EP0269092A2 - Verfahren zur Bestimmung einer spezifisch bindefähigen Substanz - Google Patents

Verfahren zur Bestimmung einer spezifisch bindefähigen Substanz Download PDF

Info

Publication number
EP0269092A2
EP0269092A2 EP87117411A EP87117411A EP0269092A2 EP 0269092 A2 EP0269092 A2 EP 0269092A2 EP 87117411 A EP87117411 A EP 87117411A EP 87117411 A EP87117411 A EP 87117411A EP 0269092 A2 EP0269092 A2 EP 0269092A2
Authority
EP
European Patent Office
Prior art keywords
protein
molecular weight
substance
hydrophobic
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117411A
Other languages
English (en)
French (fr)
Other versions
EP0269092B1 (de
EP0269092A3 (en
Inventor
Wilhelm Dr. Tischer
Josef Maier
Rolf Dr. Deeg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Roche Diagnostics GmbH
Boehringer Mannheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics GmbH, Boehringer Mannheim GmbH filed Critical Roche Diagnostics GmbH
Priority to AT87117411T priority Critical patent/ATE86743T1/de
Publication of EP0269092A2 publication Critical patent/EP0269092A2/de
Publication of EP0269092A3 publication Critical patent/EP0269092A3/de
Application granted granted Critical
Publication of EP0269092B1 publication Critical patent/EP0269092B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/552Glass or silica
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/78Thyroid gland hormones, e.g. T3, T4, TBH, TBG or their receptors

Definitions

  • the invention relates to a method for determining a protein substance which is specifically bindable according to the principle of the immunoassay, one of the partners of the substance pair which is specifically bindable to one another being bound to a solid phase, and to a carrier material suitable for this purpose.
  • Plastic tubes or microtiter plates with the reaction partner on their inner surface are usually used as the solid phase in the immunological processes is fixed, or balls on the outer surface of which the reaction partner is fixed.
  • These plastic tubes, microtiter plates or spheres usually consist of relatively inert plastic material, so that the binding of the reactant is difficult.
  • the binding of the specific reactant to the respective surface must take place in such a way that it does not lose the ability to bind specifically the substance capable of binding specifically to it. For this reason, the binding of the reactant to the solid phase is mostly adsorptive. It has therefore already been proposed to fix the reactant to the solid phase using a coupling agent which mediates the binding.
  • the aim of the invention was therefore to create a process which reproducibly improves the adhesion of the specifically bindable substance to the solid phase and which provides a suitable carrier material. Since many immunological processes are carried out with the addition of detergents in order to avoid cloudiness, it was also the object of the invention to improve the adhesion to such an extent that the bound, specifically bindable substance does not become detached even in the presence of detergents.
  • This aim is achieved by a method for producing a specifically bindable protein substance bound to an insoluble carrier material, in particular for use in a heterogeneous analytical method, according to the principle of the immunoassay, which is characterized in that a soluble protein with a molecular weight above about 500,000, which is more hydrophobic than the specifically bindable protein substance, couples to the specifically bindable substance and then the conjugate of reactant and protein is adsorbed onto a hydrophobic solid phase.
  • the specifically bindable substance fixed in this way shows improved adhesion.
  • the binding is also stable against detergents.
  • the substance which is specifically bound to the solid phase according to the invention provides steeper calibration curves, which leads to an increase in accuracy.
  • the molecular weight and the hydrophobicity must be determined in comparison with the corresponding value for the specifically bindable substance.
  • the molecular weight is determined by the methods known to the person skilled in the art.
  • hydrophobicity between soluble protein and specifically bindable substance can also be compared according to the methods familiar to the person skilled in the art. Examples of suitable methods are comparison - the quenching of fluorescence after binding to dyes (Biochem. Biophys. Acta 624 , (1980), 13-20 - the elution behavior in hydrophobic chromatography (Biochem. Biophys. Acta, 576 (1979), 269-279) - the surface tension (Biochem. Biophys. Acta 670 (1981), 64-73) - The retention times in hydrophobic interaction chromatography (HIC) (Angew. Chemie 98 (1986) 530-548, J. chromat. 296 (1984) 107-114, Anal. Biochem. 137 , (1984) 464-472).
  • HIC hydrophobic interaction chromatography
  • an immunoglobulin is used as the specifically bindable substance, human serum albumin or ⁇ 2HS glycoprotein, for example, are not suitable as soluble proteins in the sense of the invention without further pretreatment.
  • Both proteins have to be subjected to both hydrophobization and an increase in molecular weight.
  • transferrin crosslinking is sufficient
  • hydrophobization is sufficient.
  • Proteins that are suitable for coupling with immunoglobulin as a specifically bindable substance without pretreatment are, for example, ⁇ -lipoproteins (MW approx. 3.2 million) or ⁇ 2-lipoprotein (MG approx. 5-20 million).
  • the hydrophobization can take place, for example, by application of heat, treatment with acids, denaturing agents and / or chaotropic ions and / or by chemical coupling with a hydrophobic compound.
  • the molecular weight can be increased, for example, by applying heat, treatment with acids, denaturing agents and / or chaotropic ions and / or by crosslinking with a bi- or polyfunctional protein reagent.
  • the treatment is continued until a protein polymer with a molecular weight of 500,000 or more is obtained. It is particularly preferred to use a protein polymer with a molecular weight of 500,000 to 20 million.
  • the hydrophobization can be carried out before, during or after the crosslinking, but not in the presence of the specifically bindable substance.
  • temperatures of 40 to 95 ° C. are usually used in a period of 1 min to 10 hours, such as in Biochem. Biophys. Acta 624 (1980) 13-20.
  • acetic acid propionic acid, lactic acid or hydrochloric acid are used as acids.
  • Usual concentrations are 1 to 100 mmol / l exposure times from 10 min to 16 hours.
  • Suitable chaotropic ions are, for example, thiocyanates, iodides, fluorides, bromides, perchlorates and sulfates.
  • Suitable denaturing agents are, for example, guanidine hydrochloride or urea. Usually concentrations of 10 mmol / l to 6 mol / l are used.
  • soluble fatty acids preferably soluble fatty acids, lipoids in low or high molecular weight form as well as synthetic polymers such as polypropylene glycol or soluble copolymers of polystyrene are used.
  • synthetic polymers such as polypropylene glycol or soluble copolymers of polystyrene
  • the crosslinking via bifunctional or polyfunctional compounds is carried out using known protein binding reagents. These are compounds which carry at least two functional groups, which can be the same or different, and which can react with functional groups of proteins via these functional groups. Compounds are preferably used which consist of an alkyl chain, at the ends of which are succinimide, maleimide and / or aldehyde groups.
  • the protein is crosslinked with the bifunctional or polyfunctional compound in a manner known per se by reacting the soluble protein and the bifunctional or polyfunctional compound.
  • Proteins with a molecular weight of 10,000 to 700,000 are preferably used for hydrophobization and / or crosslinking.
  • Bovine serum albumin, lipase or immune- ⁇ -globulin is particularly preferred.
  • the specifically bindable protein substance to be bound is then coupled to the protein in a manner known per se. Suitable coupling methods are e.g. B. Ishikawa, J. Immunoassay, 4 , 209-327 (1983). Proteins such as antibodies, antibody fragments, antigens or haptens are suitable as specifically bindable substances.
  • the conjugate obtained from specifically bindable protein substance and protein is then adsorptively adsorbed on the plastic surface serving as a solid phase.
  • the adsorptive binding to the solid phase takes place via strong and weak interactions, hydrophobic forces, dipole-dipole or ion-dipole interactions.
  • Suitable as a hydrophobic solid phase are carrier materials with a surface tension which is smaller than the surface tension of the hydrophobic soluble protein, i.e. are more hydrophobic than protein.
  • Carrier materials with a surface tension of ⁇ 40 erg / cm2 are preferably used.
  • Polystyrene, polymethacrylate, Teflon, polyamide, copolymers of styrene and acrylonitrile, glass and cellulose products are particularly suitable. They can be in any form, e.g. as film, plate, powder, granules or nonwoven fabric, preferably as glass fiber nonwoven fabric or nonwoven fabric made of cellulose / cellulose ester fiber and poly
  • Hydrophobized proteins show particularly good adsorptive binding. Possibly, the hydrophobization opens intramolecular bridge bonds of the protein, so that hydrophobic parts of the protein reach the surface and adhere better there to the hydrophobic plastic surface than the hydrophilic parts, which are primarily found on the surface in the non-hydrophobized protein.
  • Suitable substance pairs, of which a reaction partner is bound to the solid phase are, for example, antigen antibodies; Hapten antibodies and other proteins specifically capable of binding to one another, such as in particular the streptavidin or avidin and biotin system, which is preferred.
  • a plastic surface can be pre-swollen or activated in another manner known per se.
  • the carrier material according to the invention for use in solid-phase immunoassays is characterized in that it consists of a hydrophobic solid phase to which a protein with a molecular weight of about 500,000 is adsorbed, to which a specifically bindable substance is bound.
  • This carrier material is excellently suited for use in solid phase immunoassays because the specifically bindable substance adheres very well and does not desorb even when detergents are added.
  • the carrier material is, for example, in the form of tubes, microtiter plates or spheres, which are coated with a cross-linked protein to which a specifically bindable substance is bound.
  • a conjugate consisting of a cross-linked protein and a specifically bindable substance is adsorbed onto the solid phase.
  • the protein is preferably bovine serum albumin, lipase or an immune- ⁇ -globulin that has been crosslinked in the manner indicated.
  • a method and a carrier material are made available in order to fix a specifically bindable substance with good adhesion and permanently to a hydrophobic solid phase.
  • the adhesion could be improved so far that the addition of detergents does not lead to a detachment of the substance.
  • the method according to the invention is simple to carry out.
  • Monoclonal antibodies (MAK ⁇ TSH>) are obtained by the method described by Galfre and Millstein (Meth. In Enzymology 73 (1981)).
  • the ascites liquid is subjected to ammonium sulfate precipitation and passage through DEAE cellulose.
  • Fab fragments 50 mg are dissolved in 2 ml of 0.05 mol / l potassium phosphate buffer (pH 7.5) and 0.4 ml of disuccinimidyl suberate (manufacturer Pierce), dissolved in dioxane (7.4 mg / ml), is added with stirring. After 2 hours of incubation at 25 ° C., the reaction is stopped by adding 0.2 ml of 0.1 mol / l lysine hydrochloride. The reaction mixture is diluted with 0.2 ml of potassium phosphate buffer (see above) and centrifuged.
  • the supernatant is over an Ultrogel AcA 202 column (LKB, Graefelfing / FRG) desalted to give 11.3 ml with 45 mg of protein.
  • Part of this preparation is fractionated on a Superose ®-6 column (Deutsche Pharmacia GmbH) at a flow rate of 0.5 ml / min in 0.05 mol / l potassium phosphate buffer pH 7.0 and the fraction with a molecular weight of approx. 500,000 - 5 million further used.
  • Fab fragments and ⁇ -globulin from cattle are mixed in a mass ratio of 1: 1.
  • the crosslinking is carried out as described under b).
  • ⁇ -globulin 1.25 g of ⁇ -globulin are dissolved in 10 ml of 0.05 mol / l potassium phosphate buffer, pH 7.8 and bright centrifuged in a Sorvall cooling centrifuge for 10 min at 5,000 rpm. 1.75 ml of disuccinimidyl suberate are added to this solution and diluted with 2.5 ml of water. After 4 hours of stirring at 25 ° C., 10 ml of 0.1 mol / l lysine are added and the pH is adjusted to 6.8 and centrifuged. The supernatant is separated off on a preparative gel filtration column (TSK 3000, LKB Graefelfing / FRG), concentrated by ultrafiltration and stored at 4 ° C.
  • TSK 3000 preparative gel filtration column
  • Fab fragments prepared according to a) (10 mg in 1 ml 0.01 mol / 1 potassium phosphate buffer pH 7.0) are mixed with 0.002 ml maleinimidohexanoyl-N-hydroxysuccinimide ester (Boehringer Mannheim GmbH) in DMSO (33 mg / ml) for 2 hours 25 ° C activated, then centrifuged and desalted on an AcA 202 column.
  • fragments are then combined with the ⁇ -globulin (mass ratio of the proteins 1: 1) and incubated for 1 hour at 25 ° C. and pH 7.0. The mixture is then dialyzed against demineralized water overnight at 4 ° C. and a protein concentration of 2.5 mg / ml.
  • This conjugate can be used directly for adsorption on a solid phase.
  • Thermo-RSA bovine serum albumin
  • the solution is cooled, filtered and adjusted to a concentration of 50 mg / ml in an ultrafiltration cell (exclusion limit: 30,000 daltons). Then bidest against 30 times the volume. H2O dialyzed and then lyophilized.
  • the product has a molecular weight of approximately 700,000.
  • Thermo-RSA is activated before coupling to the Fab fragments.
  • 68 mg of Thermo-RSA are dissolved in 2 ml of 0.1 mol / l potassium phosphate (pH 7.8) and a solution of 3.8 mg of S-acetylmercapto-succinic anhydride (SAMBA) is slowly added.
  • SAMBA S-acetylmercapto-succinic anhydride
  • dialysis is carried out against 2 l of 50 mmol / l potassium phosphate (pH 6.5) at 4 ° C.
  • This thermal RSA is incubated with the Fab fragments activated according to d) in a mass ratio of 1: 1 for 1 hour at 25 ° C. and pH 7.0, then against demineralized water overnight at 4 ° C. and a protein concentration of 2.5 mg / ml dialyzed.
  • This product is used directly for coating.
  • Fab fragments are activated as described in d) and coupled to the SH groups of ⁇ -galactosidase according to J. Immunoassay 4 (1983) 209-327.
  • the ⁇ -galactosidase used here has a molecular weight of 500,000 to 2 million.
  • Cross-linked ⁇ -galactosidase (MW ⁇ 5 million) was used for a further experiment.
  • a lyophilizate of the Fab fragment or the conjugate are distilled in 10 ml. Water dissolved. 1 ml of this solution is diluted in 1,000 ml of a loading buffer of 5.25 g / l sodium dihydrogen phosphate and 1 g / l sodium azide and stirred for 30 min at room temperature.
  • the polystyrene or Luran ® tubes coated according to g are used in a TSH determination reagent analogous to the TSH Enzymun ® test (Boehringer Mannheim GmbH, Order No. 736 082) and a calibration curve is measured in accordance with the test instructions. This results in the measured values shown in Table 1 and Fig. 1.
  • Streptavidin (manufacturer: Boehringer Mannheim GmbH) is crosslinked analogously to Example 1b.
  • Binding to non-crosslinked RSA or ⁇ -galactosidase takes place analogously to Example 1f.
  • streptavidin 60 mg streptavidin are dissolved in 6 ml 50 mmol / l potassium phosphate / 100 mmol / l sodium chloride (pH 7.0) and placed at 4 ° C. 6.16 mg of maleinimidohexanoyl-N-hydroxysuccinimide ester are dissolved in 620 ⁇ l of dioxane and stirred into the streptavidin solution. After a reaction time of 2 hours at 4 ° C, dialysis is carried out against 2 times 1 l of 50 mmol / l potassium phosphate / 100 mmol / l sodium chloride (pH 5) at 4 ° C.
  • the loading is carried out as described in Example 1 g).
  • the tubes loaded according to d) are used in a TSH Enzymun ® test reagent (4-fold conjugate activity).
  • a biotinylated MAK ⁇ TSH> is used instead of the immobilized antibody.
  • This biotinylated MAK is produced according to JACS 100 (1978) 3585-3590.
  • the antibody is used in the test in a concentration of 400 ng per test tube together with the other reagents.
  • a T3 test was carried out on the tubes loaded according to the invention.
  • 400 ng of biotinylated polymerized T3 in a known manner are incubated in 500 ⁇ l of buffer for 30 minutes.
  • a solution of sodium hydrogen phosphate with a pH of 8.65, containing 0.20% RSA and 0.04% 8-anilino-1-naphthalenesulfonic acid (ANS) was used as buffer.
  • HBsAg test was carried out on the tubes coated according to the invention.
  • purified HBsAg subtype ay and once purified HBsAg subtype ad were given. It was then incubated for four hours at room temperature. After washing the tubes three times, 1 ml of ABTS substrate solution was added.
  • tubes coated according to the invention were loaded once with 1.5 ml of a streptavidin-Thermo RSA solution (4 ⁇ g / ml) in 40 mM sodium hydrogen phosphate buffer, pH 7.4, at 20 ° C. for 18 to 24 hours. After the tubes had been sucked out, a subsequent loading was carried out with 1.8 ml of 2% sucrose solution, which contained 0.9% sodium chloride and 0.3% RSA. Reloading was carried out at 20 ° C. for 30 minutes. The tubes are then dried for 24 hours at 20 ° C and 40% relative humidity. These tubes are ready for testing. In addition, tubes containing pure streptavidin were loaded in a manner known per se. The detachment behavior when exposed to detergents was tested with these tubes. The results are shown in the following table.
  • the percentage detachment is determined using the methods familiar to the person skilled in the art, e.g. via a 125J label of streptavidin and streptavidin-Thermo-RSA or an enzymatic determination.
  • the coated tubes are incubated with 50 mmol / l potassium phosphate buffer, pH 7.0, to which detergent according to Table II was added, under the conditions according to Table II.
  • the samples were used undiluted.
  • the sample volume was 10 ⁇ l.
  • the compounds to be investigated were dissolved in a concentration of 0.2 to 1.4 mg / ml in 10 mmol / l potassium phosphate buffer pH 6.8.
  • the proteins which cannot be eluted under these conditions and which are preferably used are particularly suitable.
  • Thermo-RSA is particularly preferred.
  • thermo-RSA streptavidin Adsorption of thermo-RSA streptavidin on glass fiber fleece
  • a glass fiber fleece (6 ⁇ 6 mm) is soaked in the absorption volume (approx. 30 ⁇ l) with a solution of 30 ⁇ g / ml thermo-RSA-streptavidin (preparation example 2c) in 50 mmol / l potassium phosphate buffer, pH 7.0 and at 50 ° C dried in a circulating air cabinet.
  • the strip is mixed with 30 ⁇ l of a reagent Peroxidase (POD) and biotin conjugate with a POD activity of 50 mU / ml Biotin standard with the concentrations 0.5, 10, 20, 30, 40, 50, 100, 200, 1000 ng / ml biotin soaked and incubated for 2 minutes.
  • POD reagent Peroxidase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Press Drives And Press Lines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Zur Herstellung einer an ein unlösliches Trägermaterial gebundenen, spezifisch bindefähigen Substanz kuppelt man ein lösliches Protein mit einem Molekulargewicht über etwa 500.000, welches hydrophober als die spezifisch bindefähige Substanz ist, an die spezifisch bindefähige Substanz und adsorbiert dann das Konjugat aus Reaktionspartner und Protein an eine hydrophobe Festphase. Das so hergestellte Trägermaterial eignet sich insbesondere zur Verwendung bei Festphasen-Immunoassays.

Description

  • Die Erfindung betrifft ein Verfahren zur Bestimmung einer spezifisch bindefähigen Proteinsubstanz nach dem Prinzip des Immunoassay, wobei einer der Partner des miteinander spezifisch bindefähigen Substanzpaares festphasengebunden vorliegt, sowie ein dazu geeignetes Trägermaterial.
  • Zur Bestimmung einer spezifisch bindefähigen Substanz bedient man sich häufig Verfahren nach dem Prinzip des Immunoassay. Dabei wird einer der Partner eines spezi­fisch miteinander bindefähigen Substanzpaares mit dem für ihn spezifischen Rezeptor, der in an sich bekannter Weise markiert ist, umgesetzt. Das Konjugat aus diesen beiden Substanzen kann dann noch mit einem Rezeptor, der für das Konjugat oder eines der beiden Teile des Konjugats spezifisch ist, umgesetzt werden. Für diese immunologischen Verfahren gibt es viele Variationen. Vorteilhaft ist es dabei, wenn einer der Rezeptoren an eine Festphase gebunden vorliegt. Dies erleichtert die Trennung von gebunden und nicht gebunden vorliegenden Reaktionspartnern. Zur Bestimmung der spezifisch bindefähigen Substanz wird dann die Menge an an der Festphase gebundenem markiertem Reaktionspartner oder an in der Lösung vorliegendem markiertem Reaktionspart­ner gemessen und zu der Menge an zu bestimmendem Reaktionspartner in an sich bekannter Weise in Beziehung gesetzt.
  • Als Festphase werden bei den immunologischen Verfahren üblicherweise Kunststoffröhrchen oder Mikrotiterplat­ten, an deren Innenoberfläche der Reaktionspartner fixiert ist, oder Kugeln, an deren Außenoberfläche der Reaktionspartner fixiert ist, verwendet. Diese Kunst­stoffröhrchen, Mikrotiterplatten oder Kugeln bestehen üblicherweise aus relativ inertem Kunststoffmaterial, so daß die Bindung des Reaktionspartners Schwierigkeiten bereitet. Darüberhinaus muß die Bindung des spezifischen Reaktionspartners an die jeweilige Oberfläche so erfol­gen, daß er nicht die Fähigkeit zur spezifischen Bin­dung der für ihn spezifisch bindefähigen Substanz ver­liert. Aus diesem Grunde erfolgt die Bindung des Reak­tionspartners an die Festphase meistens adsorptiv. Es wurde daher schon vorgeschlagen, die Fixierung des Reaktionspartners an die Festphase über ein Kupplungs­mittel, das die Bindung vermittelt, zu bewirken. Dabei muß auch wieder darauf geachtet werden, daß die Bindung des Reaktionspartners an das Bindungsmittel nicht die spezifisch reagierende Region des Moleküls zerstört bzw. daß der Reaktionspartner so gebunden wird, daß seine reaktive Stelle von der Festphase weg dem Bindungs­partner zugewandt ist. Weiterhin wird in DE-OS 25 33 701 vorgeschlagen, um eine bessere Bindung zu erzielen, die einzelnen immunologisch wirksamen Proteine zu vernetzen und dann an Polystyrolkugeln zu adsorbieren. Als weitere Möglichkeit ist in dieser Literaturstelle angegeben, gleichzeitig mit dem Protein mit immunologischen Eigen­schaften ein inertes Protein zu vernetzen, so daß ein vernetztes Produkt aus inertem und aktivem Protein entsteht, das dann wiederum an Polystyrolkügelchen adsorbiert wird. Diese Art der Vernetzung führt jedoch in Abhängigkeit von den gewählten Reaktionsbedingungen zu unterschiedlichen, nicht reproduzierbaren Vernetzun­gen mit schwankenden Anteilen an nicht vernetztem sowie unlöslich gewordenem Protein. Durch den unterschiedli­chen Vernetzungsgrad entstehen zudem Produkte mit unterschiedlichen Bindungseigenschaften. Ein ähnliches Verfahren ist in der EU-A1 122 209 beschrieben und weist auch die gleichen Nachteile auf. All diese bekann­ten Verfahren befriedigen somit noch nicht, führen noch zu keiner optimalen Haftung der spezifisch bindefähigen Substanz und sind für die reproduzierbare Herstellung von beschichteten Festphasen wenig geeignet.
  • Ziel der Erfindung war es daher, ein Verfahren zu schaffen, das die Haftung der spezifisch bindefähigen Substanz an der Festphase reproduzierbar verbessert und ein dazu geeignetes Trägermaterial zur Verfügung stellt. Da bei vielen immunologischen Verfahren unter Detergenzien­zusatz gearbeitet wird, um Trübungen zu vermeiden, war es außerdem Ziel der Erfindung, die Haftung so weit zu verbessern, daß auch bei Anwesenheit von Detergenzien sich die gebundene, spezifisch bindefähige Substanz nicht ablöst.
  • Dieses Ziel wird erreicht durch ein Verfahren zur Herstellung einer an ein unlösliches Trägermaterial gebundenen, spezifisch bindefähigen Proteinsubstanz, insbesondere für die Verwendung in einem heterogenen Analysenverfahren, nach dem Prinzip des Immunoassay, das dadurch gekennzeichnet ist, daß man ein lösliches Protein mit einem Molekulargewicht über etwa 500.000, welches hydrophober als die spezifisch bindefähige Proteinsubstanz ist, an die spezifisch bindefähige Substanz kuppelt und dann das Konjugat aus Reaktions­partner und Protein an eine hydrophobe Festphase adsor­biert.
  • Die auf diese Weise festphasenfixierte spezifisch bindefähige Substanz zeigt eine verbesserte Haftung. Die Bindung ist auch gegenüber Detergenzien stabil. Bei der Erstellung von Eichkurven, die zur Auswertung bei vielen immunologischen Verfahren notwendig sind, liefert die erfindungsgemäß festphasengebundene spezifisch bindefähige Substanz steilere Eichkurven, was zu einer Erhöhung der Genauigkeit führt.
  • Als weiterer Vorteil des erfindungsgemäßen Verfahrens ist es möglich, die gebundene Menge genauer zu kontrol­lieren. Da die Haftung bedeutend besser ist als bei bisher bekannten Verfahren, ist ferner die Menge an spezifischem Protein, die eingesetzt werden muß, ge­ringer.
  • Zur Auswahl von erfindungsgemäß geeigneten löslichen Proteinen muß das Molekulargewicht sowie die Hydropho­bizität im Vergleich zu dem entsprechenden Wert für die spezifisch bindefähige Substanz ermittelt werden. Das Molekulargewicht wird nach den dem Fachmann bekannten Methoden ermittelt.
  • Ein Vergleich der Hydrophobizität zwischen löslichem Protein und spezifisch bindefähiger Substanz kann eben­falls nach den dem Fachmann geläufigen Methoden erfol­gen. Geeignete Methoden sind beispielsweise der Ver­gleich

    - der Fluoreszenzlöschung nach Bindung an Farbstoffe (Biochem. Biophys. Acta 624, (1980), 13-20

    - des Elutionsverhaltens bei der hydrophoben Chromato­graphie (Biochem. Biophys. Acta, 576 (1979), 269-279)

    - der Oberflächenspannung (Biochem. Biophys. Acta 670 (1981), 64-73)

    - der Retentionszeiten bei Hydrophobic Interaction Chromatography (HIC) (Angew. Chemie 98 (1986) 530-548, J. chromat. 296 (1984) 107-114, Anal. Biochem. 137, (1984) 464-472).
  • Ein Vergleich der Hydrophobizität von erfindungsgemäß geeigneten Substanzen findet sich in Sep. Sci. Technol. 14, 305-317 (1979). Danach steigt die Hydrophobizität z. B. in folgender Reihe an:

    α-₂-Macroglobulin (MG 820.000)
    Rinderserumalbumin/Humanserumalbumin (MG ∼70.000)
    Eialbumin
    α₂HS-Glycoprotein (MG ∼49.000)
    β1c1A-Globulin
    Immunglobulin (MG ∼150.000)
    Transferrin (MG ∼90.000)
  • Wird also als spezifisch bindefähige Substanz ein Immunglobulin verwendet, sind beispielsweise Humanserumalbumin oder α₂HS-Glycoprotein als lösliche Proteine im Sinne der Erfindung ohne weitere Vorbehand­lung nicht geeignet.
  • Beide Proteine müssen hier sowohl einer Hydrophobisie­rung als auch einer Erhöhung des Molekulargewichts unterworfen werden. Bei Transferrin genügt in diesem Fall eine Vernetzung, bei α₂-Macroglobulin ist eine Hydrophobisierung ausreichend.
  • Proteine, die zur Kupplung mit Immunglobulin als spezi­fisch bindefähiger Substanz ohne Vorbehandlung geeignet sind, sind beispielsweise β-Lipoproteine (MG ca. 3,2 Mio.) oder α₂-Lipoprotein (MG ca. 5-20 Mio.).
  • Die Hydrophobisierung kann beispielsweise durch Anwen­dung von Hitze, Behandlung mit Säuren, denaturierenden Agentien und/oder chaotropen Ionen und/oder durch che­mische Kupplung mit einer hydrophoben Verbindung erfol­gen.
  • Die Erhöhung des Molekulargewichts kann beispielsweise durch Anwendung von Hitze, Behandlung mit Säuren, denaturierenden Agentien und/oder chaotropen Ionen und/oder durch Vernetzung mit einem bi- oder polyfunk­tionellen Proteinreagenz erfolgen.
  • Die Behandlung wird so lange durchgeführt, bis ein Proteinpolymeres mit einem Molekulargewicht von 500.000 oder mehr erhalten wird. Besonders bevorzugt ist es, ein Proteinpolymeres mit einem Molekulargewicht von 500.000 bis 20 Mio. zu verwenden.
  • Die Hydrophobisierung kann dann, wenn auch eine Ver­netzung erfolgen soll, vor, während oder nach der Ver­netzung, jedoch nicht in Gegenwart der spezifisch bin­defähigen Substanz, vorgenommen werden.
  • Zur Hydrophobisierung durch Erhitzen werden üblicher­weise Temperaturen von 40 bis 95°C in einem Zeitraum von 1 min bis 10 Stunden angewendet, wie beispielsweise in Biochem. Biophys. Acta 624 (1980) 13-20 beschrieben.
  • Als Säuren werden beispielsweise Essigsäure, Propion­säure, Milchsäure oder Salzsäure angewendet. Übliche Konzentrationen sind 1 bis 100 mmol/l Einwirkzeiten von 10 min bis 16 Stunden.
  • Geeignete chaotrope Ionen sind beispielsweise Thiocya­nate, Jodide, Fluoride, Bromide, Perchlorate und Sul­fate. Geeignete denaturierende Agentien sind beispiels­weise Guanidinhydrochlorid oder Harnstoff. Üblicherweise werden hier Konzentrationen von 10 mmol/l bis 6 mol/l angewendet.
  • Zur Derivatisierung mit hydrophoben Verbindungen werden vorzugsweise lösliche Fettsäuren, Lipoide in nieder- ­oder hochmolekularer Form sowie synthetische Polymere, wie Polypropylenglykol oder lösliche Copolymere von Polystyrol eingesetzt. Die Derivatisierung erfolgt nach den dem Fachmann geläufigen Methoden.
  • Die Vernetzung über bi- oder polyfunktionelle Verbin­dungen wird mit an sich bekannten Proteinbindungsrea­genzien durchgeführt. Dies sind Verbindungen, die min­destens zwei funktionelle Gruppen tragen, die gleich oder verschieden sein können und die über diese funk­tionellen Gruppen mit funktionellen Gruppen von Pro­teinen reagieren können. Bevorzugt werden Verbindungen verwendet, die aus einer Alkylkette bestehen, an deren Enden sich Succinimid-, Maleinimid- und/oder Aldehyd­gruppen befinden.
  • Das Protein wird mit der bi- oder polyfunktionellen Verbindung in an sich bekannter Weise vernetzt, indem das lösliche Protein und die bi- oder polyfunktionelle Verbindung umgesetzt werden.
  • Bevorzugt werden zur Hydrophobisierung und/oder Ver­netzung Proteine mit einem Molekulargewicht von 10.000 bis 700.000 verwendet. Besonders bevorzugt wird Rinder­serumalbumin, Lipase oder Immun-γ-Globulin.
  • An das Protein wird dann in an sich bekannter Weise die zu bindende spezifisch bindefähige Proteinsubstanz gekuppelt. Geeignete Kupplungsmethoden sind z. B. in Ishikawa, J. Immunoassay, 4, 209-327 (1983) beschrieben. Als spezifisch bindefähige Substanzen sind Proteine wie beispielsweise Antikörper, Antikörperfragmente, Antigene oder Haptene geeignet.
  • Das erhaltene Konjugat aus spezifisch bindefähiger Proteinsubstanz und Protein wird dann adsorptiv an der als Festphase dienenden Kunststoffoberfläche adsorbiert. Die adsorptive Bindung an die Festphase erfolgt über starke und schwache Wechselwirkungen, hydrophobe Kräfte, Dipol-Dipol- oder Ionen-Dipol-Interaktionen. Als hydro­phobe Festphase geeignet sind Trägermaterialien mit einer Oberflächenspannung, die kleiner als die Oberflä­chenspannung des hydrophoben löslichen Proteins ist, d.h. hydrophober sind als Protein. Bevorzugt werden Trägermaterialien mit einer Oberflächenspannung < 40 erg/cm² eingesetzt. Besonders geeignet sind Polystyrol, Polymeth­acrylat, Teflon, Polyamid, Copolymere aus Styrol und Acrylnitril, Glas und Celluloseprodukte. Sie können in beliebiger Form vorliegen, z.B. als Film, Platte, Pulver, Körnchen oder Faservlies, bevorzugt als Glasfaser­vlies oder Vlies aus Cellulose-/Celluloseesterfaser und Polymerisatfaser.
  • Hydrophobisierte Proteine zeigen eine besonders gute adsorptive Bindung. Möglicherweise werden durch die Hydrophobisierung intramolekulare Brückenbindungen des Proteins geoffnet, so daß hydrophobe Teile des Proteins an die Oberfläche gelangen und dort besser an der hydrophoben Kunststoffoberfläche haften, als die hydro­philen Teile, die im nicht hydrophobisierten Protein in erster Linie an der Oberfläche zu finden sind.
  • Das erfindungsgemäße Verfahren eignet sich für die Be­stimmung einer spezifisch bindefähigen Substanz. Als Substanzpaare, von denen ein Reaktionspartner an die Festphase gebunden vorliegt, sind beispielsweise geeig­net Antigen-Antikörper; Hapten-Antikörper und andere spezifisch miteinander zur Bindung befähigte Proteine, wie insbesondere das System Streptavidin bzw. Avidin und Biotin, welches bevorzugt wird.
  • Bevor das Konjugat aus Protein und spezifisch bindefä­higer Substanz an die hydrophobe Festphase adsorbiert wird, ist es auch möglich, die Festphase physikalisch oder chemisch vorzubehandeln. So kann beispielsweise eine Kunststoffoberfläche vorgequollen werden oder in anderer an sich bekannter Weise aktiviert werden.
  • Das erfindungsgemäße Trägermaterial zur Verwendung bei Festphasen-Immunoassays ist dadurch gekennzeichnet, daß es aus einer hydrophoben Festphase besteht, an die ein Protein mit einem Molekulargewicht von über etwa 500.000 adsorbiert ist, an das eine spezifisch binde­fähige Substanz gebunden ist.
  • Dieses Trägermaterial eignet sich ausgezeichnet zur Verwendung für Festphasen-Immunoassays, da die spezi­fisch bindefähige Substanz sehr gut haftet und auch bei Zusatz von Detergenzien nicht desorbiert.
  • Das Trägermaterial liegt beispielsweise in Form von Röhrchen, Mikrotiterplatten oder Kugeln vor, die be­schichtet sind mit einem vernetzten Protein, an das eine spezifisch bindefähige Substanz gebunden ist.
  • An die Festphase ist ein Konjugat, bestehend aus einem vernetzten Protein und einer spezifisch bindefähigen Substanz adsorbiert. Das Protein ist bevorzugt Rinder­serumalbumin, Lipase oder ein Immun-γ-Globulin, das in der angegebenen Weise vernetzt wurde.
  • Erfindungsgemäß wird ein Verfahren und ein Trägermate­rial zur Verfügung gestellt, um eine spezifisch binde­fähige Substanz mit guter Haftung und dauerhaft an eine hydrophobe Festphase zu fixieren. Die Haftung konnte so weit verbessert werden, daß auch ein Zusatz von Deter­genzien nicht zu einer Ablösung der Substanz führt. Das erfindungsgemäße Verfahren ist einfach durchzuführen.
  • Die Erfindung wird durch Beispiele in Verbindung mit der Zeichnung erläutert. In dieser stellen dar:
    • Fig. 1 eine Eichkurve für eine TSH-Bestimmung unter Verwendung von Fab<TSH> unvernetzt (Kurve 1),
      Fab<TSH> vernetzt (Kurve 2),
      Konjugat Fab<TSH>/β-Gal (Kurve 3),
      Konjugat Fab<TSH>/Thermo-RSA (Kurve 4) in Luran®-Röhrchen
    • Fig. 2 eine Eichkurve für eine TSH-Bestimmung unter Verwendung von immobilisiertem Streptavidin und biotinyliertem Ak<TSH>
      Steptavidin unvernetzt (Kurve 1),
      Streptavidin vernetzt (Kurve 2),
      Streptavidin/β-Gal-Konjugat (Kurve 3),
      Streptavidin/RSA-Konjugat (Kurve 4),
      Streptavidin/Thermo-RSA-Konjugat (Kurve 5),
      Streptavidin/Thermo-RSA-Konjugat (Kurve 6).
      Kurve 1 bis 5 jeweils Luran ®-Röhrchen als Festphase, Kurve 6 Polystyrol-Röhrchen als Festphase
    • Fig. 3 eine Eichkurve für einen T3-Test
    • Fig. 4 eine Eichkurve für einen HBs AG-Test
    Beispiel 1 Bindung von Fab-Fragmenten eines monoklonalen Antikör­pers gegen TSH an Polystyrolröhrchen a) Herstellung von Fab-Fragmente (Fab<TSH>)
  • Monoklonale Antikörper (MAK<TSH>) werden nach der von Galfre und Millstein beschriebenen Methode (Meth. in Enzymology 73 (1981)) gewonnen. Zur weiteren Reinigung wird die Ascitesflüssigkeit einer Ammoniumsulfatfällung und einer Passage über DEAE-Cellulose unterworfen.
  • Anschließend wird nach Biochem. Y. 73 (1959) 119-126 eine Papainspaltung durchgeführt. Die hierbei entstandenen Fab-Fragmente werden von den nichtverdauten IgG-Molekülen und den Fc-Fragmenten mittels Gelfiltration über Sephadex G100 und Ionenaustauscherchromatographie über DEAE-Cellu­lose nach Meth. in Enzymology 73 (1981) 418-459 abgetrennt.
  • b) Vernetzung der Fab-Fragmente ohne Proteinzusatz (Vergleich)
  • 50 mg Fab-Fragmente werden in 2 ml 0,05 mol/l Kaliumphosphatpuffer (pH 7,5) gelöst und 0,4 ml Disuccinimidylsuberat (Hersteller Pierce), gelöst in Dioxan (7,4 mg/ml), unter Rühren zugegeben. Nach 2 Stunden Inkubation bei 25°C wird durch Zugabe von 0,2 ml 0,1 mol/l Lysinhydrochlorid die Reaktion abgebrochen. Der Reaktionsansatz wird mit 0,2 ml Kaliumphosphatpuffer (s. o.) verdünnt und zentrifugiert. Der Überstand wird über eine Ultrogel AcA 202-Säule (LKB, Gräfelfing/BRD) entsalzt, wobei 11,3 ml mit 45 mg Protein erhalten werden. Ein Teil dieses Präparates wird an einer Superose ®-6-Säule (Deutsche Pharmacia GmbH) bei 0,5 ml/min Durchflußrate in 0,05 mol/l Kaliumphos­phatpuffer pH 7,0 fraktioniert und die Fraktion mit Molekulargewicht ca. 500.000 - 5 Mio. weiter­verwendet.
  • c) Vernetzung der Fab-Fragmente mit unbehandeltem γ-Globulin (Vergleich)
  • Fab-Fragmente und γ-Globulin aus Rind (Serva, Heidelberg/BRD) werden im Massenverhältnis 1:1 vermischt. Die Vernetzung wird, wie unter b) be­schrieben, durchgeführt.
  • d) Bindung von Fab-Fragmenten an vorvernetztes γ-Glo­bulin (erfindungsgemäß)
  • 1,25 g γ-Globulin werden in 10 ml 0,05 mol/l Kaliumphosphatpuffer, pH 7,8, gelöst und in einer Sorvall-Kühlzentrifuge 10 min bei 5.000 UpM blank­zentrifugiert. Zu dieser Lösung werden 1,75 ml Disuccinimidylsuberat zugesetzt und mit 2,5 ml Wasser verdünnt. Nach 4 Stunden Rühren bei 25°C werden 10 ml 0,1 mol/l Lysin zugesetzt und der pH-Wert auf 6,8 eingestellt und zentrifugiert. Der Überstand wird an einer präparativen Gelfiltra­tionssäule (TSK 3000, LKB Gräfelfing/BRD) abge­trennt, über Ultrafiltration eingeengt und bei 4°C aufbewahrt.
  • 50 mg dieses vernetzten γ-Globulins werden in 5 ml 0,05 mol/l Kaliumphosphatpuffer gelöst und der pH-Wert durch Zugabe von festem Natriumcarbonat auf 9,5 eingestellt. Dann werden 50 mg N-Acetyl­homocysteinthiolacton (Serva, Heidelberg/BRD) zu­gegeben und 5 Stunden bei 25°C unter Stickstoffbe­gasung gerührt. Der Ansatz wird anschließend ent­salzt über eine Ultrogel ® AcA 202-Säule in einem Puffer aus 0,1 mol/l Kaliumphosphat (pH 7,0) 0,001 mol/l Magnesiumchlorid und 0,05 mol/l Natriumchlorid.
  • Nach a) hergestellte Fab-Fragmente (10 mg in 1 ml 0,01 mol/1 Kaliumphosphatpuffer pH 7,0) werden mit 0,002 ml Maleinimidohexanoyl-N-hydroxysuccinimid­ester (Boehringer Mannheim GmbH) in DMSO (33 mg/ml) 2 Stunden bei 25°C aktiviert, anschließend wird zentrifugiert und über eine AcA 202-Säule entsalzt.
  • Diese Fragmente werden anschließend mit dem γ-Glo­bulin vereinigt (Massenverhältnis der Proteine 1:1) und 1 Stunde bei 25°C und pH 7,0 inkubiert. Anschließend wird gegen entsalztes Wasser über Nacht bei 4°C und einer Proteinkonzentration von 2,5 mg/ml dialysiert.
  • Dieses Konjugat kann direkt zur Adsorption an eine Festphase verwendet werden.
  • e) Herstellung von Fab-Fragmenten gekoppelt an Thermo-RSA (Rinderserumalbumin; erfindungsgemäß)
  • Herstellung von Thermo-RSA (Rinderserumalbumin): 1 g RSA-I werden in 100 ml 50 mmol/l Kaliumphosphat (pH 7,0) gelöst, auf 70°C erhitzt und 4 Stunden unter leichtem Rühren bei dieser Temperatur gehalten.
  • Die Lösung wird abgekühlt, filtriert und in einer Ultrafiltrationszelle (Ausschlußgrenze: 30.000 Dalton) auf eine Konzentration von 50 mg/ml einge­stellt. Anschließend wird gegen das 30fache Volu­men an bidest. H₂O dialysiert und anschließend lyophilisiert. Das Produkt hat ein Molekularge­wicht von ca. 700.000.
  • Vor Kupplung an die Fab-Fragmente wird Thermo-RSA aktiviert. Hierzu werden 68 mg Thermo-RSA in 2 ml 0,1 mol/l Kaliumphosphat (pH 7,8) gelöst und lang­sam mit einer Lösung von 3,8 mg S-Acetylmercapto­bernsteinsäureanhydrid (SAMBA) versetzt. Nach 3 Stunden Reaktionszeit wird gegen 2 l 50 mmol/l Kaliumphosphat (pH 6,5) bei 4°C dialysiert. Dieses Thermo-RSA wird mit den nach d) aktivierten Fab-­Fragmenten im Massenverhältnis 1:1 1 Stunde bei 25°C und pH 7,0 inkubiert, anschließend gegen ent­salztes Wasser über Nacht bei 4°C und einer Proteinkonzentration von 2,5 mg/ml dialysiert.
  • Dieses Produkt wird direkt zur Beschichtung einge­setzt.
  • f) Herstellung von an β-Galactosidase gekuppelten Fab-Fragmenten (erfindungsgemäß)
  • Fab-Fragmente werden, wie in d) beschrieben, akti­viert und an die SH-Gruppen von β-Galactosidase nach J. Immunoassay 4 (1983) 209-327 gekuppelt. Die eingesetzte β-Galactosidase hat hierbei ein Molekulargewicht von 500.000 bis 2 Mio. Zu einem weiteren Versuch wurde vernetzte β-Galac­tosidase (MG ∼ 5 Mio.) eingesetzt.
  • g) Beladung von Polystyrolröhrchen mit Fab-Fragmenten bzw. deren Konjugaten
  • 50 mg eines Lyophilisats des Fab-Fragments bzw. des Konjugats werden in 10 ml bidest. Wasser gelöst. 1 ml dieser Lösung wird in 1.000 ml eines Beladungspuffers aus 5,25 g/l Natriumdihydrogen­phosphat und 1 g/l Natriumazid verdünnt und 30 min bei Raumtemperatur gerührt.
  • In jedes Röhrchen Polystyrol bzw. Luran ® (Her­steller BASF) werden 1,5 ml der Lösung gefüllt und über Nacht (ca. 22 Stunden) beladen. Danach werden die Röhrchen vollständig entleert und der nachste­hend beschriebene Funktionstest durchgeführt.
  • h) Funktionstest über TSH-Bestimmung
  • Die nach g beschichteten Polystyrol- bzw. Luran ® -­Röhrchen werden in einem TSH-Bestimmungsreagenz analog TSH-Enzymun ® -Test (Boehringer Mannheim GmbH, Best.-Nr. 736 082) eingesetzt und eine Eich­kurve entsprechend der Testvorschrift vermessen. Hierbei ergeben sich die in Tabelle 1 bzw. Fig. 1 dargestellten Meßwerte.
  • Es zeigt sich (Fig. 1), daß mit Fab-Fragmenten, welche ohne Proteinzusatz immobilisiert wurden, nur eine sehr flache Eichkurve erhalten werden kann (Kurven 1 und 2). Durch Kupplung an Proteine mit einem Molekulargewicht unter 500.000 und ge­ringer Hydrophobizität ist die Eichkurve steiler (Kurve 3). Allerdings können immer noch keine befriedigenden Ergebnisse erreicht werden. Mit den erfindungsgemäß hergestellten Konjugaten kann dagegen eine ausreichend steile Eichkurve erreicht werden (Kurve 4).
    Figure imgb0001
  • Beispiel 2 Immobilisierung von Streptavidin a) Herstellung von vernetztem Streptavidin
  • Streptavidin (Hersteller: Boehringer Mannheim GmbH) wird analog Beispiel 1b vernetzt.
  • b) Herstellung von Streptavidin gebunden an RSA bzw. β-Galactosidase
  • Die Bindung an nichtvernetztes RSA bzw. β-Galacto­sidase erfolgt analog Beispiel 1f.
  • c) Herstellung von Streptavidin gekuppelt an Thermo-­RSA Aktivierung von Streptavidin:
  • 60 mg Streptavidin werden in 6 ml 50 mmol/l Kaliumphosphat/100 mmol/l Natriumchlorid (pH 7,0) gelöst und bei 4°C kaltgestellt. 6,16 mg Malein­imidohexanoyl-N-hydroxysuccinimidester werden in 620 µl Dioxan gelöst und in die Streptavidinlösung eingerührt. Nach einer Reaktionszeit von 2 Stunden bei 4°C wird gegen 2mal 1l 50 mmol/l Kaliumphos­phat/100 mmol/l Natriumchlorid (pH 5) bei 4°C dialysiert.
  • Herstellung eines Konjugats aus Streptavidin und Thermo-RSA:
  • 66 mg Streptavidin in 10 ml 50 mmol/l Kaliumphos­phat pH 5,0 und 100 mmol/l Natriumchlorid gelöst und 72 mg aktiviertes Thermo-RSA-SAMBA (Herstellung nach Beispiel 1e)) in 5 ml 50 mmol/l Kaliumphos­phat/100 mmol/l Natriumchlorid pH 6,5 werden zugegeben. Nach Vermischen werden 50 µl 1 mol/l Hydroxylamin pH 7,0 zugegeben, um die Reaktion zu stoppen. Nach 3 Stunden wird das Reaktionsprodukt über Gelchromatographie (Superose ® 6, 50 mmol/l Kaliumphosphat/100 mmol/l Natriumchlorid pH 7,5) aufgereinigt. Es wird ein Konjugat mit einem Molekulargewicht zwischen 1 und 5 Mio. erhalten.
  • d) Beladung von Polystyrol- bzw. Luran ®-Röhrchen mit Streptavidin bzw. Streptavidinkonjugat
  • Die Beladung erfolgt, wie in Beispiel 1 g) be­schrieben.
  • e) Messung von Standardwerten über eine TSH-Bestim­mung
  • Die nach d) beladenen Röhrchen werden in einem TSH-Enzymun ®-Test-Reagenz (4fache Konjugatakti­vität) eingesetzt. In Abweichung von der dort be­schriebenen Prozedur wird jedoch anstelle des immobilisierten Antikörpers ein biotinylierter MAK<TSH> verwendet. Die Herstellung dieses bioti­nylierten MAK's erfolgt nach JACS 100 (1978) 3585-3590. Der Antikörper wird im Test in einer Konzentration von 400 ng pro Teströhrchen zusammen mit den anderen Reagenzien eingesetzt.
  • Die Ergebnisse zeigt Fig. 2. Daraus ist zu ersehen, daß mit zunehmendem Molekulargewicht und steigender Hydrophobizität die Steigung der Eichkurve und damit die erzielbare Genauigkeit zunimmt.
  • Beispiel 3
  • Mit den erfindungsgemäß beladenen Röhrchen wurde ein T3-Test durchgeführt. Dazu wurden 200 µl Probe bzw. Standardlösung zusammen mit 500 µl eines polyklonalen Antikörperkonjugates gegen T3, das mit POD markiert war, in einem Röhrchen, das mit Streptavidin gekuppelt an Thermo-RSA beschichtet war, vorinkubiert. Nach 5 Minuten werden 400 ng in bekannter Weise biotinyliertes polymerisiertes T3 in 500 µl Puffer 30 Minuten lang inkubiert. Als Puffer wurde eine Lösung von Natriumhy­drogenphosphat mit einem pH von 8,65, die 0,20 % RSA und 0,04 % 8-Anilino-1-Naphthalinsulfonsäure (ANS) enthielt, verwendet. Nach der Inkubation wurde dreimal gewaschen und anschließend 1 ml ABTS-Substratlösung zugegeben. Nach weiteren 30 Minuten Inkubation wurde dann bei 405 nm am Photometer gemessen. Die Meßwerte sind der in Fig. 3 dargestellten Kurve zu entnehmen.
  • Beispiel 4
  • Mit den erfindungsgemäß beschichteten Röhrchen wurde ein HBsAg-Test durchgeführt. Dazu wurden in ein gemäß Beispiel 1g) beschichtetes Röhrchen gleichzeitig 400 ng biotinylierter monoklonaler Antikörper gegen HBs-Antigen und 50 mU desselben Antikörpers, die mit POD markiert waren, gelöst in 1 ml Puffer derselben Zusammensetzung, wie im Beispiel 3 beschreiben, gegeben, zusammen mit 200 µl Standardlösung. Als Standardlösung wurde einmal aufgereinigtes HBsAg Subtype ay und einmal aufgereinig­tes HBsAg Subtype ad gegeben. Es wurde dann vier Stunden bei Raumtemperatur inkubiert. Nach dreimaligem Waschen der Röhrchen wurde 1 ml ABTS-Substratlösung zugegeben. Nach 20 Minuten war die Reaktion im wesentlichen beendet und die Extinktion wurde bei 405 nm am Photometer gemessen. Die Meßwerte sind der Fig. 4 zu entnehmen, wobei die durchgezogene Kurve die Werte für HBsAg Subtype ad wiedergibt und die gestrichelte Kurve die Werte für HBsAg Subtype ay.
  • Beispiel 5
  • Es wurde die Ablösung der erfindungsgemäß beschichteten Röhrchen mit nach bekannten Verfahren beschichteten Röhrchen verglichen. Dazu wurden einmal Röhrchen mit 1,5 ml einer Streptavidin-Thermo RSA-Lösung (4 µg/ml) in 40 mM Natriumhydrogenphosphatpuffer, pH 7,4, bei 20°C 18 bis 24 Stunden beladen. Nach Aussaugen der Röhrchen erfolgte eine Nachbeladung mit 1,8 ml 2%iger Saccharoselösung, die 0,9 % Natriumchlorid und 0,3 % RSA enthielt. Die Nachbeladung erfolgte 30 Minuten lang bei 20°C. Anschließend werden die Röhrchen 24 Stunden lang bei 20°C und 40 % relativer Feuchte getrocknet. Diese Röhrchen sind für die Durchführung von Tests einsatzbereit. Weiterhin wurden in an sich bekannter Weise Röhrchen mit reinem Streptavidin beladen. Mit diesen Röhrchen wurde das Ablösungsverhalten bei Ein­wirkung von Detergenzien getestet. Die Ergebnisse sind der folgenden Tabelle zu entnehmen.
    Figure imgb0002
  • Die Ermittlung der prozentualen Ablösung erfolgt nach den dem Fachmann geläufigen Methoden, z.B. über eine ¹²⁵J-Markierung von Streptavidin und Streptavidin-Ther­mo-RSA oder eine enzymatische Bestimmung.
  • Zur enzymatischen Bestimmung der prozentualen Ablösung werden die beschichteten Röhrchen mit 50 mmol/l Kalium­phosphatpuffer, pH 7,0, dem Detergens gemäß Tabelle II zugesetzt wurde, bei den Bedingungen gemäß Tabelle II inkubiert.
  • Anschließend wird 1 Stunde bei Raumtemperatur inkubiert, mit o.g. Puffer gewaschen und mit einem Konjugat aus Biotin-POD (200 mU/ml POD Aktivität), 1 Std bei Raumtem­peratur inkubiert, gewaschen und 2 ml ABTS®-Lösung (Beispiel 7) zugegeben. Nach 1 Std. Substratreaktion wird die Extinktion bei 405 nm bestimmt und hieraus die prozentuale Ablösung von Streptavidin bzw. Strepavidin-­Thermo-RSA über eine Standard-Eichkurve ermittelt.
  • Beispiel 6 Bestimmung der Hydrophobizität von Proteinen mit Hydro­phobic Interaction Chromatography (HIC)
  • Die Hydrophobizität von verschiedenen Verbindungen wurden mit einem Flüssigkeitschromatograph (Hewlett Packard 1090 LUSI) untersucht. Vorsäule war eine BioRad-­Biogel ® TSK-Phenyl-5PW (L 5 mm × ID 4,6 mm), Säule: BioRad-Biogel ® TSK-Phenyl-5PW (L 75 mm × ID 7,5 mm, 10 µm, 1.000 Å). Als Detektor wurde ein Hitachi F 1.000-Fluorimeter verwendet.
  • Eluenten/Gradient (Tabelle 3)
    • a) 1,5 mol/l (NH₄)₂SO₄-Lösung in 1/100 mol/l KH₂PO₄-­Puffer, pH 6,8
    • b) 1/100 mol/l KH₂PO₄-Puffer, pH 6,8
    Figure imgb0003
    Arbeitstemperatur:
  • Kühlraum, +7°C
  • Probenvorbereitung:
  • Die Proben wurden unverdünnt eingesetzt. Das Probevo­lumen betrug 10 µl.
  • Die zu untersuchenden Verbindungen wurden in einer Kon­zentration von 0,2 bis 1,4 mg/ml in 10 mmol/l Kalium­phosphatpuffer pH 6,8 gelöst.
  • In Tabelle 4 sind die Retentionszeiten für verschiedene Proteine bzw. spezifisch bindefähige Substanzen zusam­mengestellt. Je länger die Retentionszeit, desto größer die Hydrophobizität.
    Figure imgb0004
  • Besonders geeignet sind die unter diesen Bedingungen nicht eluierbaren Proteine, die bevorzugt verwendet werden. Besonders bevorzugt wird Thermo-RSA.
  • Beispiel 7 Adsorption von Thermo-RSA-Streptavidin an Glasfaservlies
  • Ein Glasfaservlies (6 × 6 mm) wird im Aufsaugvolumen (ca. 30 µl) mit einer Lösung von 30 µg/ml Thermo-RSA-­Streptavidin (Herstellung Beispiel 2c) in 50 mMol/l Kaliumphosphatpuffer, pH 7,0 getränkt und bei 50°C im Umluftschrank getrocknet.
  • Zur Bestimmung der Biotin-Bindekapazität wird der Streifen mit 30 µl eines Reagenzes, bestehend aus

    Konjugat aus Peroxidase (POD) und Biotin mit einer POD-Aktivität von 50 mU/ml

    Biotinstandard mit den Konzentrationen 0,5, 10, 20, 30, 40, 50, 100, 200, 1000 ng/ml Biotin

    getränkt und 2 Minuten inkubiert. Anschließend wird einmal mit einem Überschuß an 50 mMol/l Kaliumphosphat­puffer, pH 7,0 2 %o-Tween-20 gewaschen und anschließend in 2 ml ABTS-Lösung

    100 mMol/l Citratpuffer, pH 4,4
    3,2 mMol/l Perborat
    1,9 Mol/l ABTS® (2,2ʹ-Azino-di[3-ethyl-benzthia­zolinsulfonsäure(6)]-diammoniumsalz)

    eingebracht und 15 Minuten in Bewegung gehalten. Nach 1 Stunde Substratreaktion wird die Extinktion bei 405 nm bestimmt und hieraus die Biotinbindekapazität über den halbmaximalen Signalabfall ermittelt.

Claims (14)

1. Verfahren zur Herstellung einer an ein unlösliches Trägermaterial gebundenen, spezifisch bindefähigen Proteinsubstanz, insbesondere für die Verwendung in einem heterogenen Analysenverfahren, nach dem Prinzip des Immunoassay, dadurch gekennzeichnet, daß man ein lösliches Protein mit einem Molekulargewicht über etwa 500.000, welches hydrophober als die spezi­fisch bindefähige Proteinsubstanz ist, an die spezifisch bindefähige Substanz kuppelt und dann das Konjugat aus Reaktionspartner und Protein an eine hydrophobe Festphase adsorbiert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als lösliches Protein ein Protein mit einem Molekular­gewicht von 500.000 bis 20 Mio verwendet.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man das lösliche Protein aus einem Protein mit einem Mole­kulargewicht von 10.000 bis 700.000 durch Erhöhung des Molekulargewichts über 500.000 bis 20 Mio herstellt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man das Protein vor Kupplung mit einem bi-­oder polyfunktionellen Proteinreagenz vernetzt, bis das gewünschte Molekulargewicht erreicht ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man ein hydrophobisiertes Protein verwendet.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Protein vor Kupplung durch Anwendung von Hitze, Behandlung mit Säuren, denaturierenden Agentien oder chaotropen Ionen und/oder durch chemische Kupplung mit einer hydrophoben Verbindung hydrophobisiert wird.
7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß man als bi­funktionelle Verbindung Disuccinimidylsuberat ver­wendet.
8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß man als Protein Rinderserumalbumin, Lipase und/oder Immun-γ-Globuline verwendet.
9. Trägermaterial zur Verwendung bei Festphasen-Immuno­assays, hergestellt nach einem der Ansprüche 1 bis 8, dadurch ge­kennzeichnet, daß es aus einer hydrophoben Festphase besteht, an die ein Konjugat aus einem hydrophoben Protein mit einem Molekulargewicht von über etwa 500.000 und einer spezifisch bindefähigen Proteinsubstanz adsorbiert ist.
10. Trägermaterial nach Anspruch 9, dadurch gekennzeichnet, daß die hydrophobe Festphase aus Polystyrol, Polymethacrylat, Polyamid, Teflon oder aus einem Copolymeren von Styrol und Acrylnitril besteht.
11. Trägermaterial nach Anspruch 9 oder 10, da­durch gekennzeichnet, daß das Protein hydrophobisiertes Rinderserumal­bumin (Thermo-RSA), hydrophobisierte Lipase oder hydrophobisiertes Immun-γ-Globulin ist.
12. Trägermaterial nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß die spezifisch bindefähige Substanz ein Anti­gen oder ein Antikörper ist.
13. Trägermaterial nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß die spezifisch bindefähige Substanz Streptavi­din oder Avidin ist.
14. Trägermaterial nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß der Träger ein Glasfaservlies oder ein Vlies aus Cellulose-/Celluloseesterfaser und Polymerisat­faser ist.
EP87117411A 1986-11-26 1987-11-25 Verfahren zur Bestimmung einer spezifisch bindefähigen Substanz Expired - Lifetime EP0269092B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87117411T ATE86743T1 (de) 1986-11-26 1987-11-25 Verfahren zur bestimmung einer spezifisch bindefaehigen substanz.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863640412 DE3640412A1 (de) 1986-11-26 1986-11-26 Verfahren zur bestimmung einer spezifisch bindefaehigen substanz
DE3640412 1986-11-26

Publications (3)

Publication Number Publication Date
EP0269092A2 true EP0269092A2 (de) 1988-06-01
EP0269092A3 EP0269092A3 (en) 1990-01-24
EP0269092B1 EP0269092B1 (de) 1993-03-10

Family

ID=6314821

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117411A Expired - Lifetime EP0269092B1 (de) 1986-11-26 1987-11-25 Verfahren zur Bestimmung einer spezifisch bindefähigen Substanz

Country Status (13)

Country Link
US (1) US5061640A (de)
EP (1) EP0269092B1 (de)
JP (1) JPH0731205B2 (de)
KR (1) KR910002543B1 (de)
CN (1) CN1032164C (de)
AT (1) ATE86743T1 (de)
AU (1) AU592910B2 (de)
CA (1) CA1302245C (de)
DD (1) DD279741A5 (de)
DE (2) DE3640412A1 (de)
ES (1) ES2054648T3 (de)
GR (1) GR3007910T3 (de)
ZA (1) ZA878824B (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989001156A1 (en) * 1987-07-31 1989-02-09 Seeger, Wolfgang Process and device for examining whole blood, other body fluids and other biological fluids
EP0331127A1 (de) * 1988-02-29 1989-09-06 Roche Diagnostics GmbH Verfahren zur Herstellung einer Festphasenmatrix
EP0374778A2 (de) * 1988-12-19 1990-06-27 Roche Diagnostics GmbH Verfahren zur Proteinimmobilisierung an einer Festphase, so hergestellte Protein tragende Festphase sowie deren Verwendung
EP0394819A2 (de) * 1989-04-25 1990-10-31 Roche Diagnostics GmbH Spezifische Antikörper gegen Troponin T, ihre Herstellung und Verwendung in einem Reagenz zur Bestimmung von Herzmuskelnekrosen
EP0397113A2 (de) * 1989-05-09 1990-11-14 Roche Diagnostics GmbH Verfahren zum Nachweis spezifisch bindefähiger Substanzen in Körperflüssigkeiten
WO1991008482A1 (en) * 1989-12-01 1991-06-13 Unilever Plc Antibody variable domain conjugates
WO1991010139A1 (de) * 1989-12-27 1991-07-11 Boehringer Mannheim Gmbh Verfahren zum nachweis von malignen erkrankungen
EP0471345A1 (de) 1990-08-14 1992-02-19 Roche Diagnostics GmbH Bestimmung von biogenen Aminen
WO1992003732A2 (en) * 1990-08-28 1992-03-05 Bioprobe International, Inc. Compositions and methods for enhanced binding in biological assays
US5268306A (en) * 1988-02-29 1993-12-07 Boehringer Mannheim Gmbh Preparation of a solid phase matrix containing a bound specific binding pair
US5270193A (en) * 1989-10-27 1993-12-14 E. I. Dupont De Nemours And Company Immobilization of biomolecules on perfluorocarbon surfaces
EP0620439A2 (de) * 1993-04-16 1994-10-19 Roche Diagnostics GmbH Verfahren zur Bestimmung der Bindung von Transkriptionsfaktoren an Nukleinsäuren
DE4313975A1 (de) * 1993-04-28 1994-11-03 Cytech Biomedical Inc Immunisierungsmittel und Affinitätschromatographie-Trägermaterial
WO1995017427A1 (de) * 1993-12-21 1995-06-29 Boehringer Mannheim Gmbh Acylierte proteinaggregate und deren verwendung zur signalsteigerung in einem immunoassay zum nachweis von antikörpern
WO1995017668A1 (de) * 1993-12-21 1995-06-29 Boehringer Mannheim Gmbh Acylierte proteinaggregate und deren verwendung zur entstörung von immunoassays
US5674676A (en) * 1992-08-07 1997-10-07 Boehringer Mannheim Gmbh HCV peptide antigens and method of determining HCV
EP0799890A2 (de) 1996-04-01 1997-10-08 Roche Diagnostics GmbH Rekombinante inaktive Core-Streptavidin Mutanten
US5888728A (en) * 1988-10-17 1999-03-30 Molecular Devices Corporation Hapten derivatized capture membrane and diagnostic assays using such membrane
US6183949B1 (en) 1991-07-04 2001-02-06 Roche Diagnostics Gmbh HCV peptide antigens and methods for the determination of HCV
US6333397B1 (en) 1989-04-25 2001-12-25 Roche Diagnostics Gmbh Monoclonal antibodies to troponin T and their production

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362624A (en) * 1988-05-25 1994-11-08 Boehringer Mannheim Gmbh Process for the determination of an immunologically detectable substance and a suitable reaction vessel therefor
IE64286B1 (en) * 1988-05-25 1995-07-26 Boehringer Mannheim Gmbh Process for the determination of an immunologically detectable substance and a suitable vessel therefor
DE3901638C2 (de) * 1988-05-25 1999-03-25 Roche Diagnostics Gmbh Verfahren zur Bestimmung einer immunologisch nachweisbaren Substanz und dazu geeignetes Reaktionsgefäß
DE4024544A1 (de) * 1990-08-02 1992-02-06 Boehringer Mannheim Gmbh Analyseelement und verfahren zu seiner herstellung
JPH04363659A (ja) * 1991-06-10 1992-12-16 Smithkline Beckman Corp ビタミンb12の分析
WO1992022816A1 (en) * 1991-06-11 1992-12-23 Csl Limited Solid phase immunoassay
DE4202850A1 (de) * 1992-01-31 1993-08-05 Boehringer Mannheim Gmbh Analysenelement fuer immunoassays
DE19724787A1 (de) * 1997-06-06 1998-12-10 Biotez Berlin Buch Gmbh Bioche Streptavidin/Avidin beschichtete Oberflächen
US6033918A (en) * 1997-11-10 2000-03-07 Bayer Corporation Method and device for the detection of analyte in a fluid sample
DE19924643B4 (de) * 1999-05-28 2017-02-23 Roche Diagnostics Gmbh Verfahren zur Herstellung von Protein-beladenen Mikropartikeln
EP1419386B1 (de) * 2001-08-10 2006-07-12 Roche Diagnostics GmbH Verfahren zur herstellung von protein-beladenen mikropartikeln
DK2318838T3 (da) * 2008-07-16 2013-10-14 Radiometer Medical Aps Fast fase med høj kapacitet
GB201105828D0 (en) 2011-04-06 2011-05-18 Vivacta Ltd A device for detecting an analyte
GB201121269D0 (en) 2011-12-12 2012-01-25 Vivacta Ltd A method forblood measurement
JP5717658B2 (ja) * 2012-01-13 2015-05-13 シスメックス株式会社 副腎皮質刺激ホルモンの検出方法および吸着剤
TR201904903T4 (tr) 2015-03-25 2019-05-21 Alexion Pharma Inc Alternatif tamamlama yolağının C3 ve C5 konvertazının proteaz aktivitesinin ölçülmesine yönelik bir yöntem.
WO2016151558A1 (en) 2015-03-25 2016-09-29 Alexion Pharmaceuticals, Inc. A method for measuring the protease activity of factor d of the alternative complement pathway
JP7044721B2 (ja) 2016-05-31 2022-03-30 エフ.ホフマン-ラ ロシュ アーゲー Hcvコア抗原の迅速な検出のための前処理法
KR102165623B1 (ko) 2016-05-31 2020-10-15 에프. 호프만-라 로슈 아게 바이러스 항원의 혈청학적 탐지 방법
ES2865511T3 (es) 2017-02-02 2021-10-15 Hoffmann La Roche Inmunoanálisis que usa al menos dos agentes de unión específica a analito pegilado
BR112019027491A2 (pt) 2017-07-27 2020-07-07 F. Hoffmann-La Roche Ag proteína de fusão multiepítopo, método de produção de uma proteína, uso de uma proteína, método para detectar o antígeno e kit
CN113030456A (zh) * 2021-04-02 2021-06-25 山东康华生物医疗科技股份有限公司 一种抗环瓜氨酸肽抗体的检测试纸条、检测卡及试剂盒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2738183A1 (de) * 1976-08-30 1978-03-09 Byk Mallinckrodt Chem Prod Laenglicher hohler behaelter fuer immunochemische und enzymatische methoden
EP0101912A2 (de) * 1982-07-26 1984-03-07 Genetic Diagnostic Corporation Verfahren und Testsatz zur Antigenprüfung
EP0142193A1 (de) * 1983-10-22 1985-05-22 Akzo N.V. Herstellung von Immunogenen bestehend aus an Glykosid enthaltenden Trägern gebundenen Antigenen und/oder antigenen Determinanten
US4572901A (en) * 1983-06-23 1986-02-25 Children's Hospital Medical Center Of Northern California Method and composition for protein immobilization

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006059A (en) * 1974-07-29 1977-02-01 Purdue Research Foundation Hydrophobic noncovalent binding of proteins to support materials
US3966580A (en) * 1974-09-16 1976-06-29 The University Of Utah Novel protein-immobilizing hydrophobic polymeric membrane, process for producing same and apparatus employing same
US4069352A (en) * 1976-07-02 1978-01-17 Baxter Travenol Laboratories, Inc. Immunoadsorbent polymeric material and method of making same
AU533026B2 (en) * 1979-10-26 1983-10-27 Dynasciences Corp. Passively adsorbing immuno-reactive haptens to solid phases
SE8003732L (sv) * 1980-05-19 1981-11-20 Pharmacia Diagnostics Ab Sett vid bestemningsmetoder involverande biospecifika affinitetsreaktioner
DE3116491A1 (de) * 1981-04-25 1982-11-11 Basf Ag, 6700 Ludwigshafen "thermoplastische formmassen"
JPS5861466A (ja) * 1981-10-08 1983-04-12 Yatoron:Kk 血清学的凝集反応による測定方法
JPS62132172A (ja) * 1985-12-04 1987-06-15 Shionogi & Co Ltd 固相化抗体およびその製造方法
US4808530A (en) * 1986-09-05 1989-02-28 The Ohio State University Protein immobilization by adsorption of a hydrophobic amidine protein derivative to a hydrophobic surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2738183A1 (de) * 1976-08-30 1978-03-09 Byk Mallinckrodt Chem Prod Laenglicher hohler behaelter fuer immunochemische und enzymatische methoden
EP0101912A2 (de) * 1982-07-26 1984-03-07 Genetic Diagnostic Corporation Verfahren und Testsatz zur Antigenprüfung
US4572901A (en) * 1983-06-23 1986-02-25 Children's Hospital Medical Center Of Northern California Method and composition for protein immobilization
EP0142193A1 (de) * 1983-10-22 1985-05-22 Akzo N.V. Herstellung von Immunogenen bestehend aus an Glykosid enthaltenden Trägern gebundenen Antigenen und/oder antigenen Determinanten

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989001156A1 (en) * 1987-07-31 1989-02-09 Seeger, Wolfgang Process and device for examining whole blood, other body fluids and other biological fluids
EP0331127A1 (de) * 1988-02-29 1989-09-06 Roche Diagnostics GmbH Verfahren zur Herstellung einer Festphasenmatrix
WO1989008259A1 (en) * 1988-02-29 1989-09-08 Boehringer Mannheim Gmbh Process for producing a solid phase matrix
US5268306A (en) * 1988-02-29 1993-12-07 Boehringer Mannheim Gmbh Preparation of a solid phase matrix containing a bound specific binding pair
US6291169B1 (en) 1988-10-17 2001-09-18 Molecular Devices Corporation Hapten derivatized capture membrane and diagnostic assays using such membrane
US5888728A (en) * 1988-10-17 1999-03-30 Molecular Devices Corporation Hapten derivatized capture membrane and diagnostic assays using such membrane
EP0374778A2 (de) * 1988-12-19 1990-06-27 Roche Diagnostics GmbH Verfahren zur Proteinimmobilisierung an einer Festphase, so hergestellte Protein tragende Festphase sowie deren Verwendung
US5310885A (en) * 1988-12-19 1994-05-10 Boehringer Mannheim Gmbh Process for immobilizing a protein containing substance on a solid phase
EP0374778A3 (de) * 1988-12-19 1991-10-09 Roche Diagnostics GmbH Verfahren zur Proteinimmobilisierung an einer Festphase, so hergestellte Protein tragende Festphase sowie deren Verwendung
EP0394819A2 (de) * 1989-04-25 1990-10-31 Roche Diagnostics GmbH Spezifische Antikörper gegen Troponin T, ihre Herstellung und Verwendung in einem Reagenz zur Bestimmung von Herzmuskelnekrosen
US6333397B1 (en) 1989-04-25 2001-12-25 Roche Diagnostics Gmbh Monoclonal antibodies to troponin T and their production
EP0394819A3 (de) * 1989-04-25 1991-02-06 Roche Diagnostics GmbH Spezifische Antikörper gegen Troponin T, ihre Herstellung und Verwendung in einem Reagenz zur Bestimmung von Herzmuskelnekrosen
US5212063A (en) * 1989-05-09 1993-05-18 Boehringer Mannheim Gmbh Ligand trap useful in immunoassays of biotin or free biotin containing samples and improved immunoassays using these ligand traps
EP0397113A3 (de) * 1989-05-09 1991-05-29 Roche Diagnostics GmbH Verfahren zum Nachweis spezifisch bindefähiger Substanzen in Körperflüssigkeiten
EP0397113A2 (de) * 1989-05-09 1990-11-14 Roche Diagnostics GmbH Verfahren zum Nachweis spezifisch bindefähiger Substanzen in Körperflüssigkeiten
US5270193A (en) * 1989-10-27 1993-12-14 E. I. Dupont De Nemours And Company Immobilization of biomolecules on perfluorocarbon surfaces
WO1991008482A1 (en) * 1989-12-01 1991-06-13 Unilever Plc Antibody variable domain conjugates
WO1991010139A1 (de) * 1989-12-27 1991-07-11 Boehringer Mannheim Gmbh Verfahren zum nachweis von malignen erkrankungen
EP0471345A1 (de) 1990-08-14 1992-02-19 Roche Diagnostics GmbH Bestimmung von biogenen Aminen
WO1992003732A2 (en) * 1990-08-28 1992-03-05 Bioprobe International, Inc. Compositions and methods for enhanced binding in biological assays
WO1992003732A3 (en) * 1990-08-28 1992-04-16 Bioprobe Int Inc Compositions and methods for enhanced binding in biological assays
US6592871B1 (en) 1991-07-04 2003-07-15 Roche Diagnostics Gmbh HCV peptide antigens and methods for the determination of HCV
US6183949B1 (en) 1991-07-04 2001-02-06 Roche Diagnostics Gmbh HCV peptide antigens and methods for the determination of HCV
US5674676A (en) * 1992-08-07 1997-10-07 Boehringer Mannheim Gmbh HCV peptide antigens and method of determining HCV
EP0620439A3 (en) * 1993-04-16 1995-10-25 Boehringer Mannheim Gmbh Method of determining the binding of transcription factors to nucleic acids.
EP0620439A2 (de) * 1993-04-16 1994-10-19 Roche Diagnostics GmbH Verfahren zur Bestimmung der Bindung von Transkriptionsfaktoren an Nukleinsäuren
DE4313975A1 (de) * 1993-04-28 1994-11-03 Cytech Biomedical Inc Immunisierungsmittel und Affinitätschromatographie-Trägermaterial
WO1995017668A1 (de) * 1993-12-21 1995-06-29 Boehringer Mannheim Gmbh Acylierte proteinaggregate und deren verwendung zur entstörung von immunoassays
US5658725A (en) * 1993-12-21 1997-08-19 Boehringer Mannheim Gmbh Acylated protein aggregates and their use in suppressing interference in immunoassays
WO1995017427A1 (de) * 1993-12-21 1995-06-29 Boehringer Mannheim Gmbh Acylierte proteinaggregate und deren verwendung zur signalsteigerung in einem immunoassay zum nachweis von antikörpern
EP0799890A2 (de) 1996-04-01 1997-10-08 Roche Diagnostics GmbH Rekombinante inaktive Core-Streptavidin Mutanten

Also Published As

Publication number Publication date
ZA878824B (en) 1989-04-26
CA1302245C (en) 1992-06-02
AU592910B2 (en) 1990-01-25
US5061640A (en) 1991-10-29
CN1032164C (zh) 1996-06-26
ES2054648T3 (es) 1994-08-16
JPS63142268A (ja) 1988-06-14
ATE86743T1 (de) 1993-03-15
DE3640412A1 (de) 1988-06-09
AU8169587A (en) 1988-06-02
DD279741A5 (de) 1990-06-13
GR3007910T3 (de) 1993-08-31
EP0269092B1 (de) 1993-03-10
DE3784638D1 (de) 1993-04-15
CN87107982A (zh) 1988-06-15
KR910002543B1 (ko) 1991-04-23
KR890002227A (ko) 1989-04-10
JPH0731205B2 (ja) 1995-04-10
EP0269092A3 (en) 1990-01-24

Similar Documents

Publication Publication Date Title
EP0269092B1 (de) Verfahren zur Bestimmung einer spezifisch bindefähigen Substanz
DE3435744C2 (de) Trägermaterial zur Verwendung für Immunbestimmungen
EP0280211B1 (de) Verfahren zur Bestimmung von Antikörpern
EP0397113B1 (de) Verfahren zum Nachweis spezifisch bindefähiger Substanzen in Körperflüssigkeiten
DE2738183A1 (de) Laenglicher hohler behaelter fuer immunochemische und enzymatische methoden
EP0407904B1 (de) Verfahren zur Bestimmung eines Analyten
DE3905505A1 (de) Polymere igg-derivate zur kompensation von stoerfaktoren in immunoassays
EP0374778A2 (de) Verfahren zur Proteinimmobilisierung an einer Festphase, so hergestellte Protein tragende Festphase sowie deren Verwendung
EP0408078B1 (de) Verfahren zur Herstellung einer mit einer immunologisch aktiven Substanz beschichteten Festphasenmatrix
JPH0322944B2 (de)
DE3433652A1 (de) Immunchemisches messverfahren fuer haptene und proteine
EP0185372B1 (de) Verfahren zur Herstellung eines immunreaktiven porösen Trägermaterials
JPH01114758A (ja) パパインを含まない抗体フラグメント調製物の製造方法
WO1996014338A1 (de) RHEUMAFAKTOR-ENTSTÖRUNG MIT ANTI-Fd-ANTIKÖRPERN
EP0344578B1 (de) Verfahren zur Bestimmung einer immunologisch nachweisbaren Substanz und dazu geeignetes Reaktionsgefäss
EP0331127B1 (de) Verfahren zur Herstellung einer Festphasenmatrix
EP0322813A2 (de) Verfahren zur Bestimmung einer immunologisch aktiven Substanz
DE19811196C2 (de) Verwendung von Anti-Creatinin-Antikörpern oder anderen Creatinin bindenden Substanz en zur Bestimmung von Creatinin in physiologischen Flüssigkeiten und Verfahren zu ihrer Herstellung
WO1998055864A2 (de) Streptavidin/avidin beschichtete oberflächen
DE3400027A1 (de) Verfahren zur bestimmung eines polyvalenten antigens und reagenz hierfuer
EP1525475A2 (de) Sensoroberfl che mit verbessertem signal/rausch-verh lt nis
DE3901638C2 (de) Verfahren zur Bestimmung einer immunologisch nachweisbaren Substanz und dazu geeignetes Reaktionsgefäß
DE3321629A1 (de) Traeger zur immunochemischen bestimmung und messreagentien unter verwendung derselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910726

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 86743

Country of ref document: AT

Date of ref document: 19930315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3784638

Country of ref document: DE

Date of ref document: 19930415

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930318

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3007910

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EPTA Lu: last paid annual fee
26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2054648

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 87117411.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19951128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960101

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960109

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961130

BERE Be: lapsed

Owner name: BOEHRINGER MANNHEIM G.M.B.H.

Effective date: 19961130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970601

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3007910

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970601

EUG Se: european patent has lapsed

Ref document number: 87117411.6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061004

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061005

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061026

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061103

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061116

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 20

Ref country code: DE

Payment date: 20061130

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20071124

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20071126