Rather, the conductive polymers are obtained via very simple polymerization processes from easily accessible and industrially available monomers, such as acetylene, benzene, pyrrole and so on, and subsequent strong doping, for example with iodine.
  • Fibers made of doped polyacetylene, which has an extensive pi-electron system in the main chain and have been oxidized or reduced in the solid state to an electrically conductive charge transfer (CT) complex with a metallic conductivity characteristic, are very suitable.
  • a thin film of cis-polyacetylene as can be prepared by polymerizing acetylene on the surface of a solution of suitable catalysts in an inert solvent, for example with iodine, AsF5, bromine or naphthalene sodium, its conductivity increases considerably .
  • suitable catalysts for example with iodine, AsF5, bromine or naphthalene sodium
  • the electrical and optical properties of the conductive polymer for example the low temperature dependence of the conductivity and the drastic increase in absorption in the IR range, are increasing increasing sales are interpreted in the sense of a phase change from semiconductor to metal. This behavior can be compared to that of a classic semiconductor such as silicon, which is doped with donors or acceptors and thus becomes conductive.
  • Fibers which can advantageously be used for the fibers are tetrathiofulvalene and tetracyanquinodimethane.
  • Oxide ceramics are also known which conduct or are made electrically conductive and can also be processed into fibers. Such fibers can be used advantageously in connection with the invention, preferably if they consist of superconducting material.
  • Such superconducting materials are oxide ceramics whose atomic structure, that is to say their crystal structure, can be derived from that of the Cubic Perovskite type of the formula ABO3, where A is a large cation, B is a small cation and O is an oxygen ion.
  • A is a large cation
  • B is a small cation
  • O is an oxygen ion.
  • the structure of the perovskite type is decisive for high-temperature superconductivity.
  • the fibers are preferably embedded in electrically insulating carrier substance, preferably plastic.
  • the electrically insulating carrier substance for mounting the Fibers can consist of ceramic.
  • a carrier it is also recommended to use a plastic that consists of a polymer that can be made conductive by doping. It is then possible and advantageous that this carrier substance is made conductive by strong doping in the areas required for the ionization contact and the electrical connections.
  • a preferred embodiment of a corona electrode which is particularly well suited for the treatment of wide surfaces and in which the potential arrangement is favored by the geometric arrangement, is characterized in that the corona electrode has an elongated end face which extends approximately perpendicular to the longitudinal extension of the fibers, which is directed with its narrow side against the direction of movement of the surface of the element and extends with its longitudinal extension transversely to the direction of movement over the surface of the element and that the corona electrode, based on the surface normal of its end face with respect to the direction perpendicular to the surface at an angle of 10 to 40 ° (degrees), preferably 20 to 30 °, is inclined to the direction of movement of the element.
  • the distance between the end face of the corona electrode and the surface of the element is selected differently depending on the elements to be treated and the other conditions. It is between 0.1 and 80 mm, preferably 0.5 to 30 mm, and should be chosen so that contact between the corona electrode and the surface or the element can be avoided.
  • ground electrode that extends over the entire length of the corona electrode and over the entire common length at the same distance from the End face of the corona electrode is arranged, wherein this distance is the smallest distance between the ground electrode and exposed parts of the fibers of the corona electrode and is greater than the distance between the end face of the corona electrode and the surface of the element.
  • the larger distance between the mass electrode ensures that the corona discharge is drawn off from the surface by the mass electrode.
  • the ionization of the surrounding atmosphere caused by the corona discharge is rapidly dissipated through one or more compressed air nozzles which are directed into the gap between the end face of the corona electrode and the surface of the element.
  • a corona electrode can also be provided on both sides of a moving element. This is particularly recommended when treating foils.
  • 70 denotes a clip made of carbon or metal, which is stable and self-supporting.
  • a continuous tuft 71 of electrically conductive fibers 68 is enclosed in this bracket.
  • These fibers can consist of materials as characterized in claims 2 to 5.
  • the individual fibers 68 extend alongside one another, they end in a common end face 69. 10,000 to 500,000, preferably 100,000, fiber ends are arranged per square centimeter end face. Peak discharge for ionization takes place at these fiber ends.
  • the fibers are embedded in an electrically insulating carrier substance, preferably plastic. Only the tips or the ends of the fibers on the end face 69 protrude from this carrier substance, which is not visible in the drawing.
  • Such a corona electrode can have, for example, the following dimensions: length according to arrow 73, 500 mm (millimeters), height according to arrow 74, 5 mm, width according to arrow 76, 3 mm, total height according to arrow 77, 7 mm, tuft width according to arrow 78, 2 mm.
  • the corona electrodes can also be manufactured with considerably smaller dimensions.
  • the corona electrode 67 is rod-shaped and self-supporting. There is an electrically conductive connection between the clamp 70 and all the fibers 68 of the tuft 71.
  • Corona electrodes according to Figures 1 and 2 can be arranged in groups next to each other on a wall.
  • the bracket 70 is elongated and consequently the end face 69 is also elongated and the end face has the shape of an elongated rectangle.
  • the clamp 70 can also consist of a polymer or polymer derivative made conductive by strong doping and the carrier substance can be made conductive by strong doping in the areas required for the ionization contact and the electrical connections.
  • the clamp 70 can also consist of a polymer or polymer derivative made conductive by strong doping and the carrier substance can be made conductive by strong doping in the areas required for the ionization contact and the electrical connections.
  • that part of the clip which is surrounded by the dash-dotted line 55 is made conductive, so that the current supply electrode can be attached to the outside of the clip, while the remaining parts of the clip 70 which are not by the dash-dotted line 55 are electrically insulating.
  • FIG. 3 shows the detail of a plastic film 2 conveyed in the direction of the arrow 1, which is to be treated on its surface 3.
  • This surface 3 is opposite egg ne elongated corona electrode 4 of the type described in FIGS. 1 and 2, which extends with the longitudinal extent of its end face 7 over the entire width of the film 2, that is to say transversely to the arrow 1, and the surface 3 with a distance according to the double arrow 6 of 5 mm.
  • the end face 7 extends plane-parallel to the surface 3.
  • a ground electrode 8 is arranged on the underside of the film 2 and has an electrode surface 9 which extends plane-parallel to the end surface 7 and contacts the underside 10 of the film 2.
  • the electrode surface 9 and the end surface 7 therefore extend plane-parallel to one another with the distance according to double arrow 6 plus the thickness of the film 2.
  • Compressed air nozzles 12 to 16 of a compressed air nozzle arrangement 17 are directed into the space 11 between the end face 7 and surface 3 which is caused by the distance according to the double arrow 6.
  • the compressed air nozzle arrangement 17 is connected to the pressure side of the compressed air generator 18 via a shut-off valve 19.
  • the corona electrode 4 is connected to a voltage generator 20, which generates an output AC voltage or DC voltage of 5,000 to 10,000 volts, preferably in the range of 5,000 volts.
  • the corona electrode 30 is designed with a very narrow end face 31. In relation to the surface normal 32 of this end face at the angle of attack 33 against the direction 34, it is directed perpendicularly to the surface 35 of a film 36 to be treated, specifically inclined against the conveying direction indicated by the arrow 37.
  • a ground electrode 38 is arranged downstream of the corona electrode with a distance according to the double arrow 39 from the fibers of the corona electrode, which we is considerably greater than the distance according to double arrow 40 between end face 31 and surface 35.
  • the distance according to double arrow 40 is, for example, 5 mm and the distance according to double arrow 39 is, for example, 70 mm.
  • the film 36 is made of plastic.
  • the corona electrode 30 is connected to a DC voltage source 51, the output voltage of which is 5,000 to 10,000 volts, preferably approximately 5,000 volts.
  • a plastic film 52 is passed between two corona electrodes 54 and 41 in the direction of arrow 53.
  • the two corona electrodes are designed and arranged opposite to the film like the corona electrode 4 from FIG. 3, thus with the same distance according to double arrow 42 or 43 of the end face 44 or 45 relative to the respectively facing surface 46 or 47 of the film.
  • mass electrodes 48, 49 are arranged on both sides, the distance to the film web is approximately the same as that of the end face 44, 45, and the distance according to the double arrow 55, 56 to the fibers of the corona electrodes 54, 41 is a multiple of the distance according to the double arrow 42 or 43.
  • the corona electrodes are connected to a voltage source 50, the output voltage of which is 5,000 to 10,000 volts DC or AC.
  • the fibers of the ionization elements shown in the drawings may consist of one or more of the materials specified in claims 2 to 5.
  • the invention can be used in many ways, for example for the treatment of the printing material or of the parts which convey or treat the printing material, in particular the cylinders of a printing press. It is preferably applicable to photocopying devices for treating the photocopying material and / or the surfaces of parts of the photocopying device acting on the photocopying material, in particular of rotating rollers.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Elimination Of Static Electricity (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Eine zur Koronaentladung dienende Koronaelektrode weist Fasern 68 aus nichtmetallischem, elektrisch leitendem Material auf.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Verändern des statischen, elektrischen Potentials an der aus Isoliermate­rial gebildeten Oberfläche eines bewegten Elementes durch Koronaentladung mit Hilfe einer Elektrode aus elektrisch leitenden Fasern.
  • Aus der DE-OS 3 343 063 ist eine Vorrichtung dieser Art bekannt, bei der eine Folienbahn auf dem Umfang einer rotierenden, aus Isolierwerkstoff bestehenden Hohlwalze ge­führt und umgelenkt wird.Auf der Innenwand der Hohlwalze ist eine an eine Hochspannungsquelle angeschlossene Bürsten­elektrode angeordnet, deren Borsten aus einem Kohlenfaser­stoff bestehen. Die Borsten schleifen an der Hohlwalze.
  • Dieser Bürstenelektrode gegenüber und gegenüber der äußeren Oberfläche der Folienbahn ist eine messerartig ausgebildete Gegenelektrode angeordnet. An der freiliegenden Oberfläche der Folienbahn soll sich, beginnend mit der Gegenelektrode und sich etwas in Förderrichtung erstreckend, eine erwünsch­tes Koronafeld ausbilden. An der inneren Oberfläche der Hohlwalze soll sich im Bereich der Bürstenelektrode ein un­erwünschtes Koronafeld ausbilden können, für dessen Vermei­dung Mittel angegeben sind.
  • Aufgabe der Erfindung ist es, eine Vorrichtung der eingangs genannten Art so auszugestalten, daß mit möglichst einfachen Mitteln eine möglichst intensive Potentialveränderung er­zielbar ist.
  • Die Lösung dieser Aufgabe ist dadurch gekennzeichnet, daß die Koronaelektrode nichtmetallische Fasern aufweist, die büschelartig, einzeln längs nebeneinander angeordnet sind, daß die Fasern eines Büschels in einer gemeinsamen freilie­genden Stirnfläche enden, daß 10.000 bis 500.000, vorzugs­weise etwa 100.000, Faserenden beziehungsweise -spitzen pro Quadratzentimeter der Stirnfläche angeordnet sind, daß die Entladung nach Art einer Spitzenentladung von diesen Fase­renden ausgeht, daß die Stirnfläche der Koronaelektrode freiliegt und daß die Koronaelektrode mit ihrer Stirnfläche der Oberfläche zugekehrt gegenüber der Oberfläche berüh­rungsfrei und mit Abstand zu dieser angeordnet ist.
  • An der mit der Erfindung erzielten Koronaentladung sind sehr viele Spitzen und sämtliche Faserenden beteiligt. Dadurch wird ein gleichmäßiger intensiver Entladestrom erzeugt, der eine entsprechend gleichmäßige und intensive Potentialände­rung ermöglicht. Das ist insbesondere wichtig, wenn mit ein und derselben Elektrode auf einer größeren Breite der vor­beilaufenden Oberfläche des bewegten Elementes eingewirkt werden soll.
  • Ungleichmäßigkeiten in der Koronabildung sind zu erwarten beim Einsatz weniger Spitzen. Die Vielzahl der Spitzen er­möglicht eine gleichmäßige Wirkung auf größerer Arbeits­breite. Die Arbeitsbreite kann sich dabei über etliche Dezi­meter erstrecken.
  • Es ist wünschenswert, über die gesamte Arbeitsbreite mit ein und derselben Koronaelektrode zu arbeiten, weil bei Verwen­dung mehrerer Koronaelektroden, die sich jeweils nur über einen Teilabschnitt der Breite erstrecken, an den Anschluß­stellen der einzelnen Koronaelektroden zwangsläufig Un­gleichmäßigkeiten der Einwirkungen zu erwarten sind.
  • Vorzugsweise sind die Fasern dicht an dicht, weitgehend par­allel zueinander und im Bündel zu mehreren hundert bis vie­ len tausend Fasern in eine Trägersubstanz, vorzugsweise in hitzebeständigen, elektrisch isolierenden Kunststoff oder Keramik, eingebettet. Die Enden dieser Fasern ragen an der Stirnfläche, die die Oberfläche des Ionisierelementes bildet, aus dem Trägerstoff heraus. Sie bilden so eine Viel­zahl von Spitzen, an denen Koronaentladung stattfinden kann.
  • Nach der Erfindung ist zwischen den Faserenden und der Ober­fläche des zubehandelnden Isoliermaterials ein Abstand vorgesehen. Die angestrebte Potentialänderung kann trotz dieses Abstandes aufgrund der sonstigen Kennzeichnungen der Erfindung mit hinreichender Intensität stattfinden. Der Ab­stand bedingt eine wünschenswerte Vergleichmäßigung der Po­tentialänderung auf der Oberfläche und vermeidet vor allen Dingen Abrieb der Faserspitzen, wie er bei Berührungskontakt mit der vorbeibewegten Oberfläche unvermeidlich wäre. Ein solcher Abrieb findet ungleichmäßig statt und führt nach kurzer Betriebszeit zu einer ungleichmäßigen Stirnfläche des Faserbüschels und damit auch zu einer ungleichmäßigen Potentialausbildung. Das erfordert dann Reparatur.
  • Die Enden der Fasern, die aus dem Trägerstoff herausragen, sind im Interesse der Spitzenentladung vorzugsweise nicht unmittelbar in elektrischem Kontakt miteinander, sie sind allerdings an den gleichen elektrischen Hochspannungspol angeschlossen, und zwar über ein längeres Stück der jeweils betreffenden Faser.
  • Elektrisch leitende, nichtmetallische, für die Fasern geeig­nete Materialien sind bekannt und leicht, jedenfalls leich­ter als viele Metalle, zu der gewünschten feinen Faserstruk­tur zu verarbeiten.
  • Nach einer ersten bevorzugten Ausgestaltung bestehen die Fa­sern aus polykristallinem, einphasigem oder mehrphasigem Kohlenstoff, vorzugsweise mit graphitähnlicher Struktur.
  • Nach einer zweiten bevorzugten Ausgestaltung bestehen die Fasern aus durch starke Dotierung leitfähig gemachten Poly­meren oder Polymerabkömmlingen bestehen, deren nicht dotier­te Monomere im wesentlichen aus Kohlenstoffatomen und Was­serstoffatomen bestehen und gegebenenfalls einige Stick­stoffatome oder Schwefelatome aufweisen, deren Monomere zu Ketten verknüpft sind, in denen die Kohlenstoffatome abwech­selnd durch einfache und Doppelbindungen miteinander ver­knüpft sind.
  • Nach der zweiten Ausgestaltung hat sich bewährt, wenn die Fasern aus einer der nachfolgend aufgeführten Substanzen oder einer Mischung dieser Substanzen bestehen, wobei diese Substanzen durch starke notierung leitfähig gemacht sind: Polyacetylen, Polyparaphenylen, Polypyrrol, Polythiophen, Polyanilin.
  • Mit den leitfähig gemachten Polymeren nach der zweiten Aus­gestaltung findet die Leitfähigkeit entlang der aus den Mo­nomeren gebildeten Ketten statt. Das macht sich eine Weiter­bildung der Erfindung zunutze, die auf einfache Weise den Stromfluß entlang der Fasern, wie er für eine intensive Ko­ronaentladung wünschenswert ist, begünstigt. Diese Weiter­bildung ist dadurch gekennzeichnet, daß die aus den Monome­ren gebildeten Ketten sich entlang der Faserlänge erstrecken, so daß die Fasern aus gebündelten gleichsinnig gerichteten Ketten bestehen.
  • Die Erfindung macht sich den Umstand zunutze, daß bestimmte Polymere in nativem Zustand ausgezeichnete Isolatoren sind und in festem Zustand zu elektrisch leitfähigen Charge-­Transfer-Komplexen umgeformt werden können, wie dies unter dem Titel "Polymere mit metallähnlicher Leitfähigkeit - Ein Überblick über Synthese, Struktur und Eigenschaften" von Ge­rhard Wegner, Angew. Chem. 93, Seite 352 - 371, Jg,1981, beschrieben ist. nie entsprechend umgewandelten Polymere ge­winnen eine metallähnliche Leitfähigkeit und werden deshalb auch als organische Metalle bezeichnet. Die metallische Leitfähigkeit wird hervorgerufen durch einen von dem Polymer gebildeten Charge-Transfer-Komplex oder kurz CT-Komplex. Die so leitfähig gemachten Polymere können nachh den Verfahren der Kunststofftechnik zu Filmen, Folien, anderen Werkstücken und auch Fasern verarbeitet werden.
  • Bemerkenswert ist in diesem Zusammenhang auch, daß die Her­stellung dieser leitfähigen Polymere keine langwierigen Syn­thesen oder aufwendigen Verfahren erforderlich macht. Man erhält die leitfähigen Polymere vielmehr über sehr einfache Polymerisationsverfahren aus leicht zugänglichen und groß­technisch verfügbaren Monomeren, wie Acetylen, Benzol, Pyr­rol und so weiter und anschließende starke Dotierung, bei­spielsweise mit Jod.
  • Sehr gut geeignet sind Fasern aus dotiertem Polyacetylen, das ein ausgedehnten Pi-Elektronensystem in der Hauptkette hat und im festen Zustand zu einem elekrisch leitfähigen Charge-Transfer-(CT)-Komplex mit einer metallischen Leitfä­higkeitscharakteristik oxidiert oder reduziert wurde.
  • Bei der Umsetzung eines dünnen Film von cis-Polyacetylen, wie er durch Polymerisation von Acetylen auf der Oberfläche einer Lösung geeigneter Katalysatoren in einem inerten Lö­sungsmittel hergestellt werden kann, mit zum Beispiel Iod, AsF₅, Brom oder Naphthalinnatrium als Dotierung, steigt des­sen Leitfähigkeit erheblich an. Die elektrischen und opti­schen Eigenschaften des leitfähigen Polymers, zum Beispiel die geringe Temperaturabhängigkeit der Leitfähigkeit und der drastische Anstieg der Absorption im IR-Bereich mit zuneh­ mendem Umsatz, werden im Sinne einer Phasenumwandlung vom Halbleiter zum Metall gedeutet. Dieses Verhalten kann man mit dem eines klassischen Halbleiters wie Silicium vergleichen, der mit Donoren oder Acceptoren dotiert und da­durch leitfähig wird. Die Umsetzung des Polymers mit zum Beispiel Halogenen, Pseudohalogenen, Alkalimetallen oder Alkalimetall-Derivaten wird daher dem Sprachgebrauch der Halbleiterphysik folgend als "Dotieren" bezeichnet. Fasern aus in diesem Sinne dotiertem Polyacetylen, vorzugsweise cis-Polyacetylen, bieten ebenfalls vorteilhhafte Anwendungen.
  • Weitere vorteilhaft für die Fasern einsetzbare Materialien sind Tetrathiofulvalen und Tetracyanchinodimethan.
  • Es sind auch Oxydkeramiken bekannt, die elektrisch leiten beziehungsweise elektrisch leitend gemacht und auch zu Fa­sern verarbeitet werden können. Solche Fasern sind in Ver­bindung mit der Erfindung vorteilhaft einsetzbar, vorzugs­weise wenn sie aus supraleitendem Material bestehen.
  • Bei solchen supraleitenden Materialien handelt es sich um Oxydkeramiken, deren atomarer Aufbau, das heißt also deren Kristallstruktur, sich von der des Kubischen Perovskit-Typs der Formel ABO₃ ableiten läßt, wobei A ein großes Kation, B ein kleines Kation und O ein Sauerstoffion ist. Die Struktur des Perovskit-Typs ist maßgebend für die Hochtemperatur-­Supraleitfähigkeit.
  • Vorzugsweise sind die Fasern, mit Ausnahme der für den Ioni­sierungskontakt und der für die elektrischen Anschlüsse er­forderlichen Flächen, in elektrisch isolierende Träger­substanz, vorzugsweise Kunststoff, eingebettet.
  • Die elekrisch isolierende Trägersubstanz zum Einfassen der Fasern kann aus Keramik bestehen. Als Trägersubstanz em­pfiehlt es sich auch, einen Kunststoff einzusetzen, der aus einem durch Dotierung leitfähig machbaren Polymer besteht. Dann ist es möglich und vorteilhaft, daß diese Trägersub­stanz in den für den Ionisierungskontakt und die elektri­schen Anschlüsse erforderlichen Bereichen durch starke Do­tierung leitfähig gemacht ist.
  • Eine bevorzugte Ausgestaltung einer Koronaelektrode, die sich besonders gut zur Behandlung breiter Oberflächen eignet und bei der durch die geometrische Anordnung die potential­bildende Wirkung begünstigt wird, ist dadurch gekennzeich­net, daß die Koronaelektrode eine langgestreckte Stirnfläche aufweist, die sich etwa senkrecht zur Längserstreckung der Fasern erstreckt, die mit ihrer Schmalseite gegen die Bewe­gungsrichtung der Oberfläche des Elementes gerichtet ist und sich mit ihrer Längserstreckung quer zur Bewegungsrichtung über die Oberfläche des Elementes erstreckt und daß die Koronaelektrode, bezogen auf die Flächennormale ihrer Stirn­fläche gegenüber der Richtung senkrecht auf die Oberfläche im Anstellwinkel von 10 bis 40° (Grad), vorzugsweise 20 bis 30°, gegen die Bewegungsrichtung des Elementes geneigt an­geordnet ist.
  • Der Abstand zwischen der Stirnfläche der Koronaelektrode und der Oberfläche des Elementes ist je nach den zu behandelnden Elementen und den sonstigen Gegebenheiten unterschiedlich gewählt. Er beträgt zwischen 0,1 und 80 mm, vorzugsweise 0,5 bis 30 mm, und sollte so gewählt sein, daß ein Berührungs­kontakt zwischen der Koronaelektrode und der Oberfläche be­ziehungsweise dem Element sicher vermeidbar ist.
  • Es empfiehlt sich, eine Massenelektrode einzusetzen, die sich über die ganze Länge der Koronaelektrode erstreckt und über die ganze gemeinsame Länge mit gleichem Abstand zur Stirnfläche der Koronaelektrode angeordnet ist, wobei dieser Abstand der kleinste Abstand ist zwischen der Massenelektro­de und freiliegenden Teilen der Fasern der Koronaelektrode und größer ist als der Abstand zwischen der Stirnfläche der Koronaelektrode und der Oberfläche des Elementes.
  • Durch den größeren Abstand der Massenelektrode wird sichergestellt, daß die Koronaentladung durch die Massen­elektrode von der Oberfläche abgezogen wird.
  • Die durch die Koronaentladung hervorgerufene Ionisierung der umliegenden Atmosphäre wird schnell abgeführt durch eine oder mehrere Preßluftdüsen, die in den Spalt zwischen der Stirnfläche der Koronaleketrode und der Oberfläche des Ele­mentes gerichtet sind.
  • Die Anwendung solcher Preßluftdüsen ist besonders vorteil­haft, wenn man die Koronaelektrode mit Wechselstrom betreibt, weil dann die mit der einen Phase erzeugten Ionen fortgetragen werden und nicht mit denen der nächstfolgenden Phase erzeugten gegenpoligen Ionen im Bereich der erwünsch­ten Potentialänderung rekombinieren können.
  • Man kann auch beidseitig an einem bewegten Element jeweils eine Koronaelektrode vorsehen. Das empfiehlt sich besonders bei der Behandlung von Folien.
  • Die Erfindung wird nun anhand der beigefügten Zeichnung nä­her erläutert.
  • In der Zeichnung zeigt:
    • Figur 1 im Querschnitt eine Koronaelektrode,
    • Figur 2 die Ansicht gemäß dem Pfeil II aus Figur 1, teilweise aufgebrochen,
    • Figur 3 eine erste Vorrichtung zur Behandlung einer Folie,
    • Figur 4 eine zweite Vorrichtung zur Behandlung einer Folie und
    • Figur 5 eine dritte Vorrichtung zur Behandlung einer Folie.
  • Bei der in Figur 1 und 2 dargestellten Koronaelektrode 67 ist mit 70 eine aus Karbon oder aus Metall bestehende Klam­mer bezeichnet, die stabil und selbsttragend ist. In diese Klammer ist ein durchgehendes Büschel 71 von elektrich lei­tenden Fasern 68 eingefaßt. Diese Fasern können aus Materia­lien bestehen, wie sie in den Ansprüchen 2 bis 5 gekenn­zeichnet sind. Die einzelnen Fasern 68 erstrecken sich längs nebeneinander, sie enden in einer gemeinsamen Sirnfläche 69. Pro Quadratzentimeter Stirnfläche sind 10.000 bis 500.000, vorzugsweise 100.000, Faserenden angeordnet. An diesen Fase­renden erfolgt Spitzenentladung für die Ionisierung. Die Fa­sern sind in eine elektrisch isolierende Trägersubstanz, vorzugsweise Kunststoff, eingebettet. Aus dieser Trägersubstanz, die in der Zeichnung nicht sichtbar ist, ra­gen nur die Spitzen beziehungsweise die Enden der Fasern an der Stirnfläche 69 heraus.
  • Eine solche Koronaelektrode kann beispielsweise folgende Ab­messungen haben: Länge gemäß Pfeil 73, 500 mm (Milli­meter), Höhe gemäß Pfeil 74, 5 mm, Breite gemäß Pfeil 76, 3 mm, Gesamthöhe gemäß Pfeil 77, 7 mm, Büschelbreite gemäß Pfeil 78, 2 mm.
  • Die Koronaelektroden können auch noch mit erheblich klei­neren Abmessungen hergestellt werden. Die Koronaelektrode 67 ist stabförmig und selbsttragend. Zwischen der Klammer 70 und sämtlichen Fasern 68 des Büschels 71 besteht elektrisch leitende Verbindung. Koronaelektroden nach Figur 1 und 2 kann man zu mehreren nebeneinander an einer Wand anordnen. Die Klammer 70 ist langgestreckt und demzufolge ist auch die Stirnfläche 69 langgestreckt und die Stirnfläche hat die Form eines langgestreckten Rechteckes.
  • In Abänderung des Beispiels nach Figur 1 und 2 kann die Klammer 70 auch aus einem durch starke Dotierung leitfähig gemachten Polymer oder Polymerabkömmling bestehen und die Trägersubstanz in den für den Ionisierungskontakt und die elektrischen Anschlüsse erforderlichen Bereichen durch star­ke Dotierung leitfähig gemacht sein. Im Falle der Figur 1 und 2 ist dann der durch die strichpunktierte Linie 55 um­fahrene Teil der Klammer leitfähig gemacht, so daß dort au­ßen an der Klammer die Stromzuleitungselektrode angesetzt werden kann, während die übrigen, nicht von der strichpunk­tierten Linie 55 umfahrenen Teile der Klammer 70 elektrisch isolierend sind.
  • Als Polymere, die unter diesem Gesichtspunkt für die Ausge­staltung der Klammer 70 geeignet sind, kommen in erster Li­nie die im Anspruch 4 aufgezählten in Betracht.
  • In Fällen, in denen bei dem Ausführungsbeispiel nach Figur 1 und 2 die Fasern 68 aus einem solchen Polymer bestehen, emp­fiehlt es sich, für die Klammer das gleiche Polymer einzusetzen.
  • Figur 3 zeigt den Ausschnitt einer in Pfeilrichtung 1 geför­derten Kunststoff-Folie 2, die auf ihrer Oberfläche 3 be­handelt werden soll. Dieser Oberfläche 3 gegenüber steht ei­ ne langgestreckte Koronaelektrode 4 der Art, wie sie in Fi­gur 1 und 2 beschrieben ist, die sich mit der Längser­streckung ihrer Stirnfläche 7 über die ganze Breite der Fo­lie 2, also quer zum Pfeil 1, erstreckt und der Oberfläche 3 mit einem Abstand gemäß Doppelpfeil 6 von 5 mm gegenüber­steht. Die Stirnfläche 7 erstreckt sich planparallel zur Oberfläche 3.
  • Auf der Unterseite der Folie 2 ist eine Massenelektrode 8 angeordnet, die eine Elektrodenfläche 9 aufweist, die sich planparallel zur Stirnfläche 7 erstreckt und die Unterseite 10 der Folie 2 berührt. Die Elektrodenfläche 9 und die Stirnfläche 7 erstrecken sich mithin planparallel zueinander mit dem Abstand gemäß Doppelpfeil 6 zuzüglich der Stärke der Folie 2.
  • In den durch den Abstand gemäß Doppelpfeil 6 bedingten Zwi­schenraum 11 zwischen stirnfläche 7 und Oberfläche 3 sind Preßluftdüsen 12 bis 16 einer Preßluftdüsenanordnung 17 gerichtet. Die Preßluftdüsenanordnung 17 ist an die Druck­seite des Preßluftgenerators 18 über ein Absperrventil 19 angeschlossen. Die Koronaelektrode 4 ist an einen Spannungs­generator 20 angeschlossen, der eine Ausgangswechselspannung oder Gleichspannung von 5.000 bis 10.000 Volt, vorzugsweise im Bereich von 5.000 Volt, erzeugt.
  • Bei dem Ausführungsbeispiel nach Figur 4 ist die Koronaelek­trode 30 mit sehr schmaler Stirnfläche 31 ausgebildet. Sie ist, bezogen auf die Flächennormale 32 dieser Stirnfläche im Anstellwinkel 33 gegen die Richtung 34 senkrecht auf die Oberfläche 35 einer zu behandelnden Folie 36 gerichtet, und zwar geneigt gegen die durch den Pfeil 37 angezeigte Förderrichtung. Eine Massenelektrode 38 ist förderabwärts von der Koronaelektrode angeordnet mit einem Abstand gemäß Doppelpfeil 39 von den Fasern der Koronaelekrode, der we­ sentlich größer ist als der Abstand gemäß Doppelpfeil 40 zwischen Stirnfläche 31 und Oberfläche 35. Der Abstand gemäß Doppelpfeil 40 beträgt beispielsweise 5 mm und der Abstand gemäß Doppelpfeil 39 beispielsweise 70 mm. Die Folie 36 be­steht aus Kunststoff.
  • Die Koronaelektrode 30 ist an eine Gleichspannungsquelle 51 angeschlossen, deren Ausgangsspannung 5.000 bis 10.000 Volt, vorzugsweise etwa 5.000 Volt, beträgt.
  • Bei dem Ausführungsbeispiel nach Figur 5 ist eine Kunststoff-Folie 52 in Pfeilrichtung 53 zwischen zwei Koro­naelektroden 54 und 41 hindurchgeführt. Die beiden Koronae­lektroden sind, jede für sich, genauso ausgebildet und ge­genüber der Folie angeordnet wie die Koronaelektrode 4 aus Figur 3, mithin also mit gleichem Abstand gemäß Doppelpfeil 42 beziehungsweise 43 der Stirnfläche 44 beziehungsweise 45 gegenüber der jeweils zugekehrten Oberfläche 46 beziehungs­weise 47 der Folie.
  • Förderabwärts sind auf beiden Seiten Massenelektroden 48, 49 angeordnet, deren Abstand zur Folienbahn etwa genauso groß ist wie der der Stirnfläche 44, 45, und deren Abstand gemäß Doppelpfeil 55, 56 zu den Fasern der Koronaelektroden 54, 41 ein Vielfaches des Abstandes gemäß Doppelpfeil 42 bezie­hungsweise 43 beträgt.
  • Die Koronaelektroden sind an eine Spannungsquelle 50 angeschlossen, deren Ausgangsspannung 5.000 bis 10.000 Volt Gleichspannung oder Wechselspannung beträgt.
  • Die Fasern der in den Zeichnungen angegebenen Ionisierungs­elemente können aus einem oder mehreren derjenigen Materia­lien bestehen, die in den Ansprüchen 2 bis 5 angegeben sind.
  • Die Erfindung ist vielfältig anwendbar, zum Beispiel zur Be­handlung des Druckmaterials oder der das Druckmaterial för­dernden oder behandelnden Teile, insbesondere der Zylinder einer Druckmaschine. Sie ist vorzugsweise anwendbar bei Fo­tokopiergeräten zur Behandlung des Fotokopiermaterials und/oder der auf das Fotokopiermaterial einwirkenden Ober­flächen von Teilen des Fotokopiergerätes, insbesondere von umlaufenden Walzen.

Claims (10)

1.Vorrichtung zum Verändern des statischen, elektrischen Potentials an der aus Isoliermaterial gebildeten Oberfläche eines bewegten Elementes durch Koronaentladung mit Hilfe ei­ner Elektrode aus elektrisch leitenden Fasern, dadurch gekennzeichnet,
      daß die Koronaelektrode ( 4 ) nichtmetallische Fasern ( 68 ) aufweist, die büschelartig, einzeln längs nebeneinander angeordnet sind,
      daß die Fasern eines Büschels in einer gemeinsamen frei­liegenden Stirnfläche ( 69 ) enden,
      daß 10.000 bis 500.000, vorzugsweise etwa 100.000, Fase­renden beziehungsweise -spitzen pro Quadratzentimeter der Stirnfläche angeordnet sind,
      daß die Entladung nach Art einer Spitzenentladung von diesen Faserenden ausgeht,
      daß die Stirnfläche der Koronaelektrode freiliegt und
      daß die Koronaelektrode mit ihrer Stirnfläche der Ober­fläche ( 3 ) zugekehrt gegenüber der Oberfläche berührungs­frei und mit Abstand ( 6 ) zu dieser angeordnet ist.
2.Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,
      daß die Fasern aus polykristallinem, einphasigem oder mehrphasigem Kohlenstoff, vorzugsweise mit graphitähnlicher Struktur, bestehen.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,
      daß die Fasern ( 68 ) aus durch starke Dotierung leitfä­hig gemachten Polymeren oder Polymerabkömmlingen bestehen, deren nicht dotierte Monomere im wesentlichen aus Kohlen­stoffatomen und Wasserstoffatomen bestehen und gegebenen­falls einige Stickstoffatome oder Schwefelatome aufweisen, deren Monomere zu Ketten verknüpft sind, in denen die Koh­lenstoffatome abwechselnd durch einfache und Doppelbindungen miteinander verknüpft sind.
4.Vorrichtung nach Anspruch 3, dadurch gekennzeichnet,
      daß die Fasern ( 68 ) aus einer der nachfolgend aufge­führten Substanzen oder einer Mischung dieser Substanzen bestehen, wobei diese Substanzen durch starke Dotierung leitfähig gemacht sind: Polyacetylen, Polyparaphenylen, Polypyrrol, Polythiophen, Polyanilin.
5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet,
      daß die aus den Monomeren gebildeten Ketten sich entlang der Faserlänge erstrecken, so daß die Fasern aus gebündelten gleichsinnig gerichteten Ketten bestehen.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,
      daß die Fasern (68) aus elektrisch leitender Oxydkeramik, vorzugsweise mit Supraleitfähigkeit, bestehen.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, da­durch gekennzeichnet,
      daß die Fasern ( 68 ) mit Ausnahme der für den Ionisie­rungskontakt und der für die elektrischen Anschlüsse erfor­derlichen Flächen in elektrisch isolierende Trägersubstanz eingebettet sind,
      daß diese Trägersubstanz ein durch starke notierung leit­fähig machbares Polymer oder Polymerabkömmling ist und
      daß diese Trägersubstanz in den für den Ionisierungskon­takt und die elektrischen Anschlüsse erforderlichen Berei­chen durch starke Dotierung leitfähig gemacht ist.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, da­durch gekennzeichnet,
      daß die Koronaelektrode eine langgestreckte Stirnfläche ( 69 ) aufweist, die sich etwa senkrecht zur Längser­ streckung der Fasern ( 68 ) erstreckt, die mit ihrer Schmal­seite gegen die Bewegungsrichtung der Oberfläche ( 3 ) des Elementes (2) gerichtet ist und sich mit ihrer Längser­streckung quer zur Bewegungsrichtung über die Oberfläche des Elementes erstreckt und
      daß die Koronaelektrode, bezogen auf die Flächennormale ( 32 ) ihrer Stirnfläche ( 31 ) gegenüber der Richtung senk­recht auf die Oberfläche ( 35 ) im Anstellwinkel ( 33 ) von 10 bis 40° (Grad), vorzugsweise 20 bis 30°, gegen die Bewe­gungsrichtung des Elementes ( 36 ) geneigt angeordnet ist.
9.Vorrichtung nach einam der vorhergehenden Ansprüche, da­durch gekennzeichnet,
      daß der Abstand zwischen der Stirnfläche ( 7 ) der Koro­naelektrode und der Oberfläche ( 3 ) des Elementes (2) 0,1 bis 80,0 mm (Millimeter), vorzugsweise 0,5 bis 30 mm, beträgt.
10.Vorrichtung nach einem der vorhergehenden Ansprüche, da­durch gekennzeichnet,
      daß eine oder mehrere Preßluftdüsen ( 12 - 16 ) vorgese­hen sind, die in den Spalt ( 11 ) zwischen der Stirnfläche ( 7 ) der Koronaelektrode ( 4 ) und der Oberfläche ( 3 ) des Elementes ( 2 ) gerichtet sind.
EP88107681A 1987-06-19 1988-05-13 Vorrichtung zum Verändern des statischen, elektrischen Potentials durch Koronaentladung an der aus Isoliermaterial gebildeten Oberfläche eines bewegten Elements Expired - Lifetime EP0295431B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88107681T ATE70926T1 (de) 1987-06-19 1988-05-13 Vorrichtung zum veraendern des statischen, elektrischen potentials durch koronaentladung an der aus isoliermaterial gebildeten oberflaeche eines bewegten elements.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE8708551U DE8708551U1 (de) 1987-06-19 1987-06-19
DE8708551U 1987-06-19
DE3730227 1987-09-09
DE3730227 1987-09-09
DE19873738279 DE3738279A1 (de) 1987-09-09 1987-11-11 Vorrichtung zum veraendern des statischen, elektrischen potentials durch koronaentladung
DE3738279 1987-11-11

Publications (2)

Publication Number Publication Date
EP0295431A1 true EP0295431A1 (de) 1988-12-21
EP0295431B1 EP0295431B1 (de) 1991-12-27

Family

ID=27196480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88107681A Expired - Lifetime EP0295431B1 (de) 1987-06-19 1988-05-13 Vorrichtung zum Verändern des statischen, elektrischen Potentials durch Koronaentladung an der aus Isoliermaterial gebildeten Oberfläche eines bewegten Elements

Country Status (4)

Country Link
EP (1) EP0295431B1 (de)
AT (1) ATE70926T1 (de)
DE (1) DE3867141D1 (de)
ES (1) ES2029493T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569004A2 (de) * 1992-05-06 1993-11-10 Till Keesmann Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche
DE19950009B4 (de) * 1999-10-18 2012-11-22 Eltex-Elektrostatik Gmbh Vorrichtung zum Befeuchten einer Materialbahn
EP4016765A1 (de) * 2020-12-21 2022-06-22 Lorena Leonardos Ionisierer zur emission negativer ionen von karbonfasern, die von einem plastikschutz geschützt sind

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055984A2 (de) * 1981-01-05 1982-07-14 Polaroid Corporation Verfahren und Vorrichtung um Erzeugen einer relativ hohen Ladung auf die Ladung haltenden Materialien
DE3343063A1 (de) * 1983-06-14 1985-06-13 Klaus 4803 Steinhagen Kalwar Vorrichtung zur oberflaechenbehandlung von folienbahnen mittels elektrischer koronaentladungen
US4533523A (en) * 1984-01-09 1985-08-06 Andreas Ahlbrandt Corona treater for plastic film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055984A2 (de) * 1981-01-05 1982-07-14 Polaroid Corporation Verfahren und Vorrichtung um Erzeugen einer relativ hohen Ladung auf die Ladung haltenden Materialien
DE3343063A1 (de) * 1983-06-14 1985-06-13 Klaus 4803 Steinhagen Kalwar Vorrichtung zur oberflaechenbehandlung von folienbahnen mittels elektrischer koronaentladungen
US4533523A (en) * 1984-01-09 1985-08-06 Andreas Ahlbrandt Corona treater for plastic film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEMIE INT. ED. ENGL., Band 20, 1981, Seiten 361-381, Verlag Chemie GmbH, Weinheim, DE; G. WEGNER: "Polymers with metal-like conductivity a review of their synthesis, structure and properties" *
PATENT ABSTRACTS OF JAPAN, Band 4, Nr. 58 (P-9)[540], 30. April 1980, Seite 151 P 9; & JP-A-55 29 837 (NIPPON DENKI K.K.) 03-03-1980 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569004A2 (de) * 1992-05-06 1993-11-10 Till Keesmann Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche
EP0569004A3 (en) * 1992-05-06 1993-12-15 Till Keesmann Device for changing the static electric potentials of an insulating material surface
DE19950009B4 (de) * 1999-10-18 2012-11-22 Eltex-Elektrostatik Gmbh Vorrichtung zum Befeuchten einer Materialbahn
EP4016765A1 (de) * 2020-12-21 2022-06-22 Lorena Leonardos Ionisierer zur emission negativer ionen von karbonfasern, die von einem plastikschutz geschützt sind

Also Published As

Publication number Publication date
DE3867141D1 (de) 1992-02-06
ES2029493T3 (es) 1992-08-16
ATE70926T1 (de) 1992-01-15
EP0295431B1 (de) 1991-12-27

Similar Documents

Publication Publication Date Title
DE2714126C2 (de) Elektroabscheider zur Luftreinigung
DE2363149C3 (de) Elektroabscheider
DE2512885A1 (de) Verfahren zur herstellung eines elektrisch geladenen faserfilters
DE3120931A1 (de) Vorrichtung zur entladung statischer elektrizitaet und verfahren zur herstellung derselben
DE1254856B (de) Verfahren zum Giessen von Kunststoffolienbahnen
EP0002453A1 (de) Vorrichtung zur Oberflächenbehandlung von Folienbahnen mittels elektrischer Coronaentladung
DE2358989A1 (de) Verfahren und vorrichtung zum andruecken einer polymerfolie an eine sich bewegende oberflaeche
DE2902649A1 (de) Verfahren und vorrichtung zum aufbringen eines dielektrischen filmes auf eine bewegbare, elektrisch leitende oberflaeche
EP0295431B1 (de) Vorrichtung zum Verändern des statischen, elektrischen Potentials durch Koronaentladung an der aus Isoliermaterial gebildeten Oberfläche eines bewegten Elements
EP0095051B1 (de) Vorrichtung zur Elektrischen Vorbehandlung von nichtleitenden Folien
DE1800939A1 (de) Anordnung zur Verhinderung einer Farbnebelbildung
DE2146539C3 (de) Vorrichtung zum homogenen Auf· oder Entladen der Oberfläche von elektrofotografischen Aufzeichnungsmaterialien
DE19520260A1 (de) Vorrichtung zum Aufbringen unipolarer elektrischer Ladungen
DE3230667A1 (de) Passiver ionisator
DE3738279A1 (de) Vorrichtung zum veraendern des statischen, elektrischen potentials durch koronaentladung
DE3712049C2 (de)
DE2538958C3 (de) Entkeimungsvorrichtung
DE2422660C2 (de) Elektrostatischer drucker
DE7540302U (de) Ionisationselektrode
DE3049484C2 (de) Vorrichtung zur ausschließlich einseitigen elektrischen Koronabehandlung von bahnförmigen Materialien oder von Formkörpern
DE4224443A1 (de) Farb- oder Feuchtwerk
DE2027674B2 (de) Einrichtung zur gleichmäßigen kapazitiven Erwärmung von breiten Bahnen
DE2055104B2 (de) Verfahren zum elektrostatischen Anfheften einer Folie
WO1996013085A1 (de) Vorrichtung zum aufbringen unipolarer elektrischer ladungen
DE1257414B (de) Vorrichtung zur Behandlung der Oberflaeche von duennwandigen Kunststoffkoerpern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19881112

17Q First examination report despatched

Effective date: 19900927

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19911227

REF Corresponds to:

Ref document number: 70926

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3867141

Country of ref document: DE

Date of ref document: 19920206

ITF It: translation for a ep patent filed

Owner name: FIAMMENGHI - DOMENIGHETTI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2029493

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88107681.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950421

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950501

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950519

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950523

Year of fee payment: 8

Ref country code: AT

Payment date: 19950523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950531

Year of fee payment: 8

Ref country code: ES

Payment date: 19950531

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950609

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960513

Ref country code: GB

Effective date: 19960513

Ref country code: AT

Effective date: 19960513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960514

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960531

Ref country code: CH

Effective date: 19960531

Ref country code: BE

Effective date: 19960531

BERE Be: lapsed

Owner name: KEESMANN TILL

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970131

EUG Se: european patent has lapsed

Ref document number: 88107681.4

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980202

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050513