EP0253323B2 - Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation - Google Patents

Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation Download PDF

Info

Publication number
EP0253323B2
EP0253323B2 EP87109974A EP87109974A EP0253323B2 EP 0253323 B2 EP0253323 B2 EP 0253323B2 EP 87109974 A EP87109974 A EP 87109974A EP 87109974 A EP87109974 A EP 87109974A EP 0253323 B2 EP0253323 B2 EP 0253323B2
Authority
EP
European Patent Office
Prior art keywords
weight
stp
metasilicate
water
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87109974A
Other languages
English (en)
French (fr)
Other versions
EP0253323A2 (de
EP0253323B1 (de
EP0253323A3 (en
Inventor
Jochen Dr. Jacobs
Martin Dr. Witthaus
Theodor Dr. Altenschöpfer
Peter Dr. Jeschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39345497&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0253323(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to AT87109974T priority Critical patent/ATE62931T1/de
Publication of EP0253323A2 publication Critical patent/EP0253323A2/de
Publication of EP0253323A3 publication Critical patent/EP0253323A3/de
Publication of EP0253323B1 publication Critical patent/EP0253323B1/de
Application granted granted Critical
Publication of EP0253323B2 publication Critical patent/EP0253323B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites

Definitions

  • An essential component of commercially available cleaners for use in machine cleaning processes - for example in the known dishwashers used in the household - are to date generally sodium metasilicate mixed with sodium tripolyphosphate (also called pentasodium triphosphate and hereinafter referred to as STP).
  • STP sodium tripolyphosphate
  • soda and water glass as well as further components for strengthening the granulating and cleaning effect are used as further components.
  • the mixtures of substances exist as free-flowing agglomerates. whereby a number of requirements are placed on the product properties.
  • the substance mixtures are generally strongly alkaline and therefore irritating to the respiratory tract. Accordingly, the occurrence of dust in the product, as would be expected when using powdered raw materials, must be avoided. Furthermore, products of this type with high fines in the dishwasher's washing-in box tend to clump when water enters, so that a sufficiently short washing-in time is no longer guaranteed.
  • the bulk density should be above 900 g / l to enable the product quantity required for the cleaning cycle to be filled into the dispenser box without problems. Since the free-flowing agglomerates contain water, it must be ensured when processing the recipe that the water remains largely crystalline in order to prevent caking of the granules during storage.
  • Today's commercial cleaners are manufactured according to two process variants, namely either by mixing granulation or by mixing granular dust-free raw materials.
  • the mixed granulation in the presence of water has a number of difficulties which require careful control of the process.
  • various components of the mixture of substances in particular STP, anhydrous metasilicate and soda
  • STP sulfur trioxide
  • anhydrous metasilicate and soda compete for the binding of the available free water.
  • the thermodynamically most stable composition may only be achieved when the raw material properties are not constant or the process conditions are not exactly adhered to when the products are stored.
  • the migration of the water required for this is generally accompanied by a clumping of the product.
  • the formulation flexibility of the mixed granulation process is also relatively low, and in particular in a very specific direction:
  • the use of soda and water glass as a granulation aid is necessary without these components making a significant contribution to the effectiveness of the cleaning formulation.
  • the invention is based on the task of using granular detergent formulation with good flowability, good washability and good storage stability using inexpensive raw materials while reducing the disadvantages of water-wet mixed granulation.
  • the invention also intends to use finely crystalline zeolite NaA in addition to or instead of STP and to use other components, for. B. of cleaning boosters - enable.
  • the solution to the problem according to the invention was found by using a preferably continuous compression of a pulverulent premix of the desired constituents in the nip of a pair of two oppositely running press rolls with subsequent comminution of the resulting plate-shaped compacted material.
  • the invention relates in a first embodiment to a process for the production of granular, free-flowing alkaline cleaning agents based on sodium metasilicate in intimate admixture with STP and / or finely crystalline zeolite NaA as reinforcing builders and, if desired, further auxiliaries for improved granulation and / or Cleaning action by means of a mixing process, in which the starting components of the substance mixture are mixed together in powder form, this substance mixture is compacted in the nip under increased pressure and the resulting compactate is crushed to the desired grain size with the proviso that the total water is added as bound water from the outset during the mixing .
  • the invention relates to granular, in particular free-flowing, alkaline cleaning agents of the type mentioned, which have been produced by the process described here.
  • the material to be granulated is passed under pressure through the gap of a pair of two rollers running in opposite directions at approximately the same peripheral speed, and is compressed into a plate-shaped material to be pressed.
  • This plate-like or band-shaped pressed material which is also referred to as "Schülpenband”
  • Schommpenband is then subjected to a comminution process and thereby granulated material of the desired grain size and grain distribution is obtained.
  • the comminution of the plate or band-shaped material can be done in a mill.
  • the comminuted material is then expediently fed to a screening process. Material which is too coarse is separated off and returned to the comminution device, while material which is too fine is added to the batch of the powdery material to be mixed and again fed to the compacting in the roll gap.
  • the roller compression can take place without or with a pre-compression of the premixed powdery material.
  • the pair of rollers can be arranged in any spatial direction, in particular thus vertically or horizontally to one another.
  • the powdery material is then either by gravity filling or by means of a suitable device, for. B. fed to the nip by means of a stuffing screw.
  • the press pressure in the nip and the dwell time of the material in the area of the press pressure are to be set so high that a well-formed, hard, high-density band is produced.
  • the high degree of compaction is to be striven for in order to set the desired bulk weights of the free-flowing material ultimately obtained, which should be above 900 g / l.
  • the abrasion stability of the granules is also influenced by the degree of compaction; high degrees of compaction lead to abrasion-stable granules, which in turn are desirable.
  • excessive pressures impair the process reliability, since when used the material is plasticized on the rollers and leads to sticking. This undesirable effect occurs when an increase in the pressing pressure no longer causes further compression of the material and the additional force that is now added predominantly causes the heating and plasticization of the material - for example, by partial melting of water-containing components, in particular water-containing metasilicate.
  • the optimum pressing force to be used depends on the recipe. Usually, according to the invention, a specific pressing force in the range from about 15 to 30 kN / cm roller length is used in the nip, the range from about 20 to 25 kN / cm roller length being particularly preferred.
  • the solid densities set in the compactate are preferably at least about 1.7 g / cm 3. Corresponding solid densities of at least about 1.8 to over 2 g / cm 3 are particularly suitable.
  • the optimal density value to be set depends to a certain extent on the recipe.
  • the ability of the granules to be flushed in - determined as the flushing time of a predetermined amount of material in a test apparatus - is favored by higher compression pressures and thus by higher solids densities and not deteriorated.
  • fillings made of harder particles tend to clump less and also form fewer fines during the flushing-in process, so that an unimpeded flow of water through the fill is promoted here.
  • the setting of the thickness of the plate-like or band-shaped compact is important in order to achieve the desired high bulk densities of the finally granulated free-flowing cleaning agents. If the selected bowl thickness is significantly smaller than the desired upper grain limit of the granulated product to be produced, platelet-shaped particles are obtained during the comminution of the initially obtained plate-shaped compactate, which lead to fillings with a high void volume and therefore a comparatively low bulk density. At higher compactate thicknesses, however, particles are obtained in the subsequent comminution, the dimensions of which can approximate the desired ratio of 1: 1: 1.
  • Such a grain shape leads to denser fillings, the void volume of which is a maximum of about 50%. Although this value is still relatively high in comparison to fillings made from spherical particles - the usual corresponding values are around 35 to 45% - however, a slightly higher void volume can also bring advantages in the sense of the inventive action. This clearly favors the flushing process in the sense of an unimpeded flow of water through the fill.
  • the chip granulate obtained in the process according to the invention after the pulp belt has been comminuted can be deformed even further.
  • the primary one Splinter granules are subjected to a surface abrasion of corners and edges and thus in particular the bulk density of the granular material is increased again or the empty space volume is reduced accordingly.
  • the primary granulate can be rolled on rotating disks which have a corrugation on their upper side. If necessary, an undesirable fine fraction is then separated off again and again fed to the compacting in the roll gap.
  • the desired upper grain limit in the finished free-flowing agglomerate is in the range of about 1.6 to 2 mm, while fine fractions below about 0.2 mm are undesirable.
  • the preferred free-flowing agglomerates accordingly show a broad grain size range in the range from about 0.2 to 2 mm.
  • the void volume should not make up significantly more than about 50%, but can be less than 50%.
  • the layer thickness here is preferably at least about 2 mm. Layer thicknesses of the compactate in the range of approximately 4 to 8 mm and in particular in the range of approximately 5 to 6 mm can be particularly preferred.
  • the essential components of the cleaner mixtures produced in the process according to the invention contain sodium metasilicate in intimate admixture with the framework-forming STP and / or zeolite NaA.
  • the mixture of substances has a certain water content, which is exclusively in the form of hydrate or. Crystal water is present.
  • additives such as soda and / or water glass or cleaning-enhancing additives can be present in a mixture.
  • Metasilicate is generally present in amounts from 20 to 75% by weight and preferably from about 35 to 65% by weight of the total mixture. Amounts of metasilicate in the range from about 40 to 60% by weight can be particularly suitable.
  • the metasilicate can be used in the powdered feed material as an anhydrous product and / or in the form of hydrated phases with certain predetermined and / or varying amounts of hydrated water contents. Suitable metasilicate phases containing water of hydration are known to be corresponding products with 5 or 9 water of crystallization, with particular importance being attached to the corresponding metasilicate with 5 water of crystallization.
  • Anhydrous metasilicate (KO) and metasilicate containing water of crystallization, in particular a corresponding product with 5 water of crystallization (K5), can be used in preferred embodiments of the invention in the feed material in mixing ratios of 5: 1 to 1: 5 and in particular in mixing ratios of 3: 1 to 1: 3 .
  • the framework substances are STP and / or zeolite NaA.
  • the amount of these builder substances (anhydrous) is usually in the range from about 20 to 50% by weight, preferably in the range from about 25 to 40% by weight, based on the total mixture.
  • STP can only - d. H. in the absence of zeolite NaA - find use, but it is also possible to replace the STP portion in any mixing ratio by using fine crystalline zeolite NaA - in particular corresponding detergent quality material - in one embodiment of the invention the complete replacement of STP provided by NaA zeolite.
  • the water content of the finished granules is generally 8 to 25% by weight and is in particular in the range of approximately 10 to 20% by weight.
  • the total water is added from the start as bound water as part of the premixing.
  • Soda and / or water glass can be used in particular as agglomeration aids and / or as additional alkalizing agents.
  • the amount of soda is generally not more than 20% by weight and in particular not more than 10% by weight, based on the total mixture.
  • the amount of water glass used is generally not more than 10% by weight and in particular not more than 7% by weight.
  • water glass N with a Na2O / SiO2 ratio of 1: 3.35 or water glass A with a corresponding ratio of 1: 2 is considered here.
  • auxiliaries that can be used in particular for the purpose of cleaning enhancement include, for example, solubility-improving substances such as sodium acetate or sodium citrate, foam inhibitors, e.g. B. the paraffin foam brakes known from detergent or cleaning agent chemistry, surfactants with washing or cleaning activity.
  • Chlorine carriers such as trichloroisocyanuric acid, cleaning enhancers, e.g. B. n-octanol components with complex binding ability such as phosphonobutane tricarboxylic acid and the like.
  • the sum of all these additional auxiliaries generally makes up no more than about 10% by weight and preferably no more than 7% by weight.
  • sensitive substances for example the chlorine carriers mentioned, can also be added to the finished product only after the compaction and subsequent comminution.
  • the STP portion of the recipe can be used as an STP prehydrate with different water contents or as a non-hydrated STP.
  • products in which non-hydrated STP has been used show better flushability compared to granules based on STP prehydrates with comparable total water contents of the recipe.
  • Cleaners previously available contain STP as partial hydrate or as hexahydrate.
  • this finely crystalline material is added as part of an STP prehydrate obtained by hydrating STP with an aqueous suspension containing zeolite NaA.
  • Fine crystalline zeolite NaA can also be used as such or as a spray-dried material.
  • Comparatively higher levels of zeolite NaA can impair the flushability of the agglomerate according to the invention.
  • the induction behavior can be improved again by using water-containing metasilicates.
  • the process according to the invention is thus superior to the previously known water-moist granulation in which water-containing metasilicates cannot readily be used. In the stated manner, products with satisfactory wash-in properties can be obtained even at high zeolite contents.
  • the measure mentioned at the outset is to be promoted by using the higher compression pressures within the scope desired according to the invention.
  • this wide range of work and variation options makes it possible to produce cleaning agents of the type concerned here, which are characterized by an optimal combination of parameters in all desired product properties.
  • the simple and safe manufacture of such optimal products is guaranteed by the method according to the invention and is easily accessible. All in all, a substantial improvement is achieved in comparison with the technical possibilities available up to now.
  • An essential component of commercially available cleaners for use in machine cleaning processes - for example in the known dishwashers used in the household - are to date generally sodium metasilicate mixed with sodium tripolyphosphate (also called pentasodium triphosphate and hereinafter referred to as STP).
  • STP sodium tripolyphosphate
  • soda and water glass as well as further components for strengthening the granulating and / or cleaning effect are used as further components.
  • the mixtures of substances exist as free-flowing agglomerates, whereby a number of requirements are placed on the product properties.
  • the substance mixtures are generally strongly alkaline and therefore irritating to the respiratory tract. Accordingly, the occurrence of dust in the product, as would be expected when using powdered raw materials, must be avoided. Furthermore, products of this type with high fines in the dishwasher's washing-in box tend to clump when water enters, so that a sufficiently short washing-in time is no longer guaranteed.
  • the bulk density should be above 900 g / l to enable the product quantity required for the cleaning cycle to be filled into the dispenser box without problems. Since the free-flowing agglomerates contain water, it must be ensured when processing the recipe that the water remains largely crystalline in order to prevent caking of the granules during storage.
  • Today's commercial cleaners are manufactured according to two process variants, namely either by mixing granulation or by mixing granular dust-free raw materials.
  • thermodynamically most stable composition may only be achieved when the raw material properties are not constant or the process conditions are not exactly adhered to when the products are stored. The migration of the water required for this is generally accompanied by a clumping of the product.
  • the formulation flexibility of the mixed granulation process is also relatively low, and in particular in a very specific direction:
  • the use of soda and water glass as a granulation aid is necessary without these components making a significant contribution to the effectiveness of the cleaning formulation.
  • the invention is based on the task of using granular detergent formulation with good flowability, good washability and good storage stability using inexpensive raw materials while reducing the disadvantages of water-wet mixed granulation.
  • the invention also intends to use finely crystalline zeolite NaA in addition to or instead of STP and to use other components, for. B. of cleaning boosters - enable.
  • the solution to the problem according to the invention was found by using a preferably continuous compression of a pulverulent premix of the desired constituents in the nip of a pair of two oppositely running press rolls with subsequent comminution of the resulting plate-shaped compacted material.
  • the invention relates in a first embodiment to a process for the production of granular, free-flowing alkaline cleaning agents based on sodium metasilicate in intimate admixture with STP and / or finely crystalline zeolite NaA as reinforcing builders and, if desired, further auxiliaries for improved granulation and / or Cleaning effect by means of a mixing process, the hallmark of the new process being that the starting components of the mixture of substances in powder form are mixed with one another, this mixture of substances is compacted in the nip under increased pressures and the resulting compact is comminuted to the desired particle size.
  • the invention relates to granular, in particular free-flowing, alkaline cleaning agents of the type mentioned, which have been produced by the process described here.
  • the material to be granulated is passed under pressure through the gap of a pair of two rollers running in opposite directions at approximately the same peripheral speed, and is compressed into a plate-shaped material to be pressed.
  • This plate-like or band-shaped pressed material which is also referred to as "Schülpenband”
  • Schommpenband is then subjected to a comminution process and thereby granulated material of the desired grain size and grain distribution is obtained.
  • the comminution of the plate or band-shaped material can be done in a mill.
  • the comminuted material is then expediently fed to a screening process. Material which is too coarse is separated off and returned to the comminution device, while material which is too fine is added to the batch of the powdery material to be mixed and again fed to the compacting in the roll gap.
  • the roller compression can take place without or with a pre-compression of the premixed powdery material.
  • the pair of rollers can be arranged in any spatial direction, in particular thus vertically or horizontally to one another.
  • the powdery material is then either by gravity filling or by means of a suitable device, for. B. fed to the nip by means of a stuffing screw.
  • the press pressure in the nip and the dwell time of the material in the area of the press pressure are to be set so high that a well-formed, hard, high-density band is produced.
  • the high degree of compaction is to be striven for in order to set the desired bulk weights of the free-flowing material ultimately obtained, which should be above 900 g / l.
  • the abrasion stability of the granules is also influenced by the degree of compaction; high degrees of compaction lead to abrasion-stable granules, which in turn are desirable.
  • excessive pressures impair the process reliability, since when used the material is plasticized on the rollers and leads to sticking. This undesirable effect occurs when an increase in the pressing pressure no longer causes further compression of the material and the additional force that is now added predominantly causes the heating and plasticization of the material - for example, by partial melting of water-containing components, in particular water-containing metasilicate.
  • the optimum pressing force to be used depends on the recipe. Usually, according to the invention, a specific pressing force in the range from about 15 to 30 kN / cm roller length is used in the nip, the range from about 20 to 25 kN / cm roller length being particularly preferred.
  • the solid densities set in the compactate are preferably at least about 1.7 g / cm 3. Corresponding solid densities of at least about 1.8 to over 2 g / cm 3 are particularly suitable.
  • the optimal density value to be set depends to a certain extent on the recipe.
  • the ability of the granules to be flushed in - determined as the flushing time of a predetermined amount of material in a test apparatus - is favored by higher compression pressures and thus by higher solids densities and not deteriorated.
  • fillings made of harder particles tend to clump less and also form fewer fines during the flushing-in process, so that an unimpeded flow of water through the fill is promoted here.
  • the setting of the thickness of the plate-like or band-shaped compact is important in order to achieve the desired high bulk densities of the finally granulated free-flowing cleaning agents. If the selected bowl thickness is significantly smaller than the desired upper grain limit of the granulated product to be produced, platelet-shaped particles are obtained during the comminution of the initially obtained plate-shaped compactate, which lead to fillings with a high void volume and therefore a comparatively low bulk density. At higher compactate thicknesses, however, particles are obtained in the subsequent comminution, the dimensions of which can approximate the desired ratio of 1: 1: 1.
  • Such a grain shape leads to denser fillings, the void volume of which is a maximum of about 50%. Although this value is still relatively high in comparison to fillings made from spherical particles - the usual corresponding values are around 35 to 45% - however, a slightly higher void volume can also bring advantages in the sense of the inventive action. This clearly favors the flushing process in the sense of an unimpeded flow of water through the fill.
  • the chip granulate obtained in the process according to the invention after the pulp belt has been comminuted can be deformed even further.
  • the primary one Splinter granules are subjected to a surface abrasion of corners and edges and thus in particular the bulk density of the granular material is increased again or the empty space volume is reduced accordingly.
  • the primary granulate can be rolled on rotating disks which have a corrugation on their upper side. If necessary, an undesirable fine fraction is then separated off again and again fed to the compacting in the roll gap.
  • the desired upper grain limit in the finished free-flowing agglomerate is in the range of about 1.6 to 2 mm, while fine fractions below about 0.2 mm are undesirable.
  • the preferred free-flowing agglomerates accordingly show a broad grain size range in the range from about 0.2 to 2 mm.
  • the void volume should not make up significantly more than about 50%, but can be less than 50%.
  • the layer thickness here is preferably at least about 2 mm. Layer thicknesses of the compactate in the range of approximately 4 to 8 mm and in particular in the range of approximately 5 to 6 mm can be particularly preferred.
  • the essential components of the cleaner mixtures produced in the process according to the invention contain sodium metasilicate in intimate admixture with the framework-forming STP and / or zeolite NaA.
  • the mixture of substances has a certain water content which is predominantly or exclusively in the form of hydrate or. Water of crystallization can be present.
  • additives such as soda and / or water glass or cleaning-enhancing additives can be present in a mixture.
  • Metasilicate is generally present in amounts from 20 to 75% by weight and preferably from about 35 to 65% by weight of the total mixture. Amounts of metasilicate in the range from about 40 to 60% by weight can be particularly suitable.
  • the metasilicate can be used in the powdered feed material as an anhydrous product and / or in the form of hydrated phases with certain predetermined and / or varying amounts of hydrated water contents. Suitable metasilicate phases containing water of hydration are known to be corresponding products with 5 or 9 water of crystallization, with particular importance being attached to the corresponding metasilicate with 5 water of crystallization.
  • Anhydrous metasilicate (KO) and metasilicate containing water of crystallization, in particular corresponding product with 5 water of crystallization (K5), can be used in preferred embodiments of the invention in the feed material in mixing ratios of 5: 1 to 1: 5 and in particular in mixing ratios of 3: 1 to 1: 3 .
  • the framework substances are STP and / or zeolite NaA.
  • the amount of these builder substances (anhydrous) is usually in the range from about 20 to 50% by weight, preferably in the range from about 25 to 40% by weight, based on the total mixture.
  • STP can only - d. H. in the absence of zeolite NaA - find use, but it is also possible to replace the STP portion in any mixing ratio by using fine crystalline zeolite NaA - in particular corresponding detergent quality material - in one embodiment of the invention the complete replacement of STP provided by NaA zeolite.
  • the water content of the finished granules is generally 8 to 25% by weight and is in particular in the range of approximately 10 to 20% by weight.
  • the total water can be added from the start as bound water as part of the premixing, but it is also possible to add aqueous phase to the powdery starting mixture or to individual components of this starting mixture to adjust the overall desired final water content in the product.
  • Soda and / or water glass can be used in particular as agglomeration aids and / or as additional alkalizing agents.
  • the amount of soda is generally not more than 20% by weight and in particular not more than 10% by weight, based on the total mixture.
  • the amount of water glass used is generally not more than 10% by weight and in particular not more than 7% by weight.
  • the use of water glass N with a Na2O / SiO2 ratio of 1: 3.35 or water glass A with a corresponding ratio of 1: 2 comes into consideration here.
  • auxiliaries that can be used in particular for the purpose of cleaning enhancement include, for example, solubility-improving substances such as sodium acetate or sodium citrate, foam inhibitors, e.g. B. the paraffin foam brakes known from detergent or cleaning agent chemistry, surfactants with washing or cleaning activity, chlorine carriers such as trichloroisocyanuric acid, cleaning enhancers, e.g. B. n-octanol components with complex binding ability such as phosphonobutane tricarboxylic acid and the like.
  • solubility-improving substances such as sodium acetate or sodium citrate
  • foam inhibitors e.g. B. the paraffin foam brakes known from detergent or cleaning agent chemistry
  • surfactants with washing or cleaning activity e.g. B. the paraffin foam brakes known from detergent or cleaning agent chemistry
  • chlorine carriers such as trichloroisocyanuric acid
  • cleaning enhancers e.g. B. n-octanol components with complex binding
  • the STP portion of the recipe can be used as an STP prehydrate with different water contents or as a non-hydrated STP.
  • products in which non-hydrated STP has been used show better flushability compared to granules based on STP prehydrates with comparable total water contents of the recipe.
  • Cleaners previously available contain STP as partial hydrate or as hexahydrate.
  • this finely crystalline material is added as part of an STP prehydrate obtained by hydrating STP with an aqueous suspension containing zeolite NaA.
  • Fine crystalline zeolite NaA can also be used as such or as a spray-dried material.
  • Comparatively higher levels of zeolite NaA can impair the flushability of the agglomerate according to the invention.
  • the induction behavior can be improved again by using water-containing metasilicates.
  • the process according to the invention is thus superior to the previously known water-moist granulation in which water-containing metasilicates cannot readily be used. In the stated manner, products with satisfactory wash-in properties can be obtained even at high zeolite contents.
  • the measure mentioned at the outset is to be promoted by using the higher compression pressures within the scope desired according to the invention.
  • this wide range of work and variation options makes it possible to produce cleaning agents of the type concerned here, which are characterized by an optimal combination of parameters in all desired product properties.
  • the simple and safe manufacture of such optimal products is guaranteed by the method according to the invention and is easily accessible. All in all, a substantial improvement is achieved in comparison with the technical possibilities available up to now.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

    Beschreibung für die Vertragsstaaten: AT, BE, CH, DE, FR, GB, IT, LI, NL
  • Wesentlicher Bestandteil handelsüblicher Reiniger für den Einsatz in maschinellen Reinigungsprozessen - beispielsweise in den bekannten, im Haushalt eingesetzten Geschirrspülmaschinen - sind bis heute im allgemeinen Natriummetasilikat in Abmischung mit Natriumtripolyphosphat (auch als Pentanatriumtriphosphat und im folgenden mit STP bezeichnet). Als weitere Komponenten werden insbesondere Soda und Wasserglas sowie weitere Komponenten zur Verstärkung der Granulierund oder Reinigungswirkung eingesetzt. Die Stoffgemische liegen als rieselfähige Agglomerate vor. wobei eine Reihe von Anforderungen an die Produkteigenschaften gestellt werden.
  • Die Stoffgemische sind im allgemeinen stark alkalisch und damit atemwegreizend. Dementsprechend ist das Auftreten von Staubanteilen im Produkt, wie es beim Einsatz pulverförmiger Rohstoffe zu erwarten wäre, unbedingt zu vermeiden. Weiterhin neigen Produkte dieser Art mit hohen Feinanteilen im Einspülkästchen der Geschirrspülmaschine bei Wasserzutritt zum Verklumpen, so daß eine ausreichend kurze Einspülzeit nicht mehr gewährleistet ist.
  • Neben Einspülbarkeit und Staubfreiheit sind weitere wichtige Beurteilungskriterien das Schüttgewicht und die Lagerstabilität der Reiniger. Das Schüttgewicht sollte oberhalb von 900 g/l liegen, um eine problemlose Einfüllung der für den Reinigungsgang erforderlichen Produktmenge in das Einspülkästchen zu ermöglichen. Da die rieselfähigen Agglomerate wasserhaltig sind, muß bei der Verarbeitung der Rezeptur sichergestellt werden, daß das Wasser weitgehend kristallin gebunden bleibt, um einem Verbacken der Granulate bei Lagerung vorzubeugen.
  • Marktübliche Reiniger werden heute nach zwei Verfahrensvarianten hergestellt, nämlich entweder durch Mischgranulation oder durch Aufmischung gekörnter staubfreier Rohstoffe.
  • Die Mischgranulation in Gegenwart von Wasser weist eine Reihe von Erschwemissen auf, die eine sorgfältige Steuerung des Verfahrens erforderlich machen. Bei der wasserfeuchten Granulation konkurrieren verschiedene Komponenten des Stoffgemisches (insbesondere STP, wasserfreies Metasilikat und Soda) um die Bindung des vorhandenen freien Wassers. Die thermodynamisch stabilste Zusammensetzung wird unter Umständen bei nicht konstanten Rohstoffeigenschaften oder nicht exakt eingehaltenen Verfahrensbedingungen erst bei Lagerung der Produkte erreicht. Die hierzu erforderliche Wanderung des Wassers ist im allgemeinen von einer Verklumpung des Produktes begleitet.
  • Auch die Rezepturflexibilität des Mischgranulierverfahrens ist relativ gering, und zwar insbesondere in einer ganz bestimmten Richtung: Der Ersatz größerer Anteile des STP durch den aus Gründen des Umweltschutzes erwünschten feinkristallinen Zeolith NaA macht Schwierigkeiten. Es werden hier insbesondere häufig zu leichte Produkte mit nicht zufriedenstellenden Einspüleigenschaften erhalten. Bei der Mischgranulation in entsprechenden Vorrichtungen mit hohem Energieeintrag, beispielsweise im bekannten Lödige-Mischer, treten Anklebungen an den Mischerwänden auf, die eine regelmäßige Reinigung des Mischers erforderlich machen. Der Einsatz von Soda und Wasserglas als Granulierhilfsmittel ist erforderlich, ohne daß diese Komponenten einen wesentlichen Beitrag zur Wirksamkeit der Reinigerrezeptur leisten.
  • Die Herstellung von Mischprodukten nach den Angaben des Standes der Technik vermeidet zwar zum Teil die zuvor aufgeführten Nachteile der Mischgranulation, es ist aber bis heute erforderlich, vorgranulierte und damit sehr teure Rohstoffe einzusetzen, um letztlich staubfreie Mischprodukte herzustellen. Die ältere Anmeldung EP-A-0195307 beschreibt ein Verfahren, bei dem sein prähydratisiertes oder wasserfreies Tripolyphosphat vor der Walzenkompaktierung mit einer Menge an Wasser versetzt wird, die maximal zur 100%igen Hydratisierung des Tripolyphosphats zum hexahydrat erforderlich ist.
  • Die Erfindung geht von der Aufgabe aus, unter Verwendung kostengünstiger Rohstoffe bei gleichzeitiger Verminderung der Nachteile der wasserfeuchten Mischgranulation eine granulierte Reinigerrezeptur mit guter Rieselfähigkeit, guter Einspülbarkeit und guter Lagerstabilität herzustellen. Neben der Verarbeitbarkeit bisher üblicher Rezepturen für Mittel der hier angegebenen Art will die Erfindung auch die Verwendung von feinkristallinem Zeolith NaA neben oder anstelle von STP sowie die Mitverwendung weiterer Komponenten - z. B. von Reinigungsverstärkern - ermöglichen.
  • Die Lösung der erfindungsgemäßen Aufgabenstellung wurde durch den Einsatz einer bevorzugt kontinuierlich geführten Verdichtung eines pulverförmigen Vorgemisches der gewünschten Bestandteile im Walzenspalt eines Paares zweier gegensinnig laufender Preßwalzen mit anschließender Zerkleinerung des dabei anfallenden plattenförmigen verdichteten Gutes gefunden.
  • Gegenstand der Erfindung ist dementsprechend in einer ersten Ausführungsform ein Verfahren zur Herstellung von körnigen, rieselfähigen alkalischen Reinigungsmitteln auf Basis von Natriummetasilikat in inniger Abmischung mit STP und/oder feinkristallinem Zeolith NaA als verstärkend wirkenden Gerüststoffen sowie gewünschtenfalls weiteren Hilfsstoffen für eine verbesserte Granulier- und/oder Reinigungswirkung mittels eines Mischverfahrens, wobei man die Ausgangskomponenten des Stoffgemisches in Pulverfrom miteinander vermischt, dieses Stoffgemisch im Walzenspalt unter erhöhten Drucken kompaktiert und das angefallene Kompaktat zur gewünschten Korngröße zerkleinert mit der Maßgabe, daß das Gesamtwasser von vorneherein im Rahmen der Vermischung als gebundenes Wasser zugeführt wird.
  • Die Erfindung betrifft in einer weiteren Ausführungsform körnige, insbesondere freifließende alkalische Reinigungsmittel der genannten Art, die durch das hier beschriebene Verfahren hergestellt worden sind.
  • Im erfindungsgemäßen Verfahren wird insbesondere das zu granulierende Gut unter Preßdruck durch den Spalt eines Paares zweier mit etwa gleicher Umfanggeschwindigkeit gegensinnig laufender Walzen geführt und dabei zu einem plattenförmigen Preßgut verdichtet. Dieses platten- bzw. bandförmige Preßgut, das auch als "Schülpenband" bezeichnet wird, wird anschließend einem Zerkleinerungsverfahren unterworfen und dabei gekörntes Gut der gewünschten Korngröße und Kornverteilung gewonnen. Die Zerkleinerung des platten- bzw. bandförmigen Gutes kann in einer Mühle erfolgen. Zweckmäßigerweise wird das zerkleinerte Material anschließend einem Sichtungsprozeß zugeführt. Zu grobes Material wird abgetrennt und in die Zerkleinerungsvorrichtung rückgeführt, während zu feines Material dem Ansatz des pulverförmigen Mischgutes beigegeben und erneut der Kompaktierung im Walzenspalt zugeführt wird.
  • Die Walzenverpressung kann dabei ohne oder mit einer Vorverdichtung des vorgemischten pulverförmigen Gutes erfolgen. Das Walzenpaar kann dabei in jeder beliebigen Raumrichtung, insbesondere also vertikal oder horizontal zueinander angeordnet sein. Das pulverförmige Gut wird dann entweder durch Schwerkraftfüllung oder mittels einer geeigneten Einrichtung, z. B. mittels einer Stopfschnecke dem Walzenspalt zugeführt.
  • Der Preßdruck im Walzenspalt und die Verweildauer des Materials in dem Bereich des Preßdrukkes sind so hoch einzustellen, daß ein gut ausgebildetes hartes Schülpenband mit hoher Dichte erzeugt wird. Der hohe Verdichtungsgrad ist dabei anzustreben, um die gewünschten Schüttgewichte des letztlich gewonnenen rieselfähigen Gutes einzustellen, die oberhalb von 900 g/l liegen sollen. Auch die Abriebsstabilität der Granulate wird durch den Verdichtungsgrad beeinflußt, hohe Verdichtungsgrade führen zu abriebsstabilen Granulaten, die wiederum erwünscht sind. Dabei muß allerdings beachtet werden, daß zu hohe Preßdrucke die Verfahrenssicherheit beeinträchtigen, da bei ihrem Einsatz das Material auf den Walzen plastifiziert wird und zu Anklebungen führt. Dieser unerwünschte Effekt tritt dann auf, wenn eine Erhöhung des Preßdruckes keine weitere Verdichtung des Materials mehr bewirkt und die jetzt zusätzlich eingetragene Preßkraft vorwiegend die Erwärmung und Plastifizierung des Materials - beispielsweise durch partielles Aufschmelzen wasserhaltiger Bestandteile, insbesondere wasserhaltigen Metasilikats - verursacht.
  • Die jeweils anzuwendende optimale Preßkraft ist dabei rezepturabhängig. Üblicherweise wird erfindungsgemäß im Walzenspalt mit einer spezifischen Preßkraft im Bereich von etwa 15 bis 30 kN/cm Walzenlänge gearbeitet, wobei besonders bevorzugt der Bereich von etwa 20 bis 25 kN/cm Walzenlänge sein kann.
  • Die dabei eingestellten Feststoffdichten im Kompaktat liegen bevorzugt bei wenigstens etwa 1,7 g/cm³. Besonders geeignet sind entsprechende Feststoffdichten von wenigstens etwa 1,8 bis über 2 g/cm³. Auch hier ist der jeweils einzustellende optimale Dichtewert in gewissem Maße rezepturabhängig.
  • Entgegen den Erwartungen wird die Einspülbarkeit der Granulate - bestimmt als die Einspülzeit einer vorgegebenen Materialmenge in einer Testapparatur - durch höhere Preßdrucke und damit durch höhere Feststoffdichten begünstigt und nicht etwa verschlechtert. Offenbar neigen Schüttungen aus härteren Partikeln weniger zum Verklumpen und bilden auch während des Einspülvorganges weniger Feinanteile, so daß hier ein ungehinderter Wasserdurchfluß durch die Schüttung begünstigt wird.
  • Neben der Einstellung optimaler Preßdrucke im Walzenspalt ist zur Erreichung der erwünschten hohen Schüttgewichte der schließlich granulierten rieselfähigen Reinigungsmittel die Einstellung der Dicke des platten- bzw. bandförmigen Kompaktates von Bedeutung. Ist die gewählte Schülpendicke deutlich kleiner als die gewünschte Kornobergrenze des herzustellenden granulierten Produktes, so werden bei der Zerkleinerung des zunächst anfallenden plattenförmigen Kompaktats plättchenförmige Partikel erhalten, die zu Schüttungen mit hohem Leerraumvolumen und daher vergleichsweise geringem Schüttgewicht führen. Bei höheren Kompaktatdicken werden in der anschließenden Zerkleinerung dagegen Partikel erhalten, deren Abmessungen sich dem an sich gewünschten Verhältnis von 1 : 1 : 1 annähern können. Eine solche Kornform führt zu dichteren Schüttungen, deren Leerraumvolumen maximal etwa 50 % beträgt. Zwar ist dieser Wert im Vergleich zu Schüttungen aus kugelähnlichen Teilchen noch immer relativ hoch - dort liegen übliche entsprechende Werte bei etwa 35 bis 45 % - jedoch kann ein etwas höheres Leerraumvolumen im Sinne des erfindungsgemäßen Handelns auch Vorteile mit sich bringen. Hierdurch wird nämlich offenbar der Einspülvorgang begünstigt im Sinne eines ungehinderten Wasserflusses durch die Schüttung.
  • Das im erfindungsgemäßen Verfahren nach der Zerkleinerung des Schülpenbandes anfallende Splittergranulat kann allerdings in einer besonderen Ausführungsform der Erfindung auch noch weiter verformt werden. Hier wird das primär anfallende Splittergranulat einem oberflächlichen Abrieb von Ecken und Kanten unterworfen und damit insbesondere auch das Schüttgewicht des gekörnten Gutes nochmals erhöht bzw. das Leerraumvolumen entsprechend verringert. Zum Zwecke einer solchen Nachbehandlung kann beispielsweise das primär anfallende Splittergranulat auf rotierenden Scheiben gerollt werden, die auf ihrer Oberseite eine Riffelung aufweisen. Falls erforderlich wird anschließend ein unerwünschter Feinanteil nochmal abgetrennt und wiederum der Kompaktierung im Walzenspalt zugeführt.
  • Die im fertigen rieselfähigen Agglomerat angestrebte Kornobergrenze liegt im Bereich von etwa 1,6 bis 2 mm, während andererseits Feinanteile unterhalb etwa 0,2 mm unerwünscht sind. Die bevorzugten rieselfähigen Agglomerate zeigen dementsprechend ein breites Korngrößenspektrum im Bereich von etwa 0,2 bis 2 mm. Das Leerraumvolumen soll in der bevorzugten Ausführungsform nicht wesentlich mehr als etwa 50 % ausmachen, kann aber unter 50 % liegen. Wegen der zuvor angegebenen Abhängigkeit insbesondere des Leerraumvolumens von der Dicke des in der Kompaktierungsstufe hergestellten Vorprodukts wird es bevorzugt, platten-bzw. bandförmige Kompaktate mit einer Schichtdicke von wenigstens etwa 1,5 mm nach dem Walzenspalt herzustellen. Bevorzugt beträgt die Schichtdicke hier wenigstens etwa 2 mm. Schichtdicken des Kompaktats im Bereich von etwa 4 bis 8 mm und insbesondere im Bereich von etwa 5 bis 6 mm können besonders bevorzugt sein.
  • Die im erfindungsgemäßen Verfahren hergestellten Reinigergemische enthalten als wesentliche Komponenten Natriummetasilikat in inniger Abmischung mit dem gerüstbildenden STP und /oder Zeolith NaA. Das Stoffgemisch weist einen gewissen Wassergehalt auf, der ausschließlich in Form von Hydrat-bzw. Kristallwasser vorliegt. Zusätzlich können in Abmischung damit Hilfsstoffe von der Art Soda und/oder Wasserglas bzw. reinigungsverstärkende Hilfsstoffe zugegen sein.
  • Als Rahmenrezepturen sind die folgenden Angaben zu sehen:
    Metasilikat liegt im allgemeinen in Mengen von 20 bis 75 Gew.-% und vorzugsweise von etwa 35 bis 65 Gew.-% des Gesamtgemisches vor. Besonders geeignet können Metasilikatmengen im Bereich von etwa 40 bis 60 Gew.-% sein. Das Metasilikat kann dabei im pulverförmigen Einsatzmaterial als wasserfreies Produkt und/oder in Form hydratisierter Phasen mit bestimmt vorgegebenen und/oder wechselnden Mengen an Hydratwassergehalten Verwendung finden. Geeignete Hydratwasser enthaltende Metasilikatphasen sind bekanntlich entsprechende Produkte mit 5 bzw. 9 Kristallwasser, wobei besondere Bedeutung dem entsprechenden Metasilikat mit 5 Kristallwassern zukommt. Wasserfreies Metasilikat (KO) und Kristallwasserhaltiges Metasilikat, insbesondere entsprechendes Produkt mit 5 Kristallwasser (K5) kann in bevorzugten Ausführungsformen der Erfindung im Einsatzmaterial in Mischungsverhältnissen von 5 : 1 bis 1 : 5 und insbesondere in Mischungsverhältnissen von 3 : 1 bis 1 : 3 verwendet werden.
  • In inniger Abmischung mit dem Metasilikat liegen als Gerüstsubstanzen STP und/oder Zeolith NaA vor. Die Menge dieser Gerüstsubstanzen (wasserfrei) liegt üblicherweise im Bereich von etwa 20 bis 50 Gew.-%, vorzugsweise im Bereich von etwa 25 bis 40 Gew.-%, bezogen auf das Gesamtgemisch. STP kann dabei ausschließlich - d. h. in Abwesenheit von Zeolith NaA - Verwendung finden, es ist aber auch möglich, den STP-Anteil in beliebigen Mischungsverhältnissen durch Einsatz von feinkristallinem Zeolith-NaA - insbesondere entsprechendes Material von Waschmittelqualität - zu ersetzen, wobei in einer Ausführungsform der Erfindung der vollständige Ersatz von STP durch Zeolith NaA vorgesehen ist.
  • Der Wassergehalt des fertigen Granulates beträgt im allgemeinen 8 bis 25 Gew.-% und liegt insbesondere im Bereich von etwa 10 bis 20 Gew.-%. Das Gesamtwasser wird dabei von vorneherein im Rahmen der Vormischung als gebundenes Wasser zugeführt.
  • Insbesondere als Agglomerierhilfsmittel und/oder als zusätzliche Alkalisierungsmittel können Soda und/oder Wasserglas mitverwendet werden. Die Sodamenge beträgt im allgemeinen nicht mehr als 20 Gew.-% und insbesondere nicht mehr als 10 Gew.-%, bezogen auf Gesamtmischung. Die Menge an mitverwendetem Wasserglas macht in der Regel nicht mehr als 10 Gew.-% und insbesondere nicht mehr als 7 Gew.-% aus. In Betracht kommt hier insbesondere die Verwendung von Wasserglas N mit einem, Na₂O/SiO₂-Verhältnis von 1 : 3,35 bzw. Wasserglas A mit einem entsprechenden Verhältnis von 1 : 2.
  • Als sonstige Hilfsmittel, die insbesondere zum Zwecke der Reinigungsverstärkung mitverwendet werden können, sind beispielsweise zu nennen löslichkeitsverbessernde Substanzen wie Natriumacetat oder Natriumcitrat, Schauminhibitoren, z. B. die aus der Wasch- bzw. Reinigungsmittelchemie bekannten Paraffinschaumbremsen, Tenside mit Wasch- bzw.Reinigungsaktivität. Chlorträger wie Trichlorisocyanursäure, Reinigungsverstärker, z. B. n-Octanol Komponenten mit Komplexbindungsfähigkeit wie Phosphonobutantricarbonsäure und dergleichen. Die Summe aller dieser zusätzlichen Hilfsstoffe macht in der Regel nicht mehr als etwa 10 Gew.-% und bevorzugt nicht mehr als 7 Gew.-% aus. Empfindliche Substanzen, beispielsweise die erwähnten Chlorträger können in einer bevorzugten Ausführungsform allerdings auch dem Fertigprodukt erst nach der Kompaktierung und anschließenden zerkleinernden Körnung zugesetzt werden.
  • Der STP-Anteil der Rezeptur kann als STP-Prähydrat mit unterschiedlichen Wassergehalten oder als nichthydratisiertes STP eingesetzt werden. Überraschenderweise zeigen Produkte, bei denen nichthydratisiertes STP eingesetzt wurde im Vergleich zu Granulaten auf Basis von STP-Prähydraten bei vergleichbaren Gesamt-Wassergehalten der Rezeptur bessere Einspülbarkeit. Bisher marktübliche Reiniger enthalten STP als Teilhydrat oder als Hexahydrat.
  • Wird STP teilweise oder vollständig durch Zeolith NaA ersetzt, wird in einer Ausführungsform dieses feinkristalline Material als Bestandteil eines STP-Prähydrates zugegeben, das durch Hydratation von STP mit einer Zeolith NaA enthaltenden wäßrigen Suspension erhalten worden ist. Feinkristalliner Zeolith NaA kann aber auch als solcher bzw. als sprühgetrocknetes Material Verwendung finden.
  • Vergleichsweise höhere Gehalte an Zeolith NaA können die Einspülbarkeit des erfindungsgemäßen Agglomerats beeinträchtigen. Hier kann dann aber wieder das Einspülverhalten durch die Verwendung wasserhaltiger Metasilikate verbessert werden. Das erfindungsgemäße Verfahren ist damit der vorbekannten wasserfeuchten Granulierung überlegen, in der wasserhaltige Metasilikate nicht ohne weiteres einsetzbar sind. Auf die angegebene Weise können auch bei hohen Gehalten an Zeolith NaA Produkte mit zufriedenstellenden Einspüleigenschaften erhalten werden.
  • Im Zusammenhang mit den hier geschilderten Möglichkeiten der Einflußnahme auf die verbesserte Einspülbarkeit ist die eingangs genannte Maßnahme zu sehen, durch Anwendung der höheren Preßdrucke im erfindungsgemäß erwünschten Rahmen die Einspülbarkeit zu fördern. Insgesamt gelingt es durch diese große Breite an Arbeits- und Variationsmöglichkeiten Reinigungsmittel der hier betroffenen Art herzustellen, die sich durch eine optimale Kombination von Parametern in allen erwünschten Produktbeschaffenheiten auszeichnen. Gleichzeitig ist dabei die einfache und sichere Herstellung derart optimaler Produkte durch das erfindungsgemäße Verfahren gewährleistet und leicht zugänglich. Insgesamt wird damit eine substantielle Verbesserung im Vergleich mit den bisher gegebenen technischen Möglichkeiten erreicht.
  • Beispiele
    • 1. Ein Vorgemisch bestehend aus 47,5 % STP-Hydrat (17 % H₂O), 30,1 % KO und 22,4 % K5 wurde bei einer spezifischen Preßkraft von 16 kN/cm auf einer Walzenpresse des Typs WP 50 N/75 (Herst. Fa. Alexanderwerk/Remscheid) bei einer Walzendrehzahl von16 Upm (Walzendurchmesser 15 cm) zu Schülpen von ca. 1 mm Stärke verpreßt. Die Dichte der Schülpen wurde zu 1,81 g/cm³ ermittelt. Nach Zerkleinerung zu einem Granulat mit einem mittleren Korndurchmesser von 1,2 mm (Kornspektrum auf 0.2 bis 1,6 mm abgesiebt) wurde ein Produkt mit einem Schüttgewicht von 880 g/l erhalten, das in einer Einspültestapparatur, in der die Verhältnisse in einer Haushaltsgeschirrspülmaschine (HGSM) simuliert werden, in ca. 7.5 Min. einspülbar war (45 g Produkt werden in einem mit einem Gitter verschlossenen Einspülkästchen einer HGSM vorgelegt und bei in 10 Min. von 15 °C auf 53 °C steigender Temperatur mit ca. 230 ml/Min. H₂O besprüht). Eine Wiederholung des Versuchs bei einer spezifischen Preßkraft von 6,4 kN/cm führte zu Schülpen mit einer Dichte von 1.48 g/cm³. Das entsprechend zerkleinerte und abgesiebte Produkt hatte ein Schüttgewicht von 840 g/l und wurde in 10,5 Min. eingespült.
    • 2. Ein Vorgemisch bestehend aus 47,5 % eines STP-Hydrates, das 10 % Zeolith NaA (H₂O-frei berechnet) und 13,8 % H₂O enthält, 30,1 % KO und 22,4 % K5 wurde bei einer spezifischen Preßkraft von 16 kN/cm kompaktiert. Nach Zerkleinerung der Schülpen und Absiebung auf das Kornspektrum 0,2 bis 1,6 mm wurde ein Produkt mit einem Schüttgewicht von 910 g/l erhalten, das in der Testapparatur in 6,9 Min. einspülbar war.
    • 3. Ein Vorgemisch aus 17,5 % H₂O-freiem STP, 46,4 % K5, 18,1 % KO und 18 % sprühgetrocknetem Zeolith NaA 20 % H₂O wurde bei 16 kN/cm spezifischem Preßdruck kompaktiert und dann zerkleinert. Das abgesiebte Produkt (0,2 bis 1,6 mm) mit einem Schüttgewicht von 920 g/l wurde mit 1 % Trichlorisocyanursäure aufgemischt und mit 45 g im Dosierkästchen einer handelsüblichen HGSM (Miele G 503 S) eingesetzt. Das Produkt war nach ca. 19 Min. eingespült. Rückstände in der Maschine wurden nicht festgestellt.
    • 4. Ein Vorgemisch aus 33,7 % K5. 26,3 % KO, 22,2 % Zeolith NaA (80 % Trockensubstanz, 20 % H₂O) und 17,8 % H₂O-freiem STP wurde bei 16 kN/cm kompaktiert und dann zerkleinert. Das Splittergranulat mit dem Kornspektrum 0.2 bis 1,6 mm hatte ein Schüttgewicht von 950 g/l. Eine Nachbehandlung des Materials in einem Marumerizer® Gerät zur Sphäronisierung für 5, 10 bzw. 20 S führte nach Absiebung der zusätzlich gebildeten Feinanteile (0,2 mm zu Schüttgewichten von 988 g/l, 996 g/l bzw. 1004 g/l.
    Beschreibung für den Vertragsstaat: ES
  • Wesentlicher Bestandteil handelsüblicher Reiniger für den Einsatz in maschinellen Reinigungsprozessen - beispielsweise in den bekannten, im Haushalt eingesetzten Geschirrspülmaschinen - sind bis heute im allgemeinen Natriummetasilikat in Abmischung mit Natriumtripolyphosphat (auch als Pentanatriumtriphosphat und im folgenden mit STP bezeichnet). Als weitere Komponenten werden insbesondere Soda und Wasserglas sowie weitere Komponenten zur Verstärkung der Granulier- und/oder Reinigungswirkung eingesetzt. Die Stoffgemische liegen als rieselfähige Agglomerate vor, wobei eine Reihe von Anforderungen an die Produkteigenschaften gestellt werden.
  • Die Stoffgemische sind im allgemeinen stark alkalisch und damit atemwegreizend. Dementsprechend ist das Auftreten von Staubanteilen im Produkt, wie es beim Einsatz pulverförmiger Rohstoffe zu erwarten wäre, unbedingt zu vermeiden. Weiterhin neigen Produkte dieser Art mit hohen Feinanteilen im Einspülkästchen der Geschirrspülmaschine bei Wasserzutritt zum Verklumpen, so daß eine ausreichend kurze Einspülzeit nicht mehr gewährleistet ist.
  • Neben Einspülbarkeit und Staubfreiheit sind weitere wichtige Beurteilungskriterien das Schüttgewicht und die Lagerstabilität der Reiniger. Das Schüttgewicht sollte oberhalb von 900 g/l liegen, um eine problemlose Einfüllung der für den Reinigungsgang erforderlichen Produktmenge in das Einspülkästchen zu ermöglichen. Da die rieselfähigen Agglomerate wasserhaltig sind, muß bei der Verarbeitung der Rezeptur sichergestellt werden, daß das Wasser weitgehend kristallin gebunden bleibt, um einem Verbacken der Granulate bei Lagerung vorzubeugen.
  • Marktübliche Reiniger werden heute nach zwei Verfahrensvarianten hergestellt, nämlich entweder durch Mischgranulation oder durch Aufmischung gekörnter staubfreier Rohstoffe.
  • Die Mischgranulation in Gegenwart von Wasser weist eine Reihe von Erschwernissen auf, die eine sorgfältige Steuerung des Verfahrens erforderlich machen. Bei der wasserfeuchten Granulation konkurrieren verschiedene Komponenten des Stoffgemisches (insbesondere STP, wasserfreies Metasilikat und Soda) um die Bindung des vorhandenen freien Wassers. Die thermodynamisch stabilste Zusammensetzung wird unter Umständen bei nicht konstanten Rohstoffeigenschaften oder nicht exakt eingehaltenen Verfahrensbedingungen erst bei Lagerung der Produkte erreicht. Die hierzu erforderliche Wanderung des Wassers ist im allgemeinen von einer Verklumpung des Produktes begleitet.
  • Auch die Rezepturflexibilität des Mischgranulierverfahrens ist relativ gering, und zwar insbesondere in einer ganz bestimmten Richtung: Der Ersatz größerer Anteile des STP durch den aus Gründen des Umweltschutzes erwünschten feinkristallinen Zeolith NaA macht Schwierigkeiten. Es werden hier insbesondere häufig zu leichte Produkte mit nicht zufriedenstellenden Einspüleigenschaften erhalten. Bei der Mischgranulation in entsprechenden Vorrichtungen mit hohem Energieeintrag, beispielsweise im bekannten Lödige-Mischer, treten Anklebungen an den Mischerwänden auf, die eine regelmäßige Reinigung des Mischers erforderlich machen. Der Einsatz von Soda und Wasserglas als Granulierhilfsmittel ist erforderlich, ohne daß diese Komponenten einen wesentlichen Beitrag zur Wirksamkeit der Reinigerrezeptur leisten.
  • Die Herstellung von Mischprodukten nach den Angaben des Standes der Technik vermeidet zwar zum Teil die zuvor aufgeführten Nachteile der Mischgranulation, es ist aber bis heute erforderlich, vorgranulierte und damit sehr teure Rohstoffe einzusetzen, um letztlich staubfreie Mischprodukte herzustellen.
  • Die Erfindung geht von der Aufgabe aus, unter Verwendung kostengünstiger Rohstoffe bei gleichzeitiger Verminderung der Nachteile der wasserfeuchten Mischgranulation eine granulierte Reinigerrezeptur mit guter Rieselfähigkeit, guter Einspülbarkeit und guter Lagerstabilität herzustellen. Neben der Verarbeitbarkeit bisher üblicher Rezepturen für Mittel der hier angegebenen Art will die Erfindung auch die Verwendung von feinkristallinem Zeolith NaA neben oder anstelle von STP sowie die Mitverwendung weiterer Komponenten - z. B. von Reinigungsverstärkern - ermöglichen.
  • Die Lösung der erfindungsgemäßen Aufgabenstellung wurde durch den Einsatz einer bevorzugt kontinuierlich geführten Verdichtung eines pulverförmigen Vorgemisches der gewünschten Bestandteile im Walzenspalt eines Paares zweier gegensinnig laufender Preßwalzen mit anschließender Zerkleinerung des dabei anfallenden plattenförmigen verdichteten Gutes gefunden.
  • Gegenstand der Erfindung ist dementsprechend in einer ersten Ausführungsform ein Verfahren zur Herstellung von körnigen, rieselfähigen alkalischen Reinigungsmitteln auf Basis von Natriummetasilikat in inniger Abmischung mit STP und/oder feinkristallinem Zeolith NaA als verstärkend wirkenden Gerüststoffen sowie gewünschtenfalls weiteren Hilfsstoffen für eine verbesserte Granulier- und/oder Reinigungswirkung mittels eines Mischverfahrens, wobei das Kennzeichen des neuen Verfahrens darin liegt, daß man die Ausgangskomponenten des Stoffgemisches in Pulverform form miteinander vermischt, dieses Stoffgemisch im Walzenspalt unter erhöhten Drucken kompaktiert und das angefallene Kompaktat zur gewünschten Korngröße zerkleinert.
  • Die Erfindung betrifft in einer weiteren Ausführungsform körnige, insbesondere freifließende alkalische Reinigungsmittel der genannten Art, die durch das hier beschriebene Verfahren hergestellt worden sind.
  • Im erfindungsgemäßen Verfahren wird insbesondere das zu granulierende Gut unter Preßdruck durch den Spalt eines Paares zweier mit etwa gleicher Umfanggeschwindigkeit gegensinnig laufender Walzen geführt und dabei zu einem plattenförmigen Preßgut verdichtet. Dieses platten- bzw. bandförmige Preßgut, das auch als "Schülpenband" bezeichnet wird, wird anschließend einem Zerkleinerungsverfahren unterworfen und dabei gekörntes Gut der gewünschten Korngröße und Kornverteilung gewonnen. Die Zerkleinerung des platten- bzw. bandförmigen Gutes kann in einer Mühle erfolgen. Zweckmäßigerweise wird das zerkleinerte Material anschließend einem Sichtungsprozeß zugeführt. Zu grobes Material wird abgetrennt und in die Zerkleinerungsvorrichtung rückgeführt, während zu feines Material dem Ansatz des pulverförmigen Mischgutes beigegeben und erneut der Kompaktierung im Walzenspalt zugeführt wird.
  • Die Walzenverpressung kann dabei ohne oder mit einer Vorverdichtung des vorgemischten pulverförmigen Gutes erfolgen. Das Walzenpaar kann dabei in jeder beliebigen Raumrichtung, insbesondere also vertikal oder horizontal zueinander angeordnet sein. Das pulverförmige Gut wird dann entweder durch Schwerkrafffüllung oder mittels einer geeigneten Einrichtung, z. B. mittels einer Stopfschnecke dem Walzenspalt zugeführt.
  • Der Preßdruck im Walzenspalt und die Verweildauer des Materials in dem Bereich des Preßdrukkes sind so hoch einzustellen, daß ein gut ausgebildetes hartes Schülpenband mit hoher Dichte erzeugt wird. Der hohe Verdichtungsgrad ist dabei anzustreben, um die gewünschten Schüttgewichte des letztlich gewonnenen rieselfähigen Gutes einzustellen, die oberhalb von 900 g/l liegen sollen. Auch die Abriebsstabilität der Granulate wird durch den Verdichtungsgrad beeinflußt, hohe Verdichtungsgrade führen zu abriebsstabilen Granulaten, die wiederum erwünscht sind. Dabei muß allerdings beachtet werden, daß zu hohe Preßdrucke die Verfahrenssicherheit beeinträchtigen, da bei ihrem Einsatz das Material auf den Walzen plastifiziert wird und zu Anklebungen führt. Dieser unerwünschte Effekt tritt dann auf, wenn eine Erhöhung des Preßdruckes keine weitere Verdichtung des Materials mehr bewirkt und die jetzt zusätzlich eingetragene Preßkraft vorwiegend die Erwärmung und Plastifizierung des Materials - beispielsweise durch partielles Aufschmelzen wasserhaltiger Bestandteile, insbesondere wasserhaltigen Metasilikats - verursacht.
  • Die jeweils anzuwendende optimale Preßkraft ist dabei rezepturabhängig. Üblicherweise wird erfindungsgemäß im Walzenspalt mit einer spezifischen Preßkraft im Bereich von etwa 15 bis 30 kN/cm Walzenlänge gearbeitet, wobei besonders bevorzugt der Bereich von etwa 20 bis 25 kN/cm Walzenlänge sein kann.
  • Die dabei eingestellten Feststoffdichten im Kompaktat liegen bevorzugt bei wenigstens etwa 1,7 g/cm³. Besonders geeignet sind entsprechende Feststoffdichten von wenigstens etwa 1,8 bis über 2 g/cm³. Auch hier ist der jeweils einzustellende optimale Dichtewert in gewissem Maße rezepturabhängig.
  • Entgegen den Erwartungen wird die Einspülbarkeit der Granulate - bestimmt als die Einspülzeit einer vorgegebenen Materialmenge in einer Testapparatur - durch höhere Preßdrucke und damit durch höhere Feststoffdichten begünstigt und nicht etwa verschlechtert. Offenbar neigen Schüttungen aus härteren Partikeln weniger zum Verklumpen und bilden auch während des Einspülvorganges weniger Feinanteile, so daß hier ein ungehinderter Wasserdurchfluß durch die Schüttung begünstigt wird.
  • Neben der Einstellung optimaler Preßdrucke im Walzenspalt ist zur Erreichung der erwünschten hohen Schüttgewichte der schließlich granulierten rieselfähigen Reinigungsmittel die Einstellung der Dicke des platten- bzw. bandförmigen Kompaktates von Bedeutung. Ist die gewählte Schülpendicke deutlich kleiner als die gewünschte Kornobergrenze des herzustellenden granulierten Produktes, so werden bei der Zerkleinerung des zunächst anfallenden plattenförmigen Kompaktats plättchenförmige Partikel erhalten, die zu Schüttungen mit hohem Leerraumvolumen und daher vergleichsweise geringem Schüttgewicht führen. Bei höheren Kompaktatdicken werden in der anschließenden Zerkleinerung dagegen Partikel erhalten, deren Abmessungen sich dem an sich gewünschten Verhältnis von 1 : 1 : 1 annähern können. Eine solche Kornform führt zu dichteren Schüttungen, deren Leerraumvolumen maximal etwa 50 % beträgt. Zwar ist dieser Wert im Vergleich zu Schüttungen aus kugelähnlichen Teilchen noch immer relativ hoch - dort liegen übliche entsprechende Werte bei etwa 35 bis 45 % - jedoch kann ein etwas höheres Leerraumvolumen im Sinne des erfindungsgemäßen Handelns auch Vorteile mit sich bringen. Hierdurch wird nämlich offenbar der Einspülvorgang begünstigt im Sinne eines ungehinderten Wasserflusses durch die Schüttung.
  • Das im erfindungsgemäßen Verfahren nach der Zerkleinerung des Schülpenbandes anfallende Splittergranulat kann allerdings in einer besonderen Ausführungsform der Erfindung auch noch weiter verformt werden. Hier wird das primär anfallende Splittergranulat einem oberflächlichen Abrieb von Ecken und Kanten unterworfen und damit insbesondere auch das Schüttgewicht des gekörnten Gutes nochmals erhöht bzw. das Leerraumvolumen entsprechend verringert. Zum Zwecke einer solchen Nachbehandlung kann beispielsweise das primär anfallende Splittergranulat auf rotierenden Scheiben gerollt werden, die auf ihrer Oberseite eine Riffelung aufweisen. Falls erforderlich wird anschließend ein unerwünschter Feinanteil nochmal abgetrennt und wiederum der Kompaktierung im Walzenspalt zugeführt.
  • Die im fertigen rieselfähigen Agglomerat angestrebte Kornobergrenze liegt im Bereich von etwa 1,6 bis 2 mm, während andererseits Feinanteile unterhalb etwa 0,2 mm unerwünscht sind. Die bevorzugten rieselfähigen Agglomerate zeigen dementsprechend ein breites Korngrößenspektrum im Bereich von etwa 0,2 bis 2 mm. Das Leerraumvolumen soll in der bevorzugten Ausführungsform nicht wesentlich mehr als etwa 50 % ausmachen, kann aber unter 50 % liegen. Wegen der zuvor angegebenen Abhängigkeit insbesondere des Leerraumvolumens von der Dicke des in der Kompaktierungsstufe hergestellten Vorprodukts wird es bevorzugt, platten-bzw. bandförmige Kompaktate mit einer Schichtdicke von wenigstens etwa 1,5 mm nach dem Walzenspalt herzustellen. Bevorzugt beträgt die Schichtdicke hier wenigstens etwa 2 mm. Schichtdicken des Kompaktats im Bereich von etwa 4 bis 8 mm und insbesondere im Bereich von etwa 5 bis 6 mm können besonders bevorzugt sein.
  • Die im erfindungsgemäßen Verfahren hergestellten Reinigergemische enthalten als wesentliche Komponenten Natriummetasilikat in inniger Abmischung mit dem gerüstbildenden STP und /oder Zeolith NaA. Das Stoffgemisch weist einen gewissen Wassergehalt auf, der überwiegend oder ausschließlich in Form von Hydrat-bzw. Kristallwasser vorliegen kann. Zusätzlich können in Abmischung damit Hilfsstoffe von der Art Soda und/oder Wasserglas bzw. reinigungsverstärkende Hilfsstoffe zugegen sein.
  • Als Rahmenrezepturen sind die folgenden Angaben zu sehen:
    Metasilikat liegt im allgemeinen in Mengen von 20 bis 75 Gew.-% und vorzugsweise von etwa 35 bis 65 Gew.-% des Gesamtgemisches vor. Besonders geeignet können Metasilikatmengen im Bereich von etwa 40 bis 60 Gew.-% sein. Das Metasilikat kann dabei im pulverförmigen Einsatzmaterial als wasserfreies Produkt und/oder in Form hydratisierter Phasen mit bestimmt vorgegebenen und/oder wechselnden Mengen an Hydratwassergehalten Verwendung finden. Geeignete Hydratwasser enthaltende Metasilikatphasen sind bekanntlich entsprechende Produkte mit 5 bzw. 9 Kristallwasser, wobei besondere Bedeutung dem entsprechenden Metasilikat mit 5 Kristallwassern zukommt. Wasserfreies Metasilikat (KO) und Kristallwasserhaltiges Metasilikat, insbesondere entsprechendes Produkt mit 5 Kristallwasser (K5) kann in bevorzugten Ausführungsformen der Erfindung im Einsatzmaterial in Mischungsverhältnissen von 5 : 1 bis 1 : 5 und insbesondere in Mischungsverhältnissen von 3 : 1 bis 1 : 3 verwendet werden.
  • In inniger Abmischung mit dem Metasilikat liegen als Gerüstsubstanzen STP und/oder Zeolith NaA vor. Die Menge dieser Gerüstsubstanzen (wasserfrei) liegt üblicherweise im Bereich von etwa 20 bis 50 Gew.-%, vorzugsweise im Bereich von etwa 25 bis 40 Gew.-%, bezogen auf das Gesamtgemisch. STP kann dabei ausschließlich - d. h. in Abwesenheit von Zeolith NaA - Verwendung finden, es ist aber auch möglich, den STP-Anteil in beliebigen Mischungsverhältnissen durch Einsatz von feinkristallinem Zeolith-NaA - insbesondere entsprechendes Material von Waschmittelqualität - zu ersetzen, wobei in einer Ausführungsform der Erfindung der vollständige Ersatz von STP durch Zeolith NaA vorgesehen ist.
  • Der Wassergehalt des fertigen Granulates beträgt im allgemeinen 8 bis 25 Gew.-% und liegt insbesondere im Bereich von etwa 10 bis 20 Gew.-%. Das Gesamtwasser kann dabei von vorneherein im Rahmen der Vormischung als gebundenes Wasser zugeführt werden, möglich ist aber auch die Zugabe von wäßriger Phase zum pulverförmigen Ausgangsgemisch bzw. zu einzelnen Komponenten dieses Ausgangsgemisches zur Einstellung der insgesamt erwünschten Endwassergehalte im Produkt.
  • Insbesondere als Agglomerierhilfsmittel und/oder als zusätzliche Alkalisierungsmittel können Soda und/oder Wasserglas mitverwendet werden. Die Sodamenge beträgt im allgemeinen nicht mehr als 20 Gew.-% und insbesondere nicht mehr als 10 Gew.-%, bezogen auf Gesamtmischung. Die Menge an mitverwendetem Wasserglas macht in der Regel nicht mehr als 10 Gew.-% und insbesondere nicht mehr als 7 Gew.-% aus. In Betracht kommt hier insbesondere die Verwendung von Wasserglas N mit einem Na₂O/SiO₂-Verhältnis von 1 : 3,35 bzw. Wasserglas A mit einem entsprechenden Verhältnis von 1 : 2.
  • Als sonstige Hilfsmittel, die insbesondere zum Zwecke der Reinigungsverstärkung mitverwendet werden können, sind beispielsweise zu nennen löslichkeitsverbessernde Substanzen wie Natriumacetat oder Natriumcitrat, Schauminhibitoren, z. B. die aus der Wasch- bzw. Reinigungsmittelchemie bekannten Paraffinschaumbremsen, Tenside mit Wasch- bzw.Reinigungsaktivität, Chlorträger wie Trichlorisocyanursäure, Reinigungsverstärker, z. B. n-Octanol Komponenten mit Komplexbindungsfähigkeit wie Phosphonobutantricarbonsäure und dergleichen. Die Summe aller dieser zusätzlichen Hilfsstoffe macht in der Regel nicht mehr als etwa 10 Gew.-% und bevorzugt nicht mehr als 7 Gew.-% aus. Empfindliche Substanzen, beispielsweise die erwähnten Chlorträger können in einer bevorzugten Ausführungsform allerdings auch dem Fertigprodukt erst nach der Kompaktierung und anschließenden zerkleinernden Körnung zugesetzt werden.
  • Der STP-Anteil der Rezeptur kann als STP-Prähydrat mit unterschiedlichen Wassergehalten oder als nichthydratisiertes STP eingesetzt werden. Überraschenderweise zeigen Produkte, bei denen nichthydratisiertes STP eingesetzt wurde im Vergleich zu Granulaten auf Basis von STP-Prähydraten bei vergleichbaren Gesamt-Wassergehalten der Rezeptur bessere Einspülbarkeit. Bisher marktübliche Reiniger enthalten STP als Teilhydrat oder als Hexahydrat.
  • Wird STP teilweise oder vollständig durch Zeolith NaA ersetzt, wird in einer Ausführungsform dieses feinkristalline Material als Bestandteil eines STP-Prähydrates zugegeben, das durch Hydratation von STP mit einer Zeolith NaA enthaltenden wäßrigen Suspension erhalten worden ist. Feinkristalliner Zeolith NaA kann aber auch als solcher bzw. als sprühgetrocknetes Material Verwendung finden.
  • Vergleichsweise höhere Gehalte an Zeolith NaA können die Einspülbarkeit des erfindungsgemäßen Agglomerats beeinträchtigen. Hier kann dann aber wieder das Einspülverhalten durch die Verwendung wasserhaltiger Metasilikate verbessert werden. Das erfindungsgemäße Verfahren ist damit der vorbekannten wasserfeuchten Granulierung überlegen, in der wasserhaltige Metasilikate nicht ohne weiteres einsetzbar sind. Auf die angegebene Weise können auch bei hohen Gehalten an Zeolith NaA Produkte mit zufriedenstellenden Einspüleigenschaften erhalten werden.
  • Im Zusammenhang mit den hier geschilderten Möglichkeiten der Einflußnahme auf die verbesserte Einspülbarkeit ist die eingangs genannte Maßnahme zu sehen, durch Anwendung der höheren Preßdrucke im erfindungsgemäß erwünschten Rahmen die Einspülbarkeit zu fördern. Insgesamt gelingt es durch diese große Breite an Arbeits- und Variationsmöglichkeiten Reinigungsmittel der hier betroffenen Art herzustellen, die sich durch eine optimale Kombination von Parametern in allen erwünschten Produktbeschaffenheiten auszeichnen. Gleichzeitig ist dabei die einfache und sichere Herstellung derart optimaler Produkte durch das erfindungsgemäße Verfahren gewährleistet und leicht zugänglich. Insgesamt wird damit eine substantielle Verbesserung im Vergleich mit den bisher gegebenen technischen Möglichkeiten erreicht.
  • Beispiele
    • 1. Ein Vorgemisch bestehend aus 47,5 % STP-Hydrat (17 % H₂O), 30,1 % KO und 22,4 % K5 wurde bei einer spezifischen Preßkraft von 16 kN/cm auf einer Walzenpresse des Typs WP 50 N/75 (Herst. Fa. Alexanderwerk/Remscheid) bei einer Walzendrehzahl von 16 Upm (Walzendurchmesser 15 cm) zu Schülpen von ca. 1 mm Stärke verpreßt. Die Dichte der Schülpen wurde zu 1,81 g/cm³ ermittelt. Nach Zerkleinerung zu einem Granulat mit einem mittleren Korndurchmesser von 1,2 mm (Kornspektrum auf 0,2 bis 1,6 mm abgesiebt) wurde ein Produkt mit einem Schüttgewicht von 880 g/l erhalten, das in einer Einspültestapparatur, in der die Verhältnisse in einer Haushaltsgeschirrspülmaschine (HGSM) simuliert werden, in ca. 7,5 Min. einspülbar war (45 g Produkt werden in einem mit einem Gitter verschlossenen Einspülkästchen einer HGSM vorgelegt und bei in 10 Min. von 15 °C auf 53 °C steigender Temperatur mit ca. 230 ml/Min. H₂O besprüht). Eine Wiederholung des Versuchs bei einer spezifischen Preßkraft von 6,4 kN/cm führte zu Schülpen mit einer Dichte von 1,48 g/cm³. Das entsprechend zerkleinerte und abgesiebte Produkt hatte ein Schüttgewicht von 840 g/l und wurde in 10,5 Min. eingespült.
    • 2. Ein Vorgemisch bestehend aus 47,5 % eines STP-Hydrates, das 10 % Zeolith NaA (H₂O-frei berechnet) und 13,8 % H₂O enthält, 30,1 % KO und 22,4 % K5 wurde bei einer spezifischen Preßkraft von 16 kN/cm kompaktiert. Nach Zerkleinerung der Schülpen und Absiebung auf das Kornspektrum 0,2 bis 1,6 mm wurde ein Produkt mit einem Schüttgewicht von 910 g/l erhalten, das in der Testapparatur in 6,9 Min. einspülbar war.
    • 3. Ein Vorgemisch aus 17,5 % H₂O-freiem STP, 46,4 % K5, 18,1 % KO und 18 % sprühgetrocknetem Zeolith NaA 20 % H₂O wurde bei 16 kN/cm spezifischem Preßdruck kompaktiert und dann zerkleinert. Das abgesiebte Produkt (0,2 bis 1,6 mm) mit einem Schüttgewicht von 920 g/l wurde mit 1 % Trichlorisocyanursäure aufgemischt und mit 45 g im Dosierkästchen einer handelsüblichen HGSM (Miele G 503 S) eingesetzt. Das Produkt war nach ca. 19 Min. eingespült. Rückstände in der Maschine wurden nicht festgestellt.
    • 4. Ein Vorgemisch aus 33,7 % K5, 26,3 % KO, 22,2 % Zeolith NaA (80 % Trockensubstanz, 20 % H₂O) und 17,8 % H₂O-freiem STP wurde bei 16 kN/cm kompaktiert und dann zerkleinert. Das Splittergranulat mit dem Kornspektrum 0,2 bis 1,6 mm hatte ein Schüttgewicht von 950 g/l. Eine Nachbehandlung des Materials in einem Marumerizer® Gerät zur Sphäronisierung für 5, 10 bzw. 20 S führte nach Absiebung der zusätzlich gebildeten Feinanteile < 0,2 mm zu Schüttgewichten von 988 g/l, 996 g/l bzw. 1004 g/l.

Claims (13)

  1. Verfahren zur Herstellung von körnigen, rieselfähigen alkalischen Reinigungsmitteln auf Basis von Natriummetasilikat in inniger Abmischung mit Pentanatriumtriphosphat (STP) und/oder feinkristallinem Zeolith-NaA als verstärkend wirkenden Gerüststoffen sowie gewünschtenfalls weiteren Hilfsstoffen für eine verbesserte Granulier- und/oder Reinigungswirkung mittels eines Mischverfahrens, dadurch gekennzeichnet, daß man die Ausgangskomponenten des Stoffgemisches in Pulverform miteinander vermischt, dieses Stoffgemisch im Walzenspalt unter erhöhten Drucken kompaktiert und das angefallene Kompaktat zur gewünschten Korngröße zerkleinert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man im Walzenspalt die Grenzdrucke nicht wesentlich überschreitet, von denen ab eine weitere Verdichtung nicht mehr auftritt.
  3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man im Walzenspalt mit einer spezifischen Preßkraft im Bereich von etwa 15 bis 30 kN/cm Walzenlängebevorzugt im Bereich von etwa 20 bis 25 kN/cm Walzenlänge - arbeitet.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man das zu granulierende Gut unter Preßdruck im Spalt eines Walzenpaares zweier mit etwa gleicher Umfangsgeschwindigkeit gegensinnig laufender Walzen zu einem plattenförmigen Preßgut umwandelt, das anschließend zur gewünschten Kornform verkleinert wird.
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man das vorgemischte Gut auf Schichtdicken von wenigstens etwa 1,5 mm nach dem Walzenspalt kompaktiert, wobei bevorzugt Schichtdicken des Kompaktates von wenigstens 2 mm und insbesondere solche im Bereich von etwa 4 bis 8 mm eingestellt werden.
  6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man das Ausgangsgemisch im Walzenspalt zu Kompaktaten mit Feststoffdichten von wenigstens etwa 1,7 g/cm³, vorzugsweise im Bereich von etwa 1,8 bis über 2 g/cm³ verdichtet.
  7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß man das nach der Körnung - vorzugsweise durch Zerkleinerung in einer Mühle - anfallende Gut sichtet, zu grobes Gut in die Körnung und zu feines Gut in die Kompaktierung zurückführt.
  8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man im Fertigprodukt ein Kornspektrum von etwa 0,2 bis 2 mm einstellt.
  9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man das bei der Körnung primär anfallende Splittergranulat einem oberflächlichen Abrieb von Ecken und Kanten unterwirft und damit insbesondere auch das Schüttgewicht des gekörnten Gutes nochmals erhöht.
  10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß man Mischungsverhältnisse innerhalb der folgenden Bereiche einstellt:
    20 bis 75 Gew.-% Metasilikat
    20 bis 50 Gew.-% STP und/oder Zeolith NaA
    nicht mehr als 20 Gew.-% Soda
    nicht mehr als 10 Gew.-% Wasserglas
    nicht mehr als 10 Gew.-% sonstige Zusatzstoffe bei
    8 bis 25 Gew.-% Gesamtwasser.;
  11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß man Mischungsverhältnisse innerhalb der folgenden Bereiche einstellt:
    35 bis 65 Gew.-%, vorzugsweise 40 bis 60 Gew.-% Metasilikat, das wenigstens anteilsweise als hydratisiertes Metasilikat eingesetzt wird 25 bis 40 Gew.-% STP und/oder Zeolith NaA (als wasserfreie Substanz berechnet)
    nicht mehr als 10 Gew.-% Soda
    nicht mehr als 7 Gew.-% Wasserglas
    nicht mehr als 7 Gew.-% sonstige Bestandteile bei
    etwa 10 bis 20 Gew.-% Gesamtwasser.
  12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß man zur Verbesserung der Einspülbarkeit im pulverförmigen Ansatz nicht-hydratisiertes STP und im Fall der Verwendung größerer Mengen an Zeolith NaA dieses zusammen mit wasserhaltigem Metasilikat einsetzt, wobei auch durch Anwendung höherer Preßdrucke im angegebenen Bereich die Einspülbarkeit gefördert werden kann.
  13. Rieselfähige alkalische Reinigungsmittel insbesondere für den Einsatz in Geschirrspülmaschinen auf Basis von wasserhaltigen Agglomeraten des Natriummetasilikates in inniger Abmischung mit STP und/oder feinkristallinem Zeolith NaA als verstärkend wirkenden Gerüststoffen, hergestellt nach dem Verfahren der Ansprüche 1 bis 12.
EP87109974A 1986-07-18 1987-07-10 Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation Expired - Lifetime EP0253323B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87109974T ATE62931T1 (de) 1986-07-18 1987-07-10 Verfahren zur herstellung von rieselfaehigen alkalischen reinigungsmitteln durch kompaktierende granulation.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3624336 1986-07-18
DE19863624336 DE3624336A1 (de) 1986-07-18 1986-07-18 Verfahren zur herstellung von rieselfaehigen alkalischen reinigungsmitteln durch kompaktierende granulation
DE19873709488 DE3709488A1 (de) 1986-07-18 1987-03-23 Verfahren zur herstellung von rieselfaehigen alkalischen reinigungsmitteln durch kompaktierende granulation (ii)

Publications (4)

Publication Number Publication Date
EP0253323A2 EP0253323A2 (de) 1988-01-20
EP0253323A3 EP0253323A3 (en) 1988-08-17
EP0253323B1 EP0253323B1 (de) 1991-04-24
EP0253323B2 true EP0253323B2 (de) 1994-03-02

Family

ID=39345497

Family Applications (2)

Application Number Title Priority Date Filing Date
EP87109974A Expired - Lifetime EP0253323B2 (de) 1986-07-18 1987-07-10 Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation
EP88103981A Revoked EP0283885B1 (de) 1986-07-18 1988-03-14 Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP88103981A Revoked EP0283885B1 (de) 1986-07-18 1988-03-14 Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation

Country Status (5)

Country Link
US (1) US4834902A (de)
EP (2) EP0253323B2 (de)
JP (1) JPS6333500A (de)
DE (2) DE3624336A1 (de)
ES (2) ES2021641B3 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624336A1 (de) 1986-07-18 1988-01-28 Henkel Kgaa Verfahren zur herstellung von rieselfaehigen alkalischen reinigungsmitteln durch kompaktierende granulation
GB8829710D0 (en) * 1988-12-20 1989-02-15 Unilever Plc Improved zeolite compositions
US5045238A (en) * 1989-06-09 1991-09-03 The Procter & Gamble Company High active detergent particles which are dispersible in cold water
US5393507A (en) * 1990-03-01 1995-02-28 Unilever Patent Holdings B.V. Silicate products
US5286470A (en) * 1990-03-01 1994-02-15 Unilever Patent Holdings B.V. Silicate products
GB9018157D0 (en) 1990-08-17 1990-10-03 Procter & Gamble Detergent compositions
US5176751A (en) * 1991-03-01 1993-01-05 Thermocolor Corporation Pellets useful in production of plastic resin materials
US5540855A (en) * 1991-04-23 1996-07-30 The Procter & Gamble Company Particulate detergent compositions
GB9108639D0 (en) * 1991-04-23 1991-06-12 Procter & Gamble Particulate detergent compositions
US5814289A (en) * 1992-03-28 1998-09-29 Hoechst Aktiengesellschaft Process for the peparation of cogranulates comprising aluminosilicates and sodium silicates
JP2628010B2 (ja) * 1993-08-03 1997-07-09 大阪市 毛髪処理剤及び毛髪処理方法
US5366652A (en) * 1993-08-27 1994-11-22 The Procter & Gamble Company Process for making high density detergent agglomerates using an anhydrous powder additive
US5486303A (en) * 1993-08-27 1996-01-23 The Procter & Gamble Company Process for making high density detergent agglomerates using an anhydrous powder additive
DE4329394B4 (de) * 1993-09-01 2006-11-02 Henkel Kgaa Gerüststoffkomponente für Wasch- oder Reinigungsmittel
DE4329392A1 (de) * 1993-09-01 1995-03-02 Henkel Kgaa Gerüststoffkomponente für Wasch- oder Reinigungsmittel
DE4415362A1 (de) * 1994-05-02 1995-11-09 Henkel Kgaa Verfahren zur Herstellung silikatischer Buildergranulate mit erhöhtem Schüttgewicht
GB9414576D0 (en) * 1994-07-19 1994-09-07 Unilever Plc Method for preparing cogranules by compaction
GB9605534D0 (en) * 1996-03-15 1996-05-15 Unilever Plc Detergent compositions
DE19819187A1 (de) 1998-04-30 1999-11-11 Henkel Kgaa Festes maschinelles Geschirrspülmittel mit Phosphat und kristallinen schichtförmigen Silikaten
DE19821695A1 (de) * 1998-05-14 1999-11-25 Henkel Kgaa Gefärbte maschinelle Geschirrspülmittel
DE19859807A1 (de) * 1998-12-23 2000-06-29 Henkel Kgaa Phosphat-Compounds
US6540165B1 (en) 1999-09-24 2003-04-01 Union Carbide Chemicals & Plastics Technology Corporation Process for handling particulate material at elevated pressure
DE19959002C2 (de) * 1999-12-08 2002-12-05 Henkel Kgaa Verfahren zur Herstellung von verdichteten Teilchen
GB2361930A (en) * 2000-05-05 2001-11-07 Procter & Gamble Process for making solid cleaning components
US6916770B2 (en) 2001-04-27 2005-07-12 Polyone Corporation Multi-functional color concentrate compositions
US6617295B2 (en) 2001-04-27 2003-09-09 Polyone Corporation Composition and method for foaming resin
US6384002B1 (en) 2001-04-27 2002-05-07 Polyone Corporation Composition and method for purging polymer processing equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412819A (en) * 1945-07-21 1946-12-17 Mathieson Alkali Works Inc Detergent briquette
ZA687491B (de) * 1968-01-08
AT330930B (de) * 1973-04-13 1976-07-26 Henkel & Cie Gmbh Verfahren zur herstellung von festen, schuttfahigen wasch- oder reinigungsmitteln mit einem gehalt an calcium bindenden substanzen
AR208392A1 (es) * 1973-05-07 1976-12-27 Henkel & Cie Gmbh Composicion para lavar blanquear o limpiar materiales resistentes especialmente textiles adicional a la patente no 201687 adicional a la no 253286
DE2454448B2 (de) * 1974-11-16 1976-12-30 Benckiser-Knapsäck GmbH, 6802 Ladenburg Verfahren zur herstellung eines mischgranulates aus natriumtripolyphosphat und alkalisilikat
US4219436A (en) * 1977-06-01 1980-08-26 The Procter & Gamble Company High density, high alkalinity dishwashing detergent tablet
DE2822231A1 (de) * 1978-05-22 1979-11-29 Hoechst Ag Granulat aus hydratisiertem natriumtripolyphosphat und wasserunloeslichem alumosilicationenaustauschmaterial
DE3007320A1 (de) * 1980-02-27 1981-09-10 Henkel KGaA, 4000 Düsseldorf Maschinell anwendbare reinigungsmittel
AU582519B2 (en) * 1985-10-09 1989-03-23 Procter & Gamble Company, The Granular detergent compositions having improved solubility
DE3624336A1 (de) 1986-07-18 1988-01-28 Henkel Kgaa Verfahren zur herstellung von rieselfaehigen alkalischen reinigungsmitteln durch kompaktierende granulation

Also Published As

Publication number Publication date
JPS6333500A (ja) 1988-02-13
EP0253323A2 (de) 1988-01-20
EP0283885A3 (en) 1989-07-26
ES2030780T3 (es) 1992-11-16
DE3624336A1 (de) 1988-01-28
EP0253323B1 (de) 1991-04-24
DE3709488A1 (de) 1988-10-06
US4834902A (en) 1989-05-30
EP0283885A2 (de) 1988-09-28
EP0253323A3 (en) 1988-08-17
EP0283885B1 (de) 1992-05-13
ES2021641B3 (es) 1991-11-16

Similar Documents

Publication Publication Date Title
EP0253323B2 (de) Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation
EP0126963B1 (de) Verfahren zur Herstellung von Reinigungsmitteltabletten
DE3633519A1 (de) Verfahren zur herstellung von rieselfaehigen, stabilen schauminhibitor-konzentraten durch kompaktierende granulation
EP0191396A1 (de) Verfahren zur Herstellung eines rieselfähigen Granulats
DE4024657A1 (de) Verfahren zur trocknung und granulierung waessriger pasten waschaktiver wirkstoffgemische
EP0538294B1 (de) Verfahren zur herstellung wasch- und reinigungsaktiver tensidgranulate
DE3509661A1 (de) Verfahren zur herstellung eines koernigen, natriumtriphosphat enthaltenden produktes
DE4110510A1 (de) Niederalkalische, chlor- und phosphatfreie maschinengeschirrspuelmittel in form von schwerpulvern und -granulaten
EP0273334B1 (de) Verfahren zur Herstellung von rieselfähigen, stabilen Persäure-Konzentraten durch kompaktierende Granulation
WO1993010210A1 (de) Verfahren zur herstellung niederalkalischer, aktivchlor- und phosphatfreier maschinengeschirrspülmittel in form von schwergranulaten
EP0249163B1 (de) Körnig agglomerierte Natriummetasilikat enthaltende Reinigungsmittel, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0658190B1 (de) Verfahren zur herstellung von reinigungstabletten
EP0433653A1 (de) Verfahren zur Herstellung von Natriumperborathydrat-Granulaten
EP0716682B1 (de) Gerüststoffkomponente für wasch- oder reinigungsmittel
EP0716684B1 (de) Gerüststoffkomponente für wasch- oder reinigungsmittel
EP0573797B1 (de) Verfahren zur Erhöhung des Schüttgewichts von Natriumperborat-monohydrat
EP0471318B1 (de) Verfahren zur Herstellung von agglomeriertem Natriumperborat-Monohydrat mit verbesserten Eigenschaften
DE3620010A1 (de) Verfahren zur herstellung von natriummetasilikat-agglomeraten
DE1617246A1 (de) Verfahren zur Herstellung von rieselfaehigen Waschpulvermischungen
EP1257628A1 (de) Schichtmineralhaltige agglomerate mit nichtionischen tensiden
DE3133317A1 (de) Verfahren zur herstellung von zeolith-agglomeraten
DEU0003472MA (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19890204

17Q First examination report despatched

Effective date: 19900607

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910424

REF Corresponds to:

Ref document number: 62931

Country of ref document: AT

Date of ref document: 19910515

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3769531

Country of ref document: DE

Date of ref document: 19910529

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HOECHST AKTIENGESELLSCHAFT, FRANKFURT

Effective date: 19920115

NLR1 Nl: opposition has been filed with the epo

Opponent name: HOECHST AG.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930609

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930617

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930629

Year of fee payment: 7

Ref country code: GB

Payment date: 19930629

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930709

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930726

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930731

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930824

Year of fee payment: 7

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19940302

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI NL

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940710

Ref country code: AT

Effective date: 19940710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19940711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19940731

Ref country code: LI

Effective date: 19940731

Ref country code: BE

Effective date: 19940731

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19940731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940710

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007