EP0569004A2 - Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche - Google Patents

Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche Download PDF

Info

Publication number
EP0569004A2
EP0569004A2 EP93107337A EP93107337A EP0569004A2 EP 0569004 A2 EP0569004 A2 EP 0569004A2 EP 93107337 A EP93107337 A EP 93107337A EP 93107337 A EP93107337 A EP 93107337A EP 0569004 A2 EP0569004 A2 EP 0569004A2
Authority
EP
European Patent Office
Prior art keywords
fullerenes
active surface
doping
molecules
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93107337A
Other languages
English (en)
French (fr)
Other versions
EP0569004B1 (de
EP0569004A3 (en
Inventor
Till Keesmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0569004A2 publication Critical patent/EP0569004A2/de
Publication of EP0569004A3 publication Critical patent/EP0569004A3/de
Application granted granted Critical
Publication of EP0569004B1 publication Critical patent/EP0569004B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F1/00Preventing the formation of electrostatic charges
    • H05F1/02Preventing the formation of electrostatic charges by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge

Definitions

  • the invention relates to a device for changing the static electrical potential of a surface formed from insulating material with the aid of an electrode, the active surface of which faces the surface formed of insulating material and has a fine structure, the structural elements of which are starting points for a corona charge.
  • a device of this type is known from EP 0295431 B1, in which the active elements are the tips of non-metallic, electrically conductive fibers which are arranged individually alongside one another in tufts, namely at about 100,000 fiber ends per square centimeter. In this way, a fine structure is achieved in the active surface, which favors the formation of a corona discharge which starts from the entire active surface. Such a corona discharge is favorable for a controlled change in potential.
  • the object of the invention is to provide a device of the type mentioned at the outset with the highest possible fine structure in the active surface, taking into account the aforementioned functional conditions, which can be produced in a reproducible manner as possible.
  • the invention solves this problem by the fact that the structural elements are fullerene molecules.
  • the structural elements are at least partially designed as fullerene fragments, derivatives and / or heterofullerenes or heterofullerene fragments, derivatives.
  • fullerene molecules take over the function of the fiber ends in the known device.
  • Fullerene molecules can be arranged in the desired structure, in any case more simply as a tuft of fibers, and the conductivity can also be controlled very differently by conducting the fullerenes in the desired manner by doping, in particular with atoms, molecules from the group of halogens or alkali metals makes.
  • the foreign atoms X are added to the fullerene by doping, incorporation, addition and / or admixture.
  • a doped fullerene with the empirical formula K3C60 is particularly preferred.
  • the fullerenes can be applied differently, for example with the help of lasers.
  • Electrolytic application is advantageous because it is easy to handle and makes the application of the cage molecules easily controllable, for example by means of electric fields.
  • the fullerenes that form the active surface are can grow on the crystal surfaces of a semiconductor, preferably gallium arsenide, gallium aluminum arsenide, aluminum gallium arsenide, indium phosphide or indium gallium arsenide.
  • the semiconductor can then simultaneously serve as a power supply to the fullerenes.
  • the fullerenes forming the active surface are preferably applied in the form of a monomolecular layer with a crystal structure. Then there is a uniform pattern of the electrically active elements over the entire active surface.
  • the fullerenes of a monomolecular layer can be arranged in a single plane, they can be molecules of the same size, it can be molecules with the same doping, and / or these molecules can be arranged spherically identically in terms of their doping.
  • the monomolecular layer can also be designed differently with regard to the criteria listed, but while maintaining a grid that requires an even distribution of the active elements.
  • a corresponding embodiment is characterized in that the fullerenes forming the active surface are subdivided into several groups, that the fullerenes of the individual groups are mixed, arranged in a grid, that the fullerenes of a group are equally large, equally doped and with respect to their doping are arranged spherically identically and that the fullerenes of different groups differ in size, doping, spherical arrangement and / or their arrangement in different planes.
  • 1 denotes a metallically conductive support body which is coated with a semiconductive, crystalline gallium arsenide layer 2.
  • a monomolecular layer 3 of fullerene molecules 4, 5 has been grown or electrolytically applied to the layer 2, the molecular arrangement of which is based on a crystal structure, in the present case a regular column and row pattern, due to the crystal structure of the gallium arsenide layer 2.
  • the individual fullerene molecules are made conductive by doping and each form the starting point of a corona discharge, which is caused by a potential difference between the layer 3 and the opposite surface 6 of an element 7 formed from insulating material, the static electrical potential of which is changed by the corona discharge should.
  • the fullerene molecules forming the active surface consist of two or three groups, of which those of the first group according to FIGS. 2, 3 and 4 are designated A, those of the second group B and C of the third group.
  • the molecules are arranged in a grid, as indicated by the arrangement of the letters in FIGS. 2 to 4.
  • the molecules of the individual groups can differ, as will now be explained with reference to FIG. 5.
  • Line II shows three fullerene molecules that are the same but are doped differently; one molecule with one doping element, the next with two doping elements and the last with three doping elements.
  • Line III shows fullerene molecules that differ in their size.
  • Line IV shows fullerene molecules which differ in the type of doping used, which is expressed in the drawing by the doping being represented once by a circle, once by a triangle and once by a square.
  • Row V shows identical fullerene molecules, but they are arranged in different planes 10, 11, 12, the two outer planes 10 and 12 being spaced apart by the order of the diameter of a fullerene molecule.
  • the fullerene molecules are doped with the conductivity types p, n and p.
  • the first group identified by the letter A, is assigned to those molecules in rows I to V which are in column A and so on for column B and column C.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Fixing For Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)

Abstract

Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche mit Hilfe einer Elektrode, deren aktive Oberfläche Fullerenmoleküle aufweist. <IMAGE>

Description

  • Die Erfindung betrifft eine Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche mit Hilfe einer Elektrode, deren aktive Oberfläche der aus Isoliermaterial gebildeten Oberfläche zugekehrt ist und eine Feinstruktur aufweist, deren Strukturelemente Ausgangspunkte einer Koronaladung sind.
  • Aus der EP 0295431 B1 ist eine Vorrichtung dieser Art bekannt, bei der die aktiven Elemente die Spitzen nichtmetallischer, elektrisch leitfähiger Fasern sind, die büschelartig einzeln längs nebeneinander angeordnet sind, und zwar zu etwa 100.000 Faserenden pro Quadratzentimeter. Auf diese Weise erzielt man in der aktiven Oberfläche eine Feinstruktur, die das Entstehen einer Koronaentladung, die von der gesamten aktiven Oberfläche ausgeht, begünstigt. Eine solche Koronaentladung ist für eine gesteuerte Potentialveränderung günstig.
  • Um die angestrebte Wirkung zu erzielen, ist es wichtig, daß einzelne aktive Elemente hinsichtlich des Potentials gleich günstig liegen, damit sich die Koronaentladung gleichmäßig verteilt und nicht auf günstig gelegene lokale Bezirke konzentriert.
  • Aufgabe der Erfindung ist es, eine Vorrichtung der eingangs genannten Art mit einer möglichst hohen Feinstruktur in der aktiven Oberfläche unter Berücksichtigung der zuvor genannten Funktionsbedingungen zu schaffen, die möglichst einfach reproduzierbar herstellbar ist.
  • Die Erfindung löst diese Aufgabe dadruch, daß die Strukturelemente Fullerenmoleküle sind.
  • Unter Fullerenen werden sogenannte Käfigmoleküle aus sphärisch angeordneten C-Atomen verstanden, vorzugsweise mit der chemischen Summenformel C2n,wobei sich n = 30, also die Summenformel C₆₀ besonders bewährt hat.
  • Erfindungsgemäß sind die Strukturelemente zumindest teilweise als Fullerenfragmente, -derivate und/oder Heterofullerene oder Heterofullerenfragmente, -derivate ausgebildet.
  • Nach der Erfindung übernehmen einzelne Fullerenmoleküle die Funktion der Faserenden bei der bekannten Vorrichtung. Fullerenmoleküle kann man, einfacher jedenfalls als Faserbüschel, in der gewünschten Struktur anordnen und man kann auch die Leitfähigkeit sehr differenziert steuern, in dem man die Fullerene durch Dotierung, insbesondere mit Atomen, Molekülen aus der Gruppe der Halogene oder Alkalimetalle, in der gewünschten Weise leitfähig macht.
  • Für ein dotiertes Fullerenmolekül ergibt sich die Summenformel XrC2n
    mit X = H, Li, Na, K, Rb, Cs und/oder Fr
    mit r = 0, 1, 2, ..., vorzugsweise 1
    mit n = 16, 17, 18, ..., vorzugsweise 30.
    Die Fremdatome X sind dem Fulleren durch Dotierung, Einlagerung, Anlagerung und/oder Beimischung zugefügt. Ein dotiertes Fulleren mit der Summenformel K₃C₆₀ ist besonders bevorzugt.
  • Man kann die Fullerene unterschiedlich auftragen, zum Beispiel mit Hilfe von Laser. Vorteilhaft ist elektrolytischer Auftrag, weil er einfach zu handhaben ist und den Auftrag der Käfigmoleküle leicht steuerbar macht, beispielsweise durch elektrische Felder.
  • Vorteilhaft und leicht sehr präzise steuerbar ist es auch, wenn man die Fullerene, die die aktive Oberfläche bilden, auf den Kristallflächen eines Halbleiters, vorzugsweise Galliumarsenid, Gallium-Aluminiumarsenid, Aluminium-Galliumarsenid, Indiumphosphid oder Indiumgalliumarsenid, aufwachsen läßt. Der Halbleiter kann dann gleichzeitig als Stromzuleitung zu den Fullerenen dienen.
  • Die die aktive Oberfläche bildenden Fullerene sind vorzugsweise in Form einer monomolekularen Schicht mit Kristallstruktur aufgetragen. Dann ergibt sich über die ganze aktive Oberfläche ein gleichförmiges Muster der elektrisch aktiven Elemente.
  • Die Fullerene einer monomolekularen Schicht können in einer einzigen Ebene angeordnet sein, es kann sich um gleichgroße Moleküle handeln, es kann sich um gleichdotierte Moleküle handeln und/oder diese Moleküle können hinsichtlich ihrer Dotierung sphärisch identisch in der Schicht angeordnet sein.
  • Man kann die monomolekulare Schicht aber auch hinsichtlich der aufgeführten Kriterien unterschiedlich gestalten, allerdings unter Wahrung eines Rasters, das eine gleichmäßige Verteilung der aktiven Elemente bedingt. Eine dementsprechende Ausgestaltung ist dadurch gekennzeichnet, daß die die aktive Oberfläche bildenden Fullerene in mehrere Gruppen unterteilt sind, daß die Fullerene der einzelnen Gruppen gemischt, ein Raster bildend angeordnet sind, daß die Fullerene einer Gruppe unter sich gleichgroß, gleichdotiert und mit Bezug auf ihre Dotierung sphärisch gleich orientiert angeordnet sind und daß die Fullerene unterschiedlicher Gruppen sich hinsichtlich Größe, Dotierung, sphärischer Anordnung und/oder ihrer Anordnung in verschiedenen Ebenen voneinander unterscheiden.
  • Die Erfindung wird nun anhand der beigefügten Zeichnung näher erläutert.
  • In der Zeichnung zeigt:
  • Figur 1
    eine Vorrichtung nach der Erfindung abgebrochen perspektivisch,
    Figur 2, 3 und 4
    ein Rasterbild und
    Figur 5
    eine Tabelle.
  • In Figur 1 ist mit 1 ein metallisch leitender Tragkörper bezeichnet, der mit einer halbleitfähigen, kristallinen Galliumarsenid-Schicht 2 beschichtet ist. Auf die Schicht 2 ist eine monomolekulare Schicht 3 aus Fullerenmolekülen 4, 5 aufgewachsen oder elektrolytisch aufgetragen, deren Molekülanordnung eine Kristallstruktur, im vorliegenden Fall ein regelmäßiges Spalten- und Zeilenmuster, zugrundeliegt, bedingt durch die Kristallstruktur der Galliumarsenid-Schicht 2.
  • Die einzelnen Fullerenmoleküle sind durch Dotierung leitfähig gemacht und bilden, jedes für sich, Ausgangspunkt einer Koronaentladung, die hervorgerufen wird durch eine Potentialdifferenz zwischen der Schicht 3 und der gegenüberliegenden Oberfläche 6 eines aus Isoliermaterial gebildeten Elementes 7, deren statisches elektrisches Potential durch die Koronaentladung verändert werden soll.
  • Gemäß einiger Abänderungen bestehen die die aktive Oberfläche bildenden Fullerenmoleküle aus zwei oder drei Gruppen, von denen diejenigen der ersten Gruppe gemäß Figur 2, 3 und 4 mit A, diejenigen der zweiten Gruppe mit B und diejenigen der dritten Gruppe mit C bezeichnet sind. Die Moleküle sind im Raster angeordnet wie das in Figur 2 bis 4 durch die Anordnung der Buchstaben angedeutet ist. Die Moleküle der einzelnen Gruppen können sich unterscheiden, wie dies nun anhand der Figur 5 erläutert wird.
  • In Zeile I aus Figur 5 sind drei unter sich gleiche und gleichdotierte Fullerenmoleküle angezeigt, die sich jedoch hinsichtlich ihrer durch einen schwarzen Punkt gekennzeichneten Dotierung in ihrer sphärischen Anordnung unterscheiden.
  • In Zeile II sind drei unter sich gleiche Fullerenmoleküle dargestellt, die jedoch unterschiedlich dotiert sind; das eine Molekül mit einem Dotierungselement, das nächste mit zwei Dotierungselementen und das letzte mit drei Dotierungselementen.
  • In Zeile III sind Fullerenmoleküle dargestellt, die sich durch ihre Größe unterscheiden.
  • In Zeile IV sind Fullerenmoleküle dargestellt, die sich durch die Art der eingesetzten Dotierung unterscheiden, was zeichnerisch zum Ausdruck gebracht ist, indem die Dotierung einmal durch einen Kreis, einmal durch ein Dreieck und einmal durch ein Viereck dargestellt ist.
  • In Zeile V sind identische Fullerenmoleküle dargestellt, die jedoch in unterschiedlichen Ebenen 10, 11, 12 angeordnet sind, wobei die beiden außen gelegenen Ebenen 10 und 12 einen Abstand in der Größenordnung des Durchmessers eines Fullerenmoleküls aufweisen.
  • In Zeile VI sind die Fullerenmoleküle mit dem Leitfähigkeitstyp p, n und p dotiert.
  • Der ersten Gruppe, gekennzeichnet durch den Buchstaben A, sind diejenigen Moleküle der Zeilen I bis V zugeordnet, die in Spalte A stehen und so fort für Spalte B und Spalte C. Die Zeilen I bis VI definieren in Verbindung mit Figur 2 jeweils ein Ausführungsbeispiel für sich. Entsprechendes gilt für die Figuren 3 und 4. Bei diesen sich daraus ergebenden 3 x 6 = 18 Ausführungsbeispielen unterscheiden sich die Fullerene immer nur durch ein einziges Kriterium. Es sind weitere Ausführungsbeispiele möglich, bei denen sich die Moleküle der einzelnen Gruppen A, B und C durch zwei, drei oder mehr derjenigen durch die Zeilen I bis V definierten Kriterien unterscheiden.
  • Weitere Abänderungen sind möglich, indem man mehr als drei Gruppen einsetzt. Man kann auch in Abänderung des Rasters nach Figur 2 den einzelnen Gruppen eine unterschiedliche Anzahl von Mitgliedern zuordnen. Wesentlich ist nur, daß sich in der aktiven Oberfläche ein durchgehend gleichförmiges Raster ergibt, so daß die aktiven Elemente gleichmäßig über die aktive Oberfläche verteilt sind. Es können dann sämtliche eingesetzte Fullerenmoleküle einer monomolekularen Schicht aktive Elemente bilden, es können aber auch, je nach der Anordnung, nur ausgewählte Moleküle einer monomolekularen Schicht aktive Elemente bilden, zum Beispiel nur die Moleküle A bei den Ausführungsbeispielen gemäß Zeile V aus Figur 3.

Claims (10)

  1. Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche mit Hilfe einer Elektrode, deren aktive Oberfläche der aus Isoliermaterial gebildeten Oberfläche zugekehrt ist und eine Feinstruktur aufweist, deren Strukturelemente Ausgangspunkte einer Koronaladung sind, dadurch gekennzeichnet,
       daß die Strukturelemente (4, 5) Fullerenmoleküle sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,
       daß die Strukturelemente zumindest teilweise als Fullerenfragmente, -derivate und/oder als Heterofullerene oder Heterofullerenfragmente, -derivate ausgebildet sind.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet,
       daß durch Dotierung oder Einlagerung, insbesondere mit Atomen, Molekülen aus der Gruppe der Halogene oder der Alkalimetalle, leitfähig gemachte Fullerene eingesetzt sind.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
       daß die Fullerene elektrolytisch aufgetragen sind.
  5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet,
       daß die Fullerene auf die Kristallflächen eines Halbleiters, vorzugsweise Galliumarsenid, Gallium-Aluminiumarsenid, Aluminium-Galliumarsenid, Indiumphosphid oder Indiumgalliumarsenid, aufgewachsen sind.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
       daß die die aktive Oberfläche bildenden Fullerene in Form einer monomolekularen Schicht (3), insbesondere unter Zugrundelegung einer Kristallstruktur, aufgetragen sind.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
       daß für die aktive Oberfläche gleichgroße Fullerene eingesetzt sind.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
       daß für die aktive Oberfläche gleichdotierte Fullerene eingesetzt sind.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
       daß die die aktive Oberfläche bildenden Fullerene hinsichtlich ihrer Dotierung mit gleicher sphärischer Orientierung angeordnet sind.
  10. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet,
       daß die die aktive Oberfläche bildenden Fullerene in mehrere Gruppen unterteilt sind,
       daß die Fullerene der einzelnen Gruppen gemischt, ein Raster bildend angeordnet sind,
       daß die Fullerene einer Gruppe unter sich gleichgroß, gleichdotiert und mit Bezug auf ihre Dotierung sphärisch gleich orientiert angeordnet sind und
       daß die Fullerene unterschiedlicher Gruppen sich hinsichtlich Größe, Dotierung, sphärischer Anordnung und/oder ihrer Anordnung in verschiedenen Ebenen voneinander unterscheiden. (Fig. 2 - 5)
EP93107337A 1992-05-06 1993-05-06 Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche Expired - Lifetime EP0569004B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4214975A DE4214975A1 (de) 1992-05-06 1992-05-06 Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche
DE4214975 1992-05-06

Publications (3)

Publication Number Publication Date
EP0569004A2 true EP0569004A2 (de) 1993-11-10
EP0569004A3 EP0569004A3 (en) 1993-12-15
EP0569004B1 EP0569004B1 (de) 1996-03-20

Family

ID=6458302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93107337A Expired - Lifetime EP0569004B1 (de) 1992-05-06 1993-05-06 Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche

Country Status (3)

Country Link
EP (1) EP0569004B1 (de)
AT (1) ATE135874T1 (de)
DE (2) DE4214975A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041982C (zh) * 1993-12-28 1999-02-03 Abb研究有限公司 高压设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295431A1 (de) * 1987-06-19 1988-12-21 Till Keesmann Vorrichtung zum Verändern des statischen, elektrischen Potentials durch Koronaentladung an der aus Isoliermaterial gebildeten Oberfläche eines bewegten Elements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295431A1 (de) * 1987-06-19 1988-12-21 Till Keesmann Vorrichtung zum Verändern des statischen, elektrischen Potentials durch Koronaentladung an der aus Isoliermaterial gebildeten Oberfläche eines bewegten Elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041982C (zh) * 1993-12-28 1999-02-03 Abb研究有限公司 高压设备

Also Published As

Publication number Publication date
DE4214975A1 (de) 1993-11-11
DE59301929D1 (de) 1996-04-25
ATE135874T1 (de) 1996-04-15
EP0569004B1 (de) 1996-03-20
EP0569004A3 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
DE69026353T2 (de) Feldemissionsvorrichtung und Verfahren zur Herstellung derselben
DE69115249T2 (de) Kaltkathode feldemissionsanordnung mit stromquelle.
DE2413942C3 (de) Verfahren zur Herstellung von Dunnfilm-Feldemissions-Elektronenquellen
DE69220071T2 (de) Elektrophoretische anzeigevorrichtung mit verschachtelter lokaler anode
DE3878480T2 (de) Fluessigkristall-anzeigevorrichtung.
DE69125577T2 (de) Ablenksystem für einen Strahl geladener Teilchen
DE69910979T2 (de) Grossflächige feldemissions-bildwiedergabeanordnung und verfahren zur herstellung
DE1207015B (de) Transistor, insbesondere Unipolartransistor mit einem plattenfoermigen Halbleiterkoerper eines Leitungstyps und Verfahren zum Herstellen
DE2906285C2 (de) Ionenquelle für die Feldionisation oder die Felddesorption sowie Verfahren zu deren Herstellung
DE68909881T2 (de) Plasma-Anzeigeplatte mit modifizierter Adressierbarkeit.
DE69018618T2 (de) Aktive flüssigkristall-punktmatrix-anzeigestruktur mit hoher auflösung.
DE69401243T2 (de) Feldemissionsvorrichtung mit Kleinradiuskathode und Herstellungsverfahren dieser Vorrichtung
DE3545400A1 (de) Elektrochrome vorrichtung
DE2146941A1 (de) Strahlenformungs- und Abbildungssystem
EP0569004B1 (de) Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche
DE2743299A1 (de) Ladungskopplungsanordnung
DE9206100U1 (de) Vorrichtung zum Verändern des statischen elektrischen Potentials einer aus Isoliermaterial gebildeten Oberfläche
DE69500372T2 (de) Verfahren zur Herstellung einer Kathode eines Mikrospitzen-Fluoreszenzbildschirms und daraus resultierendes Produkt
DE69024886T2 (de) Nichtlineare Anordnung vom Zweiklemmentyp und Verfahren zu deren Herstellung
DE658721C (de) Vorrichtung zur Herstellung von kuenstlichen Fasern aus einer faserbildenden Fluessigkeit
DE2412541C3 (de) Strahlerzeugersystem für Farbbildröhren
DE69211828T2 (de) Verfahren zum Verdrahten eines Laserarrays
DE102011082240B4 (de) Drucksieb für den technischen Siebdruck
DE69219926T2 (de) Kathodenstrahlröhre mit Elektronenstrahlerzeugersystem mit planparalleler Optik
EP0879304A2 (de) Herstellung von schrägen galvanikstrukturen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19940519

17Q First examination report despatched

Effective date: 19950407

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960320

REF Corresponds to:

Ref document number: 135874

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59301929

Country of ref document: DE

Date of ref document: 19960425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960515

Year of fee payment: 4

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960531

Ref country code: CH

Effective date: 19960531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980202

Year of fee payment: 5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST