EP0250613B1 - Pompe cryogénique et procédé de cryopompage - Google Patents

Pompe cryogénique et procédé de cryopompage Download PDF

Info

Publication number
EP0250613B1
EP0250613B1 EP86108529A EP86108529A EP0250613B1 EP 0250613 B1 EP0250613 B1 EP 0250613B1 EP 86108529 A EP86108529 A EP 86108529A EP 86108529 A EP86108529 A EP 86108529A EP 0250613 B1 EP0250613 B1 EP 0250613B1
Authority
EP
European Patent Office
Prior art keywords
cryopump
pump
valve
casing
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86108529A
Other languages
German (de)
English (en)
Other versions
EP0250613A1 (fr
Inventor
Werner Bächler
Hans-Joachim Dr. Forth
Hans-Hermann Dr. Klein
Wilhelm Strasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to EP86108529A priority Critical patent/EP0250613B1/fr
Priority to DE8686108529T priority patent/DE3680335D1/de
Priority to US06922034 priority patent/US4757689B1/en
Publication of EP0250613A1 publication Critical patent/EP0250613A1/fr
Application granted granted Critical
Publication of EP0250613B1 publication Critical patent/EP0250613B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/901Cryogenic pumps

Definitions

  • the invention relates to a method for operating a cryopump with a housing, with a gas inlet opening to which a recipient can be connected via a valve, with a vacuum pump connected to the housing via a valve, with a two-stage refrigerator in the housing as the cooling source, with pump surfaces on the two cooling heads of the refrigerator, which are equipped with an electric heater, with a sensor for controlling the pressure within the pump housing and with a control unit, in which the operation of the cryopump is monitored and with the help of the control unit and the signals supplied by the sensor is controlled for this purpose, based on the data supplied by the sensor, the pump capacity of the cryopump still present, and in the event of a pump capacity which is no longer sufficient, an automatically running regeneration process controlled by the control unit is initiated. Operation of the cryopump should be understood here to mean not only the pumping and evacuating operation, but also the regeneration operation.
  • the invention also relates to a cryopump suitable for carrying out this method.
  • Cryopumps belong - such as B. also the ion getter pumps - to a type of pump that does not supply the gases removed from a recipient directly to the atmosphere, but initially accumulates on the pump surfaces. Once their pumping capacity has been reached, it is necessary to regenerate the pumping surfaces, ie to remove the gases on the pumping surfaces. This can for example, by switching off the refrigerator to the recipient after closing the valve and / or by flowing preferably heated gases through the pump. The warm gases are used to heat up the pump surfaces and to remove the gases that are released. In another regeneration process (German patent application P 35 12 614.0), the pump surfaces are connected to the by means of an electrical heater Pump surfaces heated. The gases released are pumped out with a backing pump connected to the pump housing.
  • the recipient is separated from the cryopump and aerated for the subsequent batch change. It is difficult to determine whether the cryopump has sufficient capacity after the last evacuation. For safety reasons, a regeneration step is usually started long before the maximum capacity is reached. The operation of the system must be interrupted for this time.
  • a method of the type mentioned at the outset is known from WO-A-8 400 404.
  • cryopump provided with which it is possible to directly transfer thermal energy from the outside only to the pumping surfaces of the second (colder) stage of the refrigerator. This makes it possible to regenerate the pump surfaces of the second (colder) stage of the refrigerator independently of the pump surfaces of the first (warmer) stage of the refrigerator.
  • a temperature sensor and also a pressure sensor are mentioned, the document mentioned does not disclose how it can be determined whether a pump in operation is in need of regeneration or not, ie whether or not the remaining pumping capacity is sufficient for the next pumping cycle.
  • the object of the present invention is to equip a cryopump of the type mentioned at the outset with monitoring and control devices in such a way that the time required for regeneration is minimized.
  • this object is achieved in that suction capacity measurements are carried out to determine the pump capacity that is still present, either by repeatedly measuring the time it takes for the cryopump to reach a certain pressure value, or in the case of evacuation processes dp German -Measurements are carried out, and that when the pump capacity still available for the next pump cycle is no longer sufficient, the regeneration process is initiated.
  • a microprocessor is provided which, depending on the signals supplied by the sensor, triggers and controls an optimally short regeneration process.
  • a major advantage of the method according to the invention is that with the aid of the signals supplied by the pressure sensor and a suitably programmed microprocessor, relatively precise indications of the pump capacity still available can be obtained. If, for example, the time it takes for the cryopump to reach a certain pressure is measured during an evacuation process, conclusions can be drawn from the measured time about the pump capacity still available. If a certain time is exceeded, an automatically running regeneration process can be triggered, whereby the necessary measures are initiated by the control unit or by the microprocessor. Even from one dp German -Measurement (change in pressure over time) the condition of the pump can be determined.
  • cryopump of the type according to the invention is operated in such a way that the pumping speed and thus the pump capacity of the cryopump that is still present is monitored on the basis of the data supplied by the sensor or sensors, and that in the event of a pump capacity that is no longer sufficient for the next pumping cycle, an automatically running regeneration process is initiated, then this cryopump can be operated optimally, i.e. with pumping phases as long as possible or pumping cycles as often as possible and with regeneration phases as short as possible. Downtimes of systems to which cryopumps of the type according to the invention are connected are therefore optimally short.
  • the cryopump can be included in the automatic operation of a system. Operating personnel who are constantly present are no longer required. The pump or the associated system can also be operated overnight.
  • the figure shows a cryopump with a housing 1, which has an inlet opening 2 for the gases to be pumped out.
  • the recipient 30 to be evacuated is connected to the flange 3, specifically via a shut-off device 31, so that the cryopump can be separated from the recipient 30 for start-up and regeneration.
  • a two-stage refrigerator 4 projects into the housing 1 from below.
  • a further, essentially pot-shaped, housing 7 is held in a heat-conducting manner, the opening 8 of which lies approximately parallel to the opening 2 of the housing 1 and is covered with the shielding metal strip forming a baffle 9.
  • the walls of the housing 7 assume a temperature of approximately 60 to 100 K during pump operation (when the refrigerator 4 is switched on) and serve as pump surfaces for water vapor and carbon dioxide (by cryocondensation).
  • the shape of the pot 7 is chosen so that the pot together with the baffle 9 optimally shields the components arranged therein from external heat rays.
  • the second stage 10 of the refrigerator 4 projects into the pot-shaped housing 7 and carries the pumping surfaces 12 at its cold end 11.
  • These often consist of two flat sheet metal sections arranged parallel to one another.
  • the sheet metal sections are covered with the adsorption material 13 on their inner sides. It expediently consists of molecular sieve, activated carbon or zeolite.
  • the accumulation of gases N2, Ar, CO, methane or the like
  • the light gases H2, He
  • the light gases H2, He
  • the forevacuum pump 18 preferably a rotary vane pump with a final pressure of approximately 10 -3 mbar, is connected to the connecting piece 14 via a valve 16 and an adsorption trap 17.
  • the connecting piece 15 is used to carry out power supply lines 21 and 22, via which heaters 23 and 24, which are arranged on the cooling stages 5 and 11 and are composed of heating wires, are supplied with current.
  • the connecting piece 15 can also serve to hold a supply device 25 with a controller with which the maximum permitted temperature of the heaters 23 and 24 can be set and maintained or regulated.
  • the housing of the device 25 has a blind flange 26 with a current feedthrough which is fastened to the flange 27 of the connector 15. This arrangement ensures that the user of the cryopump is not able to work without controlled heating. Removing the device from the housing means venting the pump so that it can no longer perform its function.
  • control unit 28 contains known programmable control means (for example a microprocessor), which are able, depending on signals which are supplied by sensors to be described in detail, to emit control signals with which the operation of the cryopump can be controlled automatically.
  • programmable control means for example a microprocessor
  • the cryopump shown is also assigned means which allow gases (heated inert gases or air) to flow through the housing 1.
  • gases gases
  • These means include the gas supply 32, the heating device 33 and the valve 34, with which the supply of the gas through the pipe 35 can be controlled.
  • the tube 35 passes through the housing wall of the pump and the cylinder 7, so that the inflowing gases strike the pump surfaces directly.
  • the gas outlet is designated 36 and leads via the valve 38 either into the open or into a collecting container 37. This is only necessary if environmentally harmful gases must be removed from the pump surfaces.
  • a receptacle 37 ⁇ is expediently also assigned to the outlet of the vacuum pump 18, which can be identical to the container 37, for example.
  • the pump is also associated with means which make it possible to admit a relatively small, certain amount of gas into the housing 1.
  • These means comprise, for example, two valves 39 and 40 which define the fixed gas volume between them and which are actuated in a corresponding sequence for the inlet of the gas.
  • the volume between the valves 39 and 40 is fed from the supply volume 32 ⁇ .
  • the shut-off device 31 between the housing 1 of the pump and the recipient 30 to be evacuated is first closed. Then the housing 1 of the pump is evacuated to a pressure of 10 ⁇ 2 to 10 ⁇ 3 mbar using the vacuum pump 18. At the same time, the heaters 23 and 24 are switched on, so that the pump surfaces 7 and 12 heat up to the desired temperatures (70 ° C.). This condition is maintained until the pressure in the housing is 1 ⁇ 10 ⁇ 2 mbar. The refrigerator 4 can now be switched on. Thereafter, the heater 23 of the first cooling stage 5 of the refrigerator 4 is first switched off. As a result, the pump surface 7 cools and pumps the H2O vapor that is still present.
  • the heating 24 of the cooling stage 11 is switched off, so that the pump surfaces 12 also assume their operating temperature of approximately 12 K.
  • the recipient 30 to be evacuated is connected to the cryopump, that is to say the shut-off device 31 is opened.
  • this procedure has the advantage that in the first cooling phase, in which vapors are produced, it is prevented with certainty that they accumulate on the adsorption surfaces of the second stage and drastically reduce their capacity. The majority of the vapors therefore initially only accumulate on the pump surfaces 7. It is only when light gases, preferably helium, are to be pumped that the pump surfaces 12 are cooled to their operating temperature, so that the full pump capacity is available there.
  • the pressure sensor 41 which delivers signals corresponding to the pressure in the pump housing 1 to the control unit 28 via the line 42.
  • Temperature sensors 43, 44 and 45 are attached to the inner wall of the housing 1 and to the pump surfaces 7, 9 and 12, 13. They are connected to the control unit via lines 46, 47 and 48.
  • the adsorption trap 17 can also be equipped with a temperature sensor 49 so that its operating state can be monitored during the possible heating process. All lines via which signals are supplied to the control unit 28 are shown in dash-dot lines.
  • control unit Depending on the signals supplied, the control unit initiates the necessary measures. Depending on requirements, the refrigerator 4, the control valve 52, the valve 16, the control line 53, the valve 34 and the control valve 51 optionally existing heating device 33, via the control line 54 the valves 39 and 40, via the control line 55 the valve 31, via the control line 56 the backing pump and via the control line 57 the valve 38 to the collecting container 37. Finally, the control unit 28 is connected to the supply unit 25 for the cooling head heaters 23 and 24 via the control lines 58 and 59, so that the heaters can be started up separately or together. The control lines are shown with dashed lines.
  • the control unit 28 has, inter alia, the task of initiating the regeneration of the pump surfaces 7, 9, 12, 13 if this is desired or if the capacity of the pump surfaces is reached or almost reached. If the regeneration process is to be started automatically, it is first necessary for the control unit 28 to register the state of the need for regeneration.
  • One possibility for this is the recurring measurement of the time in which the cryopump reaches a certain pressure after aeration or pressure increase in the recipient 30, for example a pressure of 5 x 10 ⁇ 7 mbar after 30 seconds. If this time is exceeded, then - with otherwise reasonable size ratios (size of the recipient, performance of the pump) - conclude that the capacity of the pumping surfaces has been reached.
  • Another possibility is to relate pressure and time measurements in relation to recurring evacuation processes and to use those that can be calculated by the microprocessor dp German - Determine the remaining capacity of the pump. It is particularly expedient to use these options when the operation of a system requires recurring evacuation processes, which then take place at the same time or dp German -Measurement can serve.
  • the occupancy of the pumping surfaces of the second stage can be determined by constantly registering the temperature of these pumping surfaces. For example, if the pump surface 12 of the second stage, which takes on a temperature of approximately 12 K when the pump is freshly regenerated, reaches 18 K, the regeneration process is started.
  • Another possibility is to close the valve 31 between the recipient and the pump at intervals, to admit a known relatively small amount of gas into the pump housing by means of the valves 39, 40 and again the time or time described dp German -Make measurements.
  • the sensors 41, 44 and 45 concerned are constantly queried, so that the next step can be initiated immediately after the pressure and temperature values mentioned have been reached.
  • the regeneration times are therefore optimally short. This also applies in the event that a pump that has not yet reached its maximum capacity is to be regenerated prematurely. The regeneration process must then be started manually on the control unit.
  • the sensors concerned continuously provide signals about the respective state to the control unit 28, so that the He and H2 adsorbing surfaces are regenerated again after an optimally short time.
  • the gases bound by cryocondensation or cryotrapping on the pumping surfaces 12 can also be removed independently of those on the pumping surfaces 7 of the first stage.
  • the regeneration process can be carried out in such a way that the condition in the pump housing is constantly monitored by the sensors in such a way that liquefaction of the condensed gases during the regeneration phase is avoided with certainty. This can be achieved, for example, by keeping the pressure in the pump slightly below the sublimation point. By controlling the heating output depending on the pressure or by metered inlet of regeneration gases, this condition can be met.
  • the valve 34 must be designed as a metering valve with metered regeneration gas inlet.
  • the pressure in the pump can be kept at a level where the gas mixture is not is explosive.
  • An H2 / O2 mixture for example, is not explosive at a pressure below 14 mbar. If the regeneration of the cryopump is carried out in such a way that from about 10 mbar all current-carrying parts in the pump - such as heaters 23 and 24, ionization or heat conduction vacuum meters - are switched off, then any risk of explosion is also avoided.
  • Explosive gas mixtures can e.g. B. by admitting inert gas (Ar, N2) from the bottle 32 via the heater 33, the valve 34 and the tube 7 are first diluted and then removed from the pump.
  • the gas mixture is either pressed into the collecting container 37 with a slight overpressure via the valve 38 or conveyed into the container 37 ⁇ with the help of the backing pump 18 via the valve 16.
  • the temperature sensors 44, 45 and 43 indicate when the gas inlet can be interrupted.
  • valve 34 is closed, valve 16 is opened in order to evacuate the cryopump to its starting pressure ( ⁇ 5 ⁇ 10 -2 mbar).
  • steps 7 to 10 described on pages 10 and 11 can also be carried out.
  • the procedure described is expedient for the removal of explosive or toxic gases which, for example, are collected in the container 37 diluted by the regeneration gas. The corrosive gases do not get into the backing pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Claims (15)

  1. Procédé pour l'exploitation d'une cryopompe possédant un carter (1) pourvu d'une ouverture d'entrée de gaz (8) a laquelle un récipient (30) peut être raccordé avec interposition d'un robinet (31), une pompe à vide (18) raccordée par une soupape (16) au carter, un réfrigérateur (4) à deux étages, servant de source de froid et se trouvant à l'intérieur du carter, des surfaces de pompage (7, 12, 13) prévues sur les deux têtes réfrigérantes (5, 11) du réfrigérateur, munies d'un chauffage électrique (23, 24), un capteur (41) pour contrôler la pression à l'intérieur du carter de pompe (1) et une unité de commande (28), procédé dans lequel, à l'aide de l'unité de commande (28) et des signaux fournis par le capteur (41), on surveille et commande le fonctionnement de la cryopompe, on détermine à cet effet, d'après les données fournies par le capteur (41), la capacité de pompage encore disponible de la cryopompe et, au cas où la capacité de pompage ne suffit plus, on déclenche un processus de régénération commandé par l'unité de commande (28) et se déroulant automatiquement, caractérisé en ce que, pour déterminer la capacité de pompage encore disponible, on exécute des mesures du pouvoir d'aspiration, soit en mesurant de façon répétée le temps nécessaire à la cryopompe pour atteindre une valeur de pression déterminée, soit en exécutant des mesures du quotient dp dt
    Figure imgb0008
    lors de processus d'évacuation, et que l'on déclenche le processus de régénération au cas où la capacité de pompage encore disponible ne suffit plus pour le cycle de pompage suivant.
  2. Procédé selon la revendication 1, caractérisé en ce que, pour déterminer la capacité de pompage disponible, on introduit une quantité donnée de gaz dans la cryopompe, alors que celle-ci est fermée par rapport à la pompe à vide préliminaire (18) et par rapport au récipient (30), et on exécute ensuite les mesures de temps ou du quotient dp dt
    Figure imgb0009
    .
  3. Procédé selon la revendication 1, caractérisé en ce que, pour déterminer la capacité de pompage disponible, on surveille la température des surfaces de pompage du second étage.
  4. Procédé selon une des revendications 1 à 3, caractérisé en ce que l'on effectue un processus de régénération partielle en chauffant les surfaces de pompage (13 et/ou 12), alors que le réfrigérateur (4) est en marche, à une température d'environ 70 K (pour éliminer He et H₂) ou d'environ 150 K (pour éliminer N₂, Ar, et ainsi de suite).
  5. Procédé selon une des revendications 1 à 4, caractérisé en ce que, pendant le déroulement des processus de régénération, on maintient la pression dans la cryopompe au-dessous du point de sublimation de gaz condensables présents dans la pompe.
  6. Procédé selon une des revendications 1 à 4, caractérisé en ce que, pendant le déroulement des processus de régénération, en cas de présence de gaz ou de mélanges gazeux explosibles, on maintient la pression p dans la cryopompe au-dessous de la pression à laquelle commence un risque d'explosion.
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce que, pendant les processus de régénération, on maintient la pression dans la cryopompe, soit à l'aide d'un réglage de la puissance de chauffage, soit à l'aide d'une admission dosée de gaz de régénération.
  8. Procédé selon une des revendications 1 à 4, caractérisé en ce que, pendant le déroulement des processus de régénération, en cas de présence de gaz ou de mélanges gazeux explosibles, on surveille la pression p dans la cryopompe et on coupe l'alimentation de toutes les parties sous tension se trouvant à l'intérieur de la pompe avant que ne soit atteinte la pression à laquelle commence un risque d'explosion.
  9. Procédé selon une des revendications précédentes, caractérisé en ce que l'on effectue la régénération de la cryopompe par chauffage des surfaces de pompage, par admission de gaz de régénération ou par une combinaison de ces deux opérations.
  10. Cryopompe pour la mise en oeuvre du procédé selon la revendication 1, possédant un carter (1) pourvu d'une ouverture d'entrée de gaz (8) à laquelle un récipient (30) peut être raccordé avec interposition d'un robinet (31), une pompe à vide (18) raccordée par une soupape (16) au carter, un réfrigérateur (4) à deux étages, servant de source de froid et se trouvant à l'intérieur du carter, des surfaces de pompage (7, 12, 13) prévues sur les deux têtes réfrigérantes (5, 11) du réfrigérateur et munies d'un chauffage électrique (23, 24), un capteur (41) pour contrôler la pression à l'intérieur du carter de pompe (1), des moyens (32, 33, 34) pour l'admission de gaz de régénération et une unité de commande (28) par laquelle le fonctionnement de la cryopompe est surveillé et commandé en fonction des signaux fournis par le capteur, caractérisée en ce qu'elle est équipée de moyens (32', 39, 40) pour l'admission d'une faible quantité de gaz d'un volume donné, moyens qui comprennent au moins deux soupapes (32, 40) reliées à l'unité de commande (28).
  11. Cryopompe selon la revendication 10, caractérisée en ce que la pompe à vide (18) est raccordée au carter (1) de la cryopompe à travers une soupape (16), que cette soupape est reliée par une ligne de commande (52) à l'unité de commande (28) et qu'un piège à adsorption, également pourvu d'un capteur (49), est disposé entre la soupape (16) et la pompe à vide (18).
  12. Cryopompe selon la revendication 10 ou 11, caractérisée en ce que l'unité de commande (28) est reliée par une ligne de commande (53) à une soupape (34) pour l'admission du gaz de régénération.
  13. Cryopompe selon la revendication 12, caractérisée en ce qu'un récipient collecteur (37, 37') est prévu pour les gaz de régénération quittant la cryopompe.
  14. Cryopompe selon la revendication 13, caractérisée en ce que le récipient collecteur 37' est raccordé à la sortie de la pompe à vide (18) et/ou, à travers une soupape (38), au carter de pompe lui-même, et que la soupape (38) est reliée par une ligne de commande (57) à l'unité de commande (28).
  15. Cryopompe selon une des revendications 10 à 14, caractérisée en ce que des capteurs supplémentaires (43, 44, 45) sont prévus pour surveiller la température des surfaces de pompage du premier et/ou du second étage du réfrigérateur.
EP86108529A 1986-06-23 1986-06-23 Pompe cryogénique et procédé de cryopompage Expired - Lifetime EP0250613B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP86108529A EP0250613B1 (fr) 1986-06-23 1986-06-23 Pompe cryogénique et procédé de cryopompage
DE8686108529T DE3680335D1 (de) 1986-06-23 1986-06-23 Kryopumpe und verfahren zum betrieb dieser kryopumpe.
US06922034 US4757689B1 (en) 1986-06-23 1986-10-22 Cryopump and a method for the operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86108529A EP0250613B1 (fr) 1986-06-23 1986-06-23 Pompe cryogénique et procédé de cryopompage

Publications (2)

Publication Number Publication Date
EP0250613A1 EP0250613A1 (fr) 1988-01-07
EP0250613B1 true EP0250613B1 (fr) 1991-07-17

Family

ID=8195213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86108529A Expired - Lifetime EP0250613B1 (fr) 1986-06-23 1986-06-23 Pompe cryogénique et procédé de cryopompage

Country Status (3)

Country Link
US (1) US4757689B1 (fr)
EP (1) EP0250613B1 (fr)
DE (1) DE3680335D1 (fr)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044165A (en) * 1986-12-03 1991-09-03 Board Of Regents, The University Of Texas Cryo-slammer
US5001903A (en) * 1987-01-27 1991-03-26 Helix Technology Corporation Optimally staged cryopump
DE8804218U1 (fr) * 1988-03-29 1988-05-11 Leybold Ag, 6450 Hanau, De
EP0336992A1 (fr) * 1988-04-13 1989-10-18 Leybold Aktiengesellschaft Procédé et dispositif pour vérifier le fonctionnement d'une pompe de cryogénie
DE3868264D1 (de) * 1988-04-22 1992-03-12 Leybold Ag Verfahren zur adaption einer zweistufigen refrigerator-kryopumpe auf ein betimmtes gas.
US5157928A (en) * 1988-09-13 1992-10-27 Helix Technology Corporation Electronically controlled cryopump
US6318093B2 (en) 1988-09-13 2001-11-20 Helix Technology Corporation Electronically controlled cryopump
US6022195A (en) 1988-09-13 2000-02-08 Helix Technology Corporation Electronically controlled vacuum pump with control module
US4918930A (en) * 1988-09-13 1990-04-24 Helix Technology Corporation Electronically controlled cryopump
US5010737A (en) * 1989-03-30 1991-04-30 Aisin Seiki Kabushiki Kaisha Multi-headed cryopump apparatus
JP2538796B2 (ja) * 1989-05-09 1996-10-02 株式会社東芝 真空排気装置および真空排気方法
USRE36610E (en) * 1989-05-09 2000-03-14 Kabushiki Kaisha Toshiba Evacuation apparatus and evacuation method
US5060481A (en) * 1989-07-20 1991-10-29 Helix Technology Corporation Method and apparatus for controlling a cryogenic refrigeration system
DE4006755A1 (de) * 1990-03-03 1991-09-05 Leybold Ag Zweistufige kryopumpe
JPH0497538A (ja) * 1990-08-14 1992-03-30 Horiba Ltd クライオスタット
DE59101463D1 (de) * 1990-11-19 1994-05-26 Leybold Ag Verfahren zur regeneration einer kryopumpe sowie zur durchführung dieses verfahrens geeignete kryopumpe.
JPH04326943A (ja) * 1991-04-25 1992-11-16 Hitachi Ltd 真空排気システム及び排気方法
DE9111236U1 (fr) * 1991-09-10 1992-07-09 Leybold Ag, 6450 Hanau, De
AU2675192A (en) * 1991-09-19 1993-04-27 United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Miniature cryosorption vacuum pump
US5375424A (en) * 1993-02-26 1994-12-27 Helix Technology Corporation Cryopump with electronically controlled regeneration
GB2276228B (en) * 1993-03-18 1996-10-30 Elscint Ltd Cryogenic superconducting magnet system for use in magnetic resonance apparatus, and controlling the temperature of a heat shield therein
US6902378B2 (en) * 1993-07-16 2005-06-07 Helix Technology Corporation Electronically controlled vacuum pump
US5357760A (en) * 1993-07-22 1994-10-25 Ebara Technologies Inc. Hybrid cryogenic vacuum pump apparatus and method of operation
FR2708093B1 (fr) * 1993-07-23 1995-09-01 Air Liquide Installation de réfrigération à très basse température.
US5386708A (en) * 1993-09-02 1995-02-07 Ebara Technologies Incorporated Cryogenic vacuum pump with expander speed control
DE4336035A1 (de) * 1993-10-22 1995-04-27 Leybold Ag Verfahren zum Betrieb einer Kryopumpe sowie Vakuumpumpensystem mit Kryopumpe und Vorpumpe
US5513499A (en) * 1994-04-08 1996-05-07 Ebara Technologies Incorporated Method and apparatus for cryopump regeneration using turbomolecular pump
DE69531313T2 (de) * 1994-04-28 2004-05-13 Ebara Corp. Regeneration einer Kryopumpe
US5517823A (en) * 1995-01-18 1996-05-21 Helix Technology Corporation Pressure controlled cryopump regeneration method and system
DE19781645T1 (de) * 1996-03-20 1999-03-25 Helix Tech Corp Reinigungs- und Grob- bzw. Vorvakuum-Cryopumpenregenerationsverfahren, Cryopumpe und Steuer- bzw. Regeleinrichtung
US5906102A (en) * 1996-04-12 1999-05-25 Helix Technology Corporation Cryopump with gas heated exhaust valve and method of warming surfaces of an exhaust valve
DE19632123A1 (de) * 1996-08-09 1998-02-12 Leybold Vakuum Gmbh Kryopumpe
US6257001B1 (en) * 1999-08-24 2001-07-10 Lucent Technologies, Inc. Cryogenic vacuum pump temperature sensor
FR2840232B1 (fr) * 2002-05-30 2004-08-27 Cit Alcatel Piege cryogenique a regeneration rapide
US20040261424A1 (en) * 2003-06-27 2004-12-30 Helix Technology Corporation Integration of automated cryopump safety purge with set point
US6920763B2 (en) 2003-06-27 2005-07-26 Helix Technology Corporation Integration of automated cryopump safety purge
US6895766B2 (en) * 2003-06-27 2005-05-24 Helix Technology Corporation Fail-safe cryopump safety purge delay
DE602004005047T2 (de) * 2003-06-27 2007-09-27 Helix Technology Corp., Mansfield Integration einer automatisierten kryopumpensicherheitsspülung
DE102005028200A1 (de) * 2005-06-17 2006-12-21 Linde Ag Kryoverdichter mit Hochdruckphasentrenner
JP5084794B2 (ja) * 2009-07-22 2012-11-28 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの監視方法
JP5296811B2 (ja) * 2011-01-17 2013-09-25 住友重機械工業株式会社 クライオポンプ及び真空バルブ装置
JP5634323B2 (ja) * 2011-05-13 2014-12-03 住友重機械工業株式会社 クライオポンプシステム、クライオポンプのための再生方法
JP5846966B2 (ja) * 2012-03-01 2016-01-20 住友重機械工業株式会社 クライオポンプ及びその再生方法
JP6053551B2 (ja) * 2013-02-18 2016-12-27 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの運転方法
CN106428542B (zh) * 2016-08-16 2018-11-06 南京韬讯航空科技有限公司 一种共轴直升机操纵机构
CN106081094B (zh) * 2016-08-16 2018-01-23 葛讯 一种共轴直升机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH476215A (de) * 1968-08-20 1969-07-31 Balzers Patent Beteilig Ag Verfahren zum Betrieb einer kryogenen Pumpstufe und Hochvakuumpumpanordnung zur Durchführung des Verfahrens
US4361418A (en) * 1980-05-06 1982-11-30 Risdon Corporation High vacuum processing system having improved recycle draw-down capability under high humidity ambient atmospheric conditions
US4438632A (en) * 1982-07-06 1984-03-27 Helix Technology Corporation Means for periodic desorption of a cryopump
DE3422417A1 (de) * 1984-06-16 1985-12-19 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren und vorrichtung zur abtrennung einer gaskomponente aus einem gasgemisch durch ausfrieren
US4667477A (en) * 1985-03-28 1987-05-26 Hitachi, Ltd. Cryopump and method of operating same
DE3512614A1 (de) * 1985-04-06 1986-10-16 Leybold-Heraeus GmbH, 5000 Köln Verfahren zur inbetriebnahme und/oder regenerierung einer kryopumpe und fuer dieses verfahren geeignete kryopumpe

Also Published As

Publication number Publication date
US4757689A (en) 1988-07-19
US4757689B1 (en) 1996-07-02
DE3680335D1 (de) 1991-08-22
EP0250613A1 (fr) 1988-01-07

Similar Documents

Publication Publication Date Title
EP0250613B1 (fr) Pompe cryogénique et procédé de cryopompage
DE69531313T2 (de) Regeneration einer Kryopumpe
DE69737315T2 (de) Auslasssystem
DE3512614A1 (de) Verfahren zur inbetriebnahme und/oder regenerierung einer kryopumpe und fuer dieses verfahren geeignete kryopumpe
EP0558495A1 (fr) Procede pour la regeneration d'une pompe cryogenique, et pompe cryogenique pour la mise en uvre de ce procede.
DE4491062B4 (de) Cryogene Vakuumpumpe mit elektronisch gesteuerter bzw. geregelter Regeneration
DE19781645B4 (de) Reinigungs- und Grob- bzw. Vorvakuum-Cryopumpenregenerationsverfahren, Cryopumpe und Steuer- bzw. Regeleinrichtung
DE4113174C2 (fr)
EP0603180A1 (fr) Cryopompe.
EP0130319A2 (fr) Procédé et appareillage pour la purification de l'oxyde d'éthylène ou d'un mélange d'oxyde d'éthylène et d'un hydrocarbure chlorofluore
DE1934938C3 (de) Hochvakuumpumpanordnung
DE3330146A1 (de) Vorrichtung und verfahren zur schnellen regeneration von autonomen kryopumpen
DE3046458A1 (de) Refrigerator-kryostat
DE2207509A1 (de) Verfahren und Vorrichtung zur Neon und Helium Erzeugung aus Luft
DE102006012209A1 (de) Verfahren zum Abfüllen eines verflüssigten Gases mit niedriger Temperatur
DE10303292A1 (de) Kühl-Container mit Adsorptions-Kühlapparat
DE19632123A1 (de) Kryopumpe
DE4028341A1 (de) Spruehtrockner zum trocknen von in organischen loesungsmitteln geloesten feststoffproben
EP0724689A1 (fr) Procede d'exploitation d'une pompe cryogenique et systeme de pompes a vide comprenant une pompe cryogenique et une pompe a vide preliminaire
DE1929042U (de) Vorrichtung zum trennen von wasserstoff grosser reinheit aus einem wasserstoff-stickstoffgemisch.
DE2639301C2 (de) Flüssigkeitsverdampfer für die Erzeugung toxisch wirkender Dämpfe
DE19907517C2 (de) Vorrichtung zur Evakuierung eines Behälters und Betriebsverfahren hierfür
DE2512235C3 (fr)
DE951817C (de) Einrichtung zum Auftauen eines Eisabscheiders einer Anlage mit einer Kaltgaskuehlmaschine
EP0739650B1 (fr) Système d'évacuation avec purification de gaz d'échappement et procédé pour son opération

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19880128

17Q First examination report despatched

Effective date: 19880802

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3680335

Country of ref document: DE

Date of ref document: 19910822

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920521

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 7

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990506

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990517

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990526

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050623