EP0250613B1 - Kryopumpe und Verfahren zum Betrieb dieser Kryopumpe - Google Patents

Kryopumpe und Verfahren zum Betrieb dieser Kryopumpe Download PDF

Info

Publication number
EP0250613B1
EP0250613B1 EP86108529A EP86108529A EP0250613B1 EP 0250613 B1 EP0250613 B1 EP 0250613B1 EP 86108529 A EP86108529 A EP 86108529A EP 86108529 A EP86108529 A EP 86108529A EP 0250613 B1 EP0250613 B1 EP 0250613B1
Authority
EP
European Patent Office
Prior art keywords
cryopump
pump
valve
casing
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86108529A
Other languages
English (en)
French (fr)
Other versions
EP0250613A1 (de
Inventor
Werner Bächler
Hans-Joachim Dr. Forth
Hans-Hermann Dr. Klein
Wilhelm Strasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to EP86108529A priority Critical patent/EP0250613B1/de
Priority to DE8686108529T priority patent/DE3680335D1/de
Priority to US06922034 priority patent/US4757689B1/en
Publication of EP0250613A1 publication Critical patent/EP0250613A1/de
Application granted granted Critical
Publication of EP0250613B1 publication Critical patent/EP0250613B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/901Cryogenic pumps

Definitions

  • the invention relates to a method for operating a cryopump with a housing, with a gas inlet opening to which a recipient can be connected via a valve, with a vacuum pump connected to the housing via a valve, with a two-stage refrigerator in the housing as the cooling source, with pump surfaces on the two cooling heads of the refrigerator, which are equipped with an electric heater, with a sensor for controlling the pressure within the pump housing and with a control unit, in which the operation of the cryopump is monitored and with the help of the control unit and the signals supplied by the sensor is controlled for this purpose, based on the data supplied by the sensor, the pump capacity of the cryopump still present, and in the event of a pump capacity which is no longer sufficient, an automatically running regeneration process controlled by the control unit is initiated. Operation of the cryopump should be understood here to mean not only the pumping and evacuating operation, but also the regeneration operation.
  • the invention also relates to a cryopump suitable for carrying out this method.
  • Cryopumps belong - such as B. also the ion getter pumps - to a type of pump that does not supply the gases removed from a recipient directly to the atmosphere, but initially accumulates on the pump surfaces. Once their pumping capacity has been reached, it is necessary to regenerate the pumping surfaces, ie to remove the gases on the pumping surfaces. This can for example, by switching off the refrigerator to the recipient after closing the valve and / or by flowing preferably heated gases through the pump. The warm gases are used to heat up the pump surfaces and to remove the gases that are released. In another regeneration process (German patent application P 35 12 614.0), the pump surfaces are connected to the by means of an electrical heater Pump surfaces heated. The gases released are pumped out with a backing pump connected to the pump housing.
  • the recipient is separated from the cryopump and aerated for the subsequent batch change. It is difficult to determine whether the cryopump has sufficient capacity after the last evacuation. For safety reasons, a regeneration step is usually started long before the maximum capacity is reached. The operation of the system must be interrupted for this time.
  • a method of the type mentioned at the outset is known from WO-A-8 400 404.
  • cryopump provided with which it is possible to directly transfer thermal energy from the outside only to the pumping surfaces of the second (colder) stage of the refrigerator. This makes it possible to regenerate the pump surfaces of the second (colder) stage of the refrigerator independently of the pump surfaces of the first (warmer) stage of the refrigerator.
  • a temperature sensor and also a pressure sensor are mentioned, the document mentioned does not disclose how it can be determined whether a pump in operation is in need of regeneration or not, ie whether or not the remaining pumping capacity is sufficient for the next pumping cycle.
  • the object of the present invention is to equip a cryopump of the type mentioned at the outset with monitoring and control devices in such a way that the time required for regeneration is minimized.
  • this object is achieved in that suction capacity measurements are carried out to determine the pump capacity that is still present, either by repeatedly measuring the time it takes for the cryopump to reach a certain pressure value, or in the case of evacuation processes dp German -Measurements are carried out, and that when the pump capacity still available for the next pump cycle is no longer sufficient, the regeneration process is initiated.
  • a microprocessor is provided which, depending on the signals supplied by the sensor, triggers and controls an optimally short regeneration process.
  • a major advantage of the method according to the invention is that with the aid of the signals supplied by the pressure sensor and a suitably programmed microprocessor, relatively precise indications of the pump capacity still available can be obtained. If, for example, the time it takes for the cryopump to reach a certain pressure is measured during an evacuation process, conclusions can be drawn from the measured time about the pump capacity still available. If a certain time is exceeded, an automatically running regeneration process can be triggered, whereby the necessary measures are initiated by the control unit or by the microprocessor. Even from one dp German -Measurement (change in pressure over time) the condition of the pump can be determined.
  • cryopump of the type according to the invention is operated in such a way that the pumping speed and thus the pump capacity of the cryopump that is still present is monitored on the basis of the data supplied by the sensor or sensors, and that in the event of a pump capacity that is no longer sufficient for the next pumping cycle, an automatically running regeneration process is initiated, then this cryopump can be operated optimally, i.e. with pumping phases as long as possible or pumping cycles as often as possible and with regeneration phases as short as possible. Downtimes of systems to which cryopumps of the type according to the invention are connected are therefore optimally short.
  • the cryopump can be included in the automatic operation of a system. Operating personnel who are constantly present are no longer required. The pump or the associated system can also be operated overnight.
  • the figure shows a cryopump with a housing 1, which has an inlet opening 2 for the gases to be pumped out.
  • the recipient 30 to be evacuated is connected to the flange 3, specifically via a shut-off device 31, so that the cryopump can be separated from the recipient 30 for start-up and regeneration.
  • a two-stage refrigerator 4 projects into the housing 1 from below.
  • a further, essentially pot-shaped, housing 7 is held in a heat-conducting manner, the opening 8 of which lies approximately parallel to the opening 2 of the housing 1 and is covered with the shielding metal strip forming a baffle 9.
  • the walls of the housing 7 assume a temperature of approximately 60 to 100 K during pump operation (when the refrigerator 4 is switched on) and serve as pump surfaces for water vapor and carbon dioxide (by cryocondensation).
  • the shape of the pot 7 is chosen so that the pot together with the baffle 9 optimally shields the components arranged therein from external heat rays.
  • the second stage 10 of the refrigerator 4 projects into the pot-shaped housing 7 and carries the pumping surfaces 12 at its cold end 11.
  • These often consist of two flat sheet metal sections arranged parallel to one another.
  • the sheet metal sections are covered with the adsorption material 13 on their inner sides. It expediently consists of molecular sieve, activated carbon or zeolite.
  • the accumulation of gases N2, Ar, CO, methane or the like
  • the light gases H2, He
  • the light gases H2, He
  • the forevacuum pump 18 preferably a rotary vane pump with a final pressure of approximately 10 -3 mbar, is connected to the connecting piece 14 via a valve 16 and an adsorption trap 17.
  • the connecting piece 15 is used to carry out power supply lines 21 and 22, via which heaters 23 and 24, which are arranged on the cooling stages 5 and 11 and are composed of heating wires, are supplied with current.
  • the connecting piece 15 can also serve to hold a supply device 25 with a controller with which the maximum permitted temperature of the heaters 23 and 24 can be set and maintained or regulated.
  • the housing of the device 25 has a blind flange 26 with a current feedthrough which is fastened to the flange 27 of the connector 15. This arrangement ensures that the user of the cryopump is not able to work without controlled heating. Removing the device from the housing means venting the pump so that it can no longer perform its function.
  • control unit 28 contains known programmable control means (for example a microprocessor), which are able, depending on signals which are supplied by sensors to be described in detail, to emit control signals with which the operation of the cryopump can be controlled automatically.
  • programmable control means for example a microprocessor
  • the cryopump shown is also assigned means which allow gases (heated inert gases or air) to flow through the housing 1.
  • gases gases
  • These means include the gas supply 32, the heating device 33 and the valve 34, with which the supply of the gas through the pipe 35 can be controlled.
  • the tube 35 passes through the housing wall of the pump and the cylinder 7, so that the inflowing gases strike the pump surfaces directly.
  • the gas outlet is designated 36 and leads via the valve 38 either into the open or into a collecting container 37. This is only necessary if environmentally harmful gases must be removed from the pump surfaces.
  • a receptacle 37 ⁇ is expediently also assigned to the outlet of the vacuum pump 18, which can be identical to the container 37, for example.
  • the pump is also associated with means which make it possible to admit a relatively small, certain amount of gas into the housing 1.
  • These means comprise, for example, two valves 39 and 40 which define the fixed gas volume between them and which are actuated in a corresponding sequence for the inlet of the gas.
  • the volume between the valves 39 and 40 is fed from the supply volume 32 ⁇ .
  • the shut-off device 31 between the housing 1 of the pump and the recipient 30 to be evacuated is first closed. Then the housing 1 of the pump is evacuated to a pressure of 10 ⁇ 2 to 10 ⁇ 3 mbar using the vacuum pump 18. At the same time, the heaters 23 and 24 are switched on, so that the pump surfaces 7 and 12 heat up to the desired temperatures (70 ° C.). This condition is maintained until the pressure in the housing is 1 ⁇ 10 ⁇ 2 mbar. The refrigerator 4 can now be switched on. Thereafter, the heater 23 of the first cooling stage 5 of the refrigerator 4 is first switched off. As a result, the pump surface 7 cools and pumps the H2O vapor that is still present.
  • the heating 24 of the cooling stage 11 is switched off, so that the pump surfaces 12 also assume their operating temperature of approximately 12 K.
  • the recipient 30 to be evacuated is connected to the cryopump, that is to say the shut-off device 31 is opened.
  • this procedure has the advantage that in the first cooling phase, in which vapors are produced, it is prevented with certainty that they accumulate on the adsorption surfaces of the second stage and drastically reduce their capacity. The majority of the vapors therefore initially only accumulate on the pump surfaces 7. It is only when light gases, preferably helium, are to be pumped that the pump surfaces 12 are cooled to their operating temperature, so that the full pump capacity is available there.
  • the pressure sensor 41 which delivers signals corresponding to the pressure in the pump housing 1 to the control unit 28 via the line 42.
  • Temperature sensors 43, 44 and 45 are attached to the inner wall of the housing 1 and to the pump surfaces 7, 9 and 12, 13. They are connected to the control unit via lines 46, 47 and 48.
  • the adsorption trap 17 can also be equipped with a temperature sensor 49 so that its operating state can be monitored during the possible heating process. All lines via which signals are supplied to the control unit 28 are shown in dash-dot lines.
  • control unit Depending on the signals supplied, the control unit initiates the necessary measures. Depending on requirements, the refrigerator 4, the control valve 52, the valve 16, the control line 53, the valve 34 and the control valve 51 optionally existing heating device 33, via the control line 54 the valves 39 and 40, via the control line 55 the valve 31, via the control line 56 the backing pump and via the control line 57 the valve 38 to the collecting container 37. Finally, the control unit 28 is connected to the supply unit 25 for the cooling head heaters 23 and 24 via the control lines 58 and 59, so that the heaters can be started up separately or together. The control lines are shown with dashed lines.
  • the control unit 28 has, inter alia, the task of initiating the regeneration of the pump surfaces 7, 9, 12, 13 if this is desired or if the capacity of the pump surfaces is reached or almost reached. If the regeneration process is to be started automatically, it is first necessary for the control unit 28 to register the state of the need for regeneration.
  • One possibility for this is the recurring measurement of the time in which the cryopump reaches a certain pressure after aeration or pressure increase in the recipient 30, for example a pressure of 5 x 10 ⁇ 7 mbar after 30 seconds. If this time is exceeded, then - with otherwise reasonable size ratios (size of the recipient, performance of the pump) - conclude that the capacity of the pumping surfaces has been reached.
  • Another possibility is to relate pressure and time measurements in relation to recurring evacuation processes and to use those that can be calculated by the microprocessor dp German - Determine the remaining capacity of the pump. It is particularly expedient to use these options when the operation of a system requires recurring evacuation processes, which then take place at the same time or dp German -Measurement can serve.
  • the occupancy of the pumping surfaces of the second stage can be determined by constantly registering the temperature of these pumping surfaces. For example, if the pump surface 12 of the second stage, which takes on a temperature of approximately 12 K when the pump is freshly regenerated, reaches 18 K, the regeneration process is started.
  • Another possibility is to close the valve 31 between the recipient and the pump at intervals, to admit a known relatively small amount of gas into the pump housing by means of the valves 39, 40 and again the time or time described dp German -Make measurements.
  • the sensors 41, 44 and 45 concerned are constantly queried, so that the next step can be initiated immediately after the pressure and temperature values mentioned have been reached.
  • the regeneration times are therefore optimally short. This also applies in the event that a pump that has not yet reached its maximum capacity is to be regenerated prematurely. The regeneration process must then be started manually on the control unit.
  • the sensors concerned continuously provide signals about the respective state to the control unit 28, so that the He and H2 adsorbing surfaces are regenerated again after an optimally short time.
  • the gases bound by cryocondensation or cryotrapping on the pumping surfaces 12 can also be removed independently of those on the pumping surfaces 7 of the first stage.
  • the regeneration process can be carried out in such a way that the condition in the pump housing is constantly monitored by the sensors in such a way that liquefaction of the condensed gases during the regeneration phase is avoided with certainty. This can be achieved, for example, by keeping the pressure in the pump slightly below the sublimation point. By controlling the heating output depending on the pressure or by metered inlet of regeneration gases, this condition can be met.
  • the valve 34 must be designed as a metering valve with metered regeneration gas inlet.
  • the pressure in the pump can be kept at a level where the gas mixture is not is explosive.
  • An H2 / O2 mixture for example, is not explosive at a pressure below 14 mbar. If the regeneration of the cryopump is carried out in such a way that from about 10 mbar all current-carrying parts in the pump - such as heaters 23 and 24, ionization or heat conduction vacuum meters - are switched off, then any risk of explosion is also avoided.
  • Explosive gas mixtures can e.g. B. by admitting inert gas (Ar, N2) from the bottle 32 via the heater 33, the valve 34 and the tube 7 are first diluted and then removed from the pump.
  • the gas mixture is either pressed into the collecting container 37 with a slight overpressure via the valve 38 or conveyed into the container 37 ⁇ with the help of the backing pump 18 via the valve 16.
  • the temperature sensors 44, 45 and 43 indicate when the gas inlet can be interrupted.
  • valve 34 is closed, valve 16 is opened in order to evacuate the cryopump to its starting pressure ( ⁇ 5 ⁇ 10 -2 mbar).
  • steps 7 to 10 described on pages 10 and 11 can also be carried out.
  • the procedure described is expedient for the removal of explosive or toxic gases which, for example, are collected in the container 37 diluted by the regeneration gas. The corrosive gases do not get into the backing pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Betrieb einer Kryopumpe mit einem Gehäuse, mit einer Gaseintrittsöffnung, an welche über ein Ventil ein Rezipient anschließbar ist, mit einer an das Gehäuse über ein Ventil angeschlossenen Vakuumpumpe, mit einem im Gehäuse befindlichen zweistufigen Refrigerator als Kältequelle, mit Pumpflächen an den beiden Kühlköpfen des Refrigerators, welche mit einer elektrischen Heizung ausgerüstet sind, mit einem Sensor zur Kontrolle des Druckes innerhalb des Pumpengehäuses und mit einer Steuereinheit, bei welcher mit Hilfe der Steuereinheit und der vom Sensor gelieferten Signale der Betrieb der Kryopumpe überwacht und gesteuert wird, zu diesem Zweck anhand der vom Sensor gelieferten Daten die noch vorhandene Pumpkapazität der Kryopumpe festgestellt und im Falle einer nicht mehr ausreichenden Pumpkapazität ein automatisch ablaufender, von der Steuereinheit gesteuerter Regeneriervorgang eingeleitet wird. Betrieb der Kryopumpe soll hier so verstanden werden, daß damit nicht nur der Pump- und Evakuierbetrieb, sondern auch der Regenerierbetrieb gemeint ist. Außerdem bezieht sich die Erfindung auf eine zur Durchführung dieses Verfahrens geeignete Kryopumpe.
  • Kryopumpen gehören - wie z. B. auch die Ionengetterpumpen - zu einer Pumpengattung, die die aus einem Rezipienten entfernten Gase nicht unmittelbar der Atmosphäre zuführen, sondern zunächst an den Pumpflächen anlagern. Ist ihre Pumpkapazität erreicht, dann ist es erforderlich, die Pumpflächen zu regenerieren, d. h. die auf den Pumpflächen befindlichen Gase zu entfernen. Dies kann zum Beispiel dadurch geschehen, daß der Refrigerator nach Schließen des Ventils zum Rezipienten abgeschaltet und/oder die Pumpe von vorzugsweise erwärmten Gasen durchströmt werden. Die warmen Gase haben die Aufgabe, die Pumpflächen aufzuheizen und die freiwerdenden Gase abzutransportieren. Bei einem anderen Regenerierverfahren (deutsche Patentanmeldung P 35 12 614.0) werden die Pumpflächen mittels einer elektrischen Heizung an den Pumpflächen aufgeheizt. Mit einer an das Pumpengehäuse angeschlossenen Vorvakuumpumpe werden die freiwerdenden Gase abgepumpt.
  • Die Regenerierung von Kryopumpen ist mit einigen Schwierigkeiten verbunden. Zum einen ist es nicht immer ganz einfach festzustellen, wann die maximale Kapazität einer Kryopumpe erreicht ist. Besonders schwierig ist es, erkennen zu können, ob eine möglicherweise noch vorhandene Restkapazität für einen nachfolgenden Pumpzyklus noch ausreicht. Dieses Problem ist zum Beispiel beim Einsatz von Kryopumpen bei Aufdampf- oder Sputteranlagen vorhanden. Bei Anlagen dieser Art wird eine Charge in einen Rezipienten eingebracht, der daraufhin mit Hilfe der Kryopumpe evakuiert wird. In den Rezipienten werden danach reaktive Gase und/oder zusätzlich Inertgase eingelassen, und zwar bis zu einem Druck, bei dem die Beschichtung der Teile erfolgt. Nach Unterbrechung des Gaseinlassens werden die verbliebenen Gase entfernt, um den vorangegangenen Bedampfungsschritt zu kontrollieren. Dann wird der Rezipient von der Kryopumpe getrennt und für den nachfolgenden Chargenwechsel belüftet. Ob die Kryopumpe nach dem letzten Evakuiervorgang noch eine ausreichende Kapazität hat, ist nur schwierig feststellbar. Üblicherweise wird aus Sicherheitsgründen lange vor Erreichen der maximalen Kapazität bereits ein Regenerierschritt gestartet. Für diese Zeit muß der Betrieb der Anlage unterbrochen werden.
  • Weiterhin es es schwierig zu erkennen, wann eine Regenerierphase beendet ist, d. h. wann die Pumpflächen infolge ihrer Aufheizung völlig von den Gasen befreit sind. Üblich ist es deshalb, sicherheitshalber von einer maximalen Belegung auszugehen und dementsprechend lange zu heizen. Damit ist jedoch der Nachteil verbunden, daß die Kryopumpe relativ lange für den Evakuierbetrieb ausfällt und damit auch die Anlage, an die die Kryopumpe angeschlossen ist, häufig unnötig lange stillsteht.
  • Aus der WO-A- 8 400 404 ist ein Verfahren der eingangs erwähnten Art bekannt. Bei der offenbarten Kryopumpe sind Mittel vorgesehen, mit denen es möglich ist, Wärmeenergie von außen unmittelbar nur auf die Pumpflächen der zweiten (kälteren) Stufe des Refrigerators zu übertragen. Dadurch ist es möglich, die Pumpflächen der zweiten (kälteren) Stufe des Refrigerators unabhängig von den Pumpflächen der ersten (wärmeren) Stufe des Refrigerators zu regenerieren. Obwohl ein Temperatursensor und auch ein Drucksensor erwähnt werden, offenbart die erwähnte Schrift nicht, wie festgestellt werden kann, ob eine in Betrieb befindliche Pumpe regenerierbedürftig ist oder nicht, d. h. ob die noch vorhandene Restpumpkapazität für den nächsten Pumpzyklus ausreicht oder nicht.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Kryopumpe der eingangs genannten Art derart mit Überwachungs- und Steuereinrichtungen auszurüsten, daß der Zeitaufwand für das Regenerieren minimiert wird. Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß zur Feststellung der noch vorhandenen Pumpkapazität Saugvermögensmessungen durchgeführt werden, indem entweder wiederholt die Zeit gemessen wird, die die Kryopumpe benötigt, um einen bestimmten Druckwert zu erreichen, oder bei Evakuiervorgängen dp dt
    Figure imgb0001
    -Messungen durchgeführt werden, und daß, wenn die noch vorhandene Pumpkapazität für den nächsten Pumpzyklus nicht mehr ausreicht, der Regeneriervorgang eingeleitet wird. Bei einer besonders zweckmäßigen Ausführungsform ist ein Mikroprozessor vorgesehen, der in Abhängigkeit der vom Sensor gelieferten Signale einen optimal kurzen Regeneriervorgang auslöst und steuert.
  • Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß mit Hilfe der vom Drucksensor gelieferten Signale und eines geeignet programmierten Mikroprozessors relativ genaue Anhaltspunkte zur noch vorhandenen Pumpkapazität gewonnen werden können. Wird zum Beispiel während eines Evakuiervorganges diejenige Zeit gemessen, die die Kryopumpe braucht, um einen bestimmten Druck zu erreichen, dann lassen sich aus der gemessenen Zeit Rückschlüsse auf die noch vorhandene Pumpkapazität ziehen. Wird eine bestimmte Zeit überschritten, dann kann ein automatisch ablaufender Regeneriervorgang ausgelöst werden, wobei die erforderlichen Maßnahmen von der Steuereinheit bzw. von dem Mikroprozessor initiiert werden. Auch aus einer dp dt
    Figure imgb0002
    -Messung (zeitliche Änderung des Druckes) läßt sich der Zustand der Pumpe ermitteln.
  • Aus den Erkenntnissen über die noch vorhandene Kapazität kann weiterhin auf den Grad der Belegung der Pumpflächen mit Gasen geschlossen werden, so daß nicht unbedingt maximale Regenerierzeiten eingehalten werden müssen. Um eine optimal kurze Regenerierphase zu erreichen, ist es jedoch zweckmäßig, weitere Sensoren vorzusehen, mit denen die Befreiung einer Pumpfläche von den Gasen feststellbar ist. Zweckmäßig sind hierfür Temperatur-Sensoren, die an den Pumpflächen befestigt sind.
  • Wird eine Kryopumpe der erfindungsgemäßen Art in der Weise betrieben, daß anhand der von dem oder den Sensoren gelieferten Daten das Saugvermögen und damit die noch vorhandene Pumpkapazität der Kryopumpe überwacht wird und daß im Falle einer für den nächsten Pumpzyklus nicht mehr ausreichenden Pumpkapazität ein automatisch ablaufender Regeneriervorgang eingeleitet wird, dann kann diese Kryopumpe optimal, das heißt mit möglichst langen Pumpphasen oder möglichst häufigen Pumpzyklen und mit möglichst kurzen Regenerierphasen, betrieben werden. Stillstandszeiten von Anlagen, an denen Kryopumpen der erfindungsgemäßen Art angeschlossen sind, sind deshalb optimal kurz. Die Kryopumpe kann in den selbsttätig ablaufenden Betrieb einer Anlage mit einbezogen werden. Ständig anwesendes Bedienungspersonal ist nicht mehr erforderlich. Der Betrieb der Pumpe oder der damit verbundenen Anlage ist auch über Nacht möglich.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand eines in der Figur dargestellten Ausführungsbeispiels erläutert werden.
  • In der Figur ist eine Kryopumpe mit einem Gehäuse 1 dargestellt, welche eine Eintrittsöffnung 2 für die abzupumpenden Gase aufweist. Der zu evakuierende Rezipient 30 wird an den Flansch 3 angeschlossen, und zwar über eine Absperreinrichtung 31, so daß die Kryopumpe für die Inbetriebnahme und für die Regeneration von dem Rezipienten 30 abgetrennt werden kann.
  • In das Gehäuse 1 ragt von unten ein zweistufiger Refrigerator 4 hinein. An der ersten Kältestufe 5 des Refrigerators 4 ist ein weiteres, im wesentlichen topfförmiges, Gehäuse 7 gut wärmeleitend gehaltert, dessen etwa parallel zur Öffnung 2 des Gehäuses 1 liegende Öffnung 8 mit der Abschirmung dienenden, ein Baffle 9 bildenden Metallstreifen abgedeckt ist. Die Wandungen des Gehäuses 7 nehmen während des Pumpbetriebs (bei eingeschaltetem Refrigerator 4) eine Temperatur von etwa 60 bis 100 K an und dienen als Pumpflächen für Wasserdampf und Kohlendioxid (durch Kryokondensation). Außerdem ist die Form des Topfes 7 so gewählt, daß der Topf zusammen mit dem Baffle 9 die darin angeordneten Bauteile optimal vor äußeren Wärmestrahlen abschirmt.
  • In das topfförmige Gehäuse 7 ragt die zweite Stufe 10 des Refrigerators 4 hinein und trägt an ihrem kalten Ende 11 die Pumpflächen 12. Diese bestehen häufig aus zwei parallel zueinander angeordneten ebenen Blechabschnitten. Zur Vergrößerung der Oberfläche beziehungsweise zur Verbesserung des Pumpens leichter Gase sind die Blechabschnitte auf ihren Innenseiten mit dem Adsorptionsmaterial 13 belegt. Zweckmäßigerweise besteht dieses aus Molekularsieb, Aktivkohle oder Zeolith. Auf den Außenseiten der Pumpflächen 11 findet die Anlagerung von Gasen (N₂, Ar, CO, Methan oder dergleichen) durch Kryokondensation oder Kryotrapping statt. Vorzugsweise die leichten Gase (H₂, He) gelangen zu den Innenseiten der Pumpflächen und werden dort durch Kryosorption gebunden.
  • Am Gehäuse 1 der dargestellten Kryopumpe sind zwei weitere Anschlußstutzen 14 und 15 vorgesehen. An dem Anschlußstutzen 14 ist über ein Ventil 16 und eine Adsorptionsfalle 17 die Vorvakuumpumpe 18, vorzugsweise eine Drehschieberpumpe mit einem Enddruck von ca. 10⁻³ mbar angeschlossen.
  • Der Anschlußstutzen 15 dient der Durchführung von Stromzuführungen 21 und 22, über die auf den Kältestufen 5 und 11 angeordnete, aus Heizdrähten bestehende Heizungen 23 und 24 mit Strom versorgt werden. Der Anschlußstutzen 15 kann weiterhin der Halterung eines Versorgungsgerätes 25 mit einem Regler dienen, mit dem die maximal erlaubte Temperatur der Heizungen 23 und 24 eingestellt und aufrechterhalten beziehungsweise geregelt werden kann. Dazu weist das Gehäuse des Gerätes 25 einen Blindflansch 26 mit einer Stromdurchführung auf, der am Flansch 27 des Stutzens 15 befestigt wird. Durch diese Anordnung wird erreicht, daß es dem Benutzer der Kryopumpe nicht möglich ist, ohne geregelte Heizung zu arbeiten. Eine Abnahme des Gerätes von dem Gehäuse bedeutet eine Belüftung der Pumpe, so daß sie ihre Funktion nicht mehr erfüllen kann.
  • Zusätzlich ist schematisch eine Steuereinheit dargestellt und mit 28 bezeichnet. Sie enthält an sich bekannte programmierbare Steuermittel (zum Beispiel einen Mikroprozessor), welche in der Lage sind, in Abhängigkeit von Signalen, die von im einzelnen noch zu beschreibenden Sensoren geliefert werden, Steuersignale abzugeben, mit denen der Betrieb der Kryopumpe automatisch steuerbar ist.
  • Der dargestellten Kryopumpe sind weiterhin Mittel zugeordnet, die es erlauben, durch das Gehäuse 1 Gase (aufgeheizte Inertgase oder Luft) durchströmen zu lassen. Diese Mittel umfassen den Gasvorrat 32, die Heizeinrichtung 33 und das Ventil 34, mit dem die Zufuhr des Gases durch das Rohr 35 steuerbar ist. Das Rohr 35 durchsetzt die Gehäusewand der Pumpe und den Zylinder 7, so daß die einströmenden Gase unmittelbar auf die Pumpflächen auftreffen. Der Gasaustritt ist mit 36 bezeichnet und führt über das Ventil 38 entweder ins Freie oder in einen Auffangbehälter 37. Dieser ist nur erforderlich, wenn umweltschädliche Gase von den Pumpflächen zu entfernen sind. In diesem Fall ist zweckmäßigerweise auch dem Auslaß der Vakuumpumpe 18 ein Auffangbehälter 37ʹ zugeordnet, der zum Beispiel mit dem Behälter 37 identisch sein kann.
  • Schließlich sind der Pumpe noch Mittel zugeordnet, die es ermöglichen, in das Gehäuse 1 eine relativ kleine, bestimmte Menge Gas einzulassen.
    Diese Mittel umfassen zum Beispiel zwei Ventile 39 und 40, die zwischen sich das feste Gasvolumen definieren und die zum Einlaß des Gases in entsprechender Reihenfolge betätigt werden. Das Volumen zwischen den Ventilen 39 und 40 wird aus dem Vorratsvolumen 32ʹ gespeist.
  • Um die dargestellte Kryopumpe in Betrieb zu nehmen, wird zunächst die Absperreinrichtung 31 zwischen dem Gehäuse 1 der Pumpe und dem zu evakuierenden Rezipienten 30 geschlossen. Danach wird das Gehäuse 1 der Pumpe mit Hilfe der Vakuumpumpe 18 auf einen Druck von 10⁻² bis 10⁻³ mbar evakuiert. Gleichzeitig werden die Heizungen 23 und 24 eingeschaltet, so daß sich die Pumpflächen 7 und 12 auf die gewünschten Temperaturen (70° C) erwärmen. Dieser Zustand wird so lange beibehalten, bis der Druck im Gehäuse 1 < 10⁻² mbar beträgt. Der Refrigerator 4 kann jetzt eingeschaltet werden. Danach wird zunächst die Heizung 23 der ersten Kältestufe 5 des Refrigerators 4 abgeschaltet. Dadurch kühlt die Pumpfläche 7 ab und pumpt den noch vorhandenen H₂O-Dampf. Nach diesem Schritt wird die Heizung 24 der Kältestufe 11 abgeschaltet, so daß auch die Pumpflächen 12 ihre Betriebstemperatur von ca. 12 K annehmen. Dann wird der zu evakuierende Rezipient 30 an die Kryopumpe angeschlossen, das heißt, die Absperreinrichtung 31 geöffnet. Diese Schritte können selbsttätig ablaufen, wenn der in der Steuereinheit befindliche Mikroprozessor dementsprechend programmiert ist. Da die Sensoren 41, 44 und 45 ständig Signale über den Zustand der Pumpe liefern, können die einzelnen Schritte beendet werden, sobald der gewünschte Zustand erreicht ist. Die Inbetriebnahme der Pumpe kann deshalb in optimal kurzer Zeit erfolgen.
  • Darüber hinaus hat diese Verfahrensweise den Vorteil, daß in der ersten Einkühl-Phase, in der Dämpfe anfallen, mit Sicherheit verhindert wird, daß diese sich auf den Adsorptionsflächen der zweiten Stufe anlagern und ihre Kapazität drastisch reduzieren. Der größte Teil der Dämpfe lagert sich deshalb zunächst nur an den Pumpflächen 7 an. Erst dann, wenn bevorzugt leichte Gase, vorzugsweise Helium, gepumpt werden sollen, erfolgt die Abkühlung der Pumpflächen 12 auf ihre Betriebstemperatur, so daß dort die volle Pumpkapazität zur Verfügung steht.
  • Um einen selbstätig ablaufenden Betrieb der Kryopumpe mit Hilfe der Steuereinheit 28 zu ermöglichen, ist es erforderlich, diese mit Informationssignalen zu füttern. Dazu sind mehrere Sensoren vorgesehen. Im einzelnen handelt es sich um den Drucksensor 41, der dem Druck im Pumpengehäuse 1 entsprechende Signale über die Leitung 42 an die Steuereinheit 28 liefert. Temperatur-Sensoren 43, 44 und 45 sind an der Innenwand des Gehäuses 1 sowie an den Pumpflächen 7, 9 und 12, 13 befestigt. Sie sind über die Leitungen 46, 47 und 48 mit der Steuereinheit verbunden. Auch die Adsorptionsfalle 17 kann mit einem Temperatursensor 49 ausgerüstet sein, damit ihr Betriebszustand während des eventuellen Ausheizvorganges überwacht werden kann. Sämtliche Leitungen, über die der Steuereinheit 28 Signale zugeführt werden, sind strichpunktiert dargestellt.
  • In Abhängigkeit von den zugeführten Signalen initiiert die Steuereinheit die erforderlichen Maßnahmen. Von ihr werden je nach Bedarf über die Steuerleitung 51 der Refrigerator 4, über die Steuerleitung 52 das Ventil 16, über die Steuerleitung 53 das Ventil 34 sowie die gegebenenfalls vorhandene Heizeinrichtung 33, über die Steuerleitung 54 die Ventile 39 und 40, über die Steuerleitung 55 das Ventil 31, über die Steuerleitung 56 die Vorpumpe und über die Steuerleitung 57 das Ventil 38 zum Auffangbehälter 37 betätigt. Schließlich ist die Steuereinheit 28 mit dem Versorgungsgerät 25 für die Kühlkopfheizungen 23 und 24 über die Steuerleitungen 58 und 59 verbunden, so daß ein separates oder ein gemeinsames Inbetriebsetzen der Heizungen möglich ist. Die Steuerleitungen sind jeweils gestrichelt dargestellt.
  • Die Steuereinheit 28 hat unter anderem die Aufgabe, die Regenerierung der Pumpflächen 7, 9, 12, 13 einzuleiten, wenn dies erwünscht ist oder wenn die Kapazität der Pumpflächen erreicht bzw. nahezu erreicht ist. Wenn der Start des Regeneriervorganges selbsttätig erfolgen soll, dann ist es zunächst erforderlich, daß von der Steuereinheit 28 der Zustand der Regeneriernotwendigkeit registriert wird. Eine Möglichkeit dazu besteht in der wiederkehrenden Messung der Zeit, in der die Kryopumpe nach einer Belüftung oder Druckerhöhung im Rezipienten 30 einen bestimmten Druck erreicht, zum Beispiel einen Druck von 5 x 10⁻⁷ mbar nach 30 sec. Wird diese Zeit überschritten, dann kann - bei im übrigen angemessenen Größenverhältnissen (Größe des Rezipienten, Leistung der Pumpe) - daraus geschlossen werden, daß die Kapazität der Pumpflächen erreicht ist. Eine andere Möglichkeit besteht darin, während wiederkehrender Evakuiervorgänge Druck- und Zeitmessungen in Relation zu setzen und anhand von vom Mikroprozessor errechenbaren dp dt
    Figure imgb0003
    -Werten die noch vorhandene Kapazität der Pumpe festzustellen. Besonders zweckmäßig ist es, diese Möglichkeiten dann anzuwenden, wenn der Betrieb einer Anlage ohnehin wiederkehrende Evakuiervorgänge erfordert, die dann gleichzeitig der Zeit- oder der dp dt
    Figure imgb0004
    -Messung dienen können.
  • Bei im wesentlichen kontinuierlich an einen Rezipienten angeschlossenen Kryopumpen kann die Belegung der Pumpflächen der zweiten Stufe durch ständige Registrierung der Temperatur dieser Pumpflächen festgestellt werden. Erreicht zum Beispiel die Pumpfläche 12 der zweiten Stufe, die bei frisch regenerierter Pumpe eine Temperatur von etwa 12 K annimmt, 18 K, dann wird der Regeneriervorgang gestartet.
  • Eine andere Möglichkeit besteht darin, in zeitlichen Abständen das Ventil 31 zwischen Rezipient und Pumpe zu schließen, in das Pumpengehäuse mittels der Ventile 39, 40 eine bekannte relativ kleine Gasmenge einzulassen und wieder die beschriebenen Zeit- oder dp dt
    Figure imgb0005
    -Messungen vorzunehmen.
  • Ist vom Mikroprozessor in der Steuereinheit 28 die Regeneriernotwendigkeit festgestellt worden, dann wird automatisch der Regeneriervorgang eingeleitet. Dies geschieht nach den folgenden Schritten:
    • 1. Die Absperreinrichtung 31 zum Rezipienten 30 wird geschlossen;
    • 2. der Refrigerator 4 wird abgeschaltet;
    • 3. die Heizungen der ersten und zweiten werden eingeschaltet;
    • 4. das Vorvakuumventil 16 wird geöffnet, wenn vom Sensor 41 ein Druck gemeldet wird, der z. B. etwas größer als 1 mbar ist;
    • 5. die Heizungen werden so lange bei 70° C betrieben, bis sich ein Druck < 5 x 10⁻² mbar in der Pumpe eingestellt hat;
    • 6. das Vorvakuumventil 16 wird geschlossen;
    • 7. die Heizung der ersten Stufe wird ausgeschaltet;
    • 8. der Refrigerator wird eingeschaltet, so daß sich die erste Stufe auf eine Temperatur < 160 K abkühlt;
    • 9. die Heizung 24 der zweiten Stufe 10 wird abgeschaltet, so daß sich die zweite Stufe auf eine Temperatur < 20 K abkühlt;
    • 10. die Absperreinrichtung 31 zum Rezipienten 30 wird geöffnet.
  • Die betroffenen Sensoren 41, 44 und 45 werden dabei ständig abgefragt, so daß unmittelbar nach Erreichen der genannten Druck- und Temperaturwerte der nächste Schritt eingeleitet werden kann. Die Regenerierzeiten sind dadurch optimal kurz. Dies gilt auch für den Fall, daß eine Pumpe, die noch nicht ihre maximale Kapazität erreicht hat, vorzeitig regeneriert werden soll. Der Regeneriervorgang ist dann von Hand an der Steuereinheit zu starten.
  • Eine Konditionierung beziehungsweise Regenerierung der Kryopumpe nach He- und H₂-Pumpen erfolgt nach den Schritten:
    • 1. Die Absperreinrichtung 31 wird geschlossen;
    • 2. die Heizung 24 der zweiten Stufe 10 wird bei laufendem Refrigerator eingeschaltet, und es wird so lange gewartet, bis sich bei einer Heiztemperatur von 70 K, überwacht vom Sensor 45, ein Druck von etwa 1 mbar (Sensor 41) im Gehäuse der Pumpe eingestellt hat;
    • 3. Das Vorvakuumventil 16 wird geöffnet und die Heizung 24 der zweiten Stufe abgeschaltet, bis ein Druck von etwa 1 x 10⁻² mbar erreicht ist;
    • 4. das Vorvakuumventil 16 wird geschlossen;
    • 5. die Absperreinrichtung 31 zum Rezipienten 30 wird geöffnet, nachdem die Temperatur an der zweiten Kältestufe 20 K unterschritten hat.
  • Auch bei diesem partiellen Regenerieren liefern die betroffenen Sensoren ständig Signale über den jeweiligen Zustand an die Steuereinheit 28, so daß nach optimal kurzer Zeit die He und H₂ adsorbierenden Flächen wieder regeneriert zur Verfügung stehen.
  • Bei diesem Regeneriervorgang wird die bei zweistufigen Refrigeratoren bestehende Möglichkeit ausgenutzt, die Pumpflächen der ersten Stufe auf ihrer Betriebstemperatur zu halten, während die Pumpflächen der zweiten Stufe aufgeheizt werden. Der Grund dafür liegt darin, daß die Wärmeleitfähigkeit zwischen der Kältestufe 5 der ersten Stufe und der Kältestufe 11 der zweiten Stufe des Refrigerators sehr klein ist, so daß eine Beheizung der zweiten Stufe die Temperatur im Bereich der ersten Stufe nur unwesentlich beeinflußt.
  • Durch die Wahl einer höheren Heiztemperatur (T>120 K) an der zweiten Stufe können auch die durch Kryokondensation oder Kryotrapping auf den Pumpflächen 12 gebundenen Gase unabhängig von den auf den Pumpflächen 7 der ersten Stufe entfernt werden.
  • Ein weiterer wesentlicher Vorteil des Einsatzes der programmierbaren Steuereinheit 28 liegt darin, daß der Regeneriervorgang dadurch, daß der Zustand im Pumpengehäuse von den Sensoren ständig überwacht wird, derart durchführbar ist, daß eine Verflüssigung der kondensierten Gase während der Regenerierphase mit Sicherheit vermieden wird. Dies kann zum Beispiel dadurch erreicht werden, daß der Druck in der Pumpe stets etwas unterhalb des Sublimationspunktes gehalten wird. Durch eine Steuerung der Heizleistung in Abhängigkeit vom Druck oder durch dosierten Einlaß von Regeneriergasen ist die Einhaltung dieser Bedingung möglich. Das Ventil 34 muß bei dosiertem Regeneriergaseinlaß als Dosierventil ausgebildet sein.
  • Besteht die Gefahr, daß sich in der Pumpe explosive Gasgemische ansammeln, dann kann mit Hilfe des Mikroprozessors das Entstehen einer tatsächlichen Explosionsgefahr vermieden werden. Der Druck in der Pumpe kann zum Beispiel auf einem Wert gehalten werden, bei dem das Gasgemisch nicht explosionsfähig ist. Ein H₂/O₂-Gemisch ist beispielsweise bei einem Druck unterhalb 14 mbar nicht explosionsfähig. Wird die Regeneration die Kryopumpe derart durchgeführt, daß ab etwa 10 mbar alle sich in der Pumpe befindenden stromführenden Teile - das sind zum Beispiel die Heizungen 23 und 24, Ionisations- oder Wärmeleitungsvakuumeter - abgeschaltet werden, dann ist ebenfalls jede Explosionsgefahr vermieden.
  • Explosive Gasgemische können z. B. durch Einlassen von Inertgas (Ar, N₂) aus der Flasche 32 über die Heizvorrichtung 33, das Ventil 34 und das Rohr 7 zunächst verdünnt und dann aus der Pumpe entfernt werden. Das Gasgemisch wird entweder mit leichtem Überdruck über das Ventil 38 in den Auffangbehälter 37 gedrückt oder mit Hilfe der Vorpumpe 18 über das Ventil 16 in den Behälter 37ʹ befördert. Die Temperatursensoren 44, 45 und 43 zeigen an, wann der Gaseinlaß unterbrochen werden kann. Nach Schließen des Ventils 34 wird Ventil 16 geöffnet, um die Kryopumpe auf ihren Startdruck zu evakuieren ( <5 x 10⁻² mbar).
  • Eine typische Vorgehensweise ohne Hilfe der Vorpumpe 18 ist die folgende:
    • 1. Schließen von Ventil 31,
    • 2. Abschalten des Refrigerators 4,
    • 3. Gaseinlaß über Ventil 34 (offen) aus dem Gasvorrat 32,
    • 4. bei p≈1050 mbar Öffnen des Ventils 38 und Einspeisung des Gasgemisches in 37,
    • 5. Unterbrechung des Gaseinlasses, wenn Sensor 45 eine ausreichend hohe Temperatur anzeigt;
      (T≈70 K bei H₂-Regenerierung;
      T≈150 K bei CH₂-Regenerierung)
    • 6. Evakuieren der Pumpe mit der Vorpumpe auf p<5 x 10⁻² mbar.
  • Sollte nur H₂ oder CH₄ entfernt werden, dann kann die Pumpe wieder in Betrieb genommen werden, und zwar durch die folgenden Schritte:
    • 7ʹ. Starten des Refrigerators 4 (bei geschlossenem Ventil 16),
    • 8ʹ. Öffnen des Ventils 31 bei T 20 K (Sensor 45) an der zweiten Kältestufe.
  • Sollte die Pumpe vollständig regeneriert werden, dann schließen sich die folgenden Schritte an:
    • 7ʺ. Regenerierheizungen ein,
    • 8ʺ. Aufheizen der Pumpenteile bis T 300 K (Sensoren 43, 44, 45). Bei p 8 x 10⁻² mbar sollte das Ventil 16 offen, bei p 5 x 10⁻³ mbar geschlossen sein.
    • 9ʺ. Heizungen aus und Refrigerator starten.
  • Anstelle des Schrittes 9ʺ können auch die auf Seiten 10 und 11 beschriebenen Schritte 7 bis 10 durchgeführt werden.
  • Die beschriebene Vorgehensweise ist bei der Entfernung explosiver oder toxischer Gase zweckmäßig, die zum Beispiel durch das Regeneriergas verdünnt im Behälter 37 aufgefangen werden. Die korrosiven Gase gelangen nicht in die Vorpumpe.
  • Ist diese Vorsichtsmaßnahme nicht erforderlich, kann die Vorpumpe während der Regeneration miteingesetzt werden und zum Beispiel folgendermaßen ablaufen:
    • 1. Schließen von Ventil 31,
    • 2. Abschalten des Refrigerators 4,
    • 3. Gaseinlaß über Ventil 34 (offen) aus dem Gasvorrat 32,
    • 4. Ventil 16 öffnen bei etwa 8 x 10⁻² mbar.
  • Für den Fall, daß nur H₂ oder CH₄ entfernt werden sollen:
    • 5ʹ. Unterbrechung des Gaseinlasses, wenn Sensor 45 eine ausreichend hohe Temperatur meldet (T≈70 K für die H₂-Regenerierung; T≈150 K für die CH₄-Regenerierung),
    • 6ʹ. Schließen des Ventils 16,
    • 7ʹ. Refrigerator ein,
    • 8ʹ. Öffnen des Ventils 31 bei T 20 K.
  • Für den Fall, daß die Pumpe vollständig regeneriert werden soll:
    • 5ʺ. Regenerierheizungen ein. Daran schließen sich zweckmäßigerweise die auf Seiten 10 und 11 beschriebenen Schritte 5 bis 10 an.

Claims (15)

  1. Verfahren zum Betrieb einer Kryopumpe mit einem Gehäuse (1), mit einer Gaseintrittsöffnung (8), an welche über ein Ventil (31) ein Rezipient (30) anschließbar ist, mit einer an das Gehäuse über ein Ventil (16) angeschlossenen Vakuumpumpe (18), mit einem im Gehäuse befindlichen zweistufigen Refrigerator (4) als Kältequelle, mit Pumpflächen (7, 12, 13) an den beiden Kühlköpfen (5, 11) des Refrigerators, welche mit einer elektrischen Heizung (23, 24) ausgerüstet sind, mit einem Sensor (41) zur Kontrolle des Druckes innerhalb des Pumpengehäuses (1) und mit einer Steuereinheit (28), bei welcher mit Hilfe der Steuereinheit (28) und der vom Sensor (41) gelieferten Signale der Betrieb der Kryopumpe überwacht und gesteuert wird, zu diesem Zweck anhand der vom Sensor (41) gelieferten Daten die noch vorhandene Pumpkapazität der Kryopumpe festgestellt und im Falle einer nicht mehr ausreichenden Pumpkapazität ein automatisch ablaufender, von der Steuereinheit (28) gesteuerter Regeneriervorgang eingeleitet wird, dadurch gekennzeichnet, daß zur Feststellung der noch vorhandenen Pumpkapazität Saugvermögensmessungen durchgeführt werden, indem entweder wiederholt die Zeit gemessen wird, die die Kryopumpe benötigt, um einen bestimmten Druckwert zu erreichen, oder bei Evakuiervorgängen dp dt
    Figure imgb0006
    -Messungen durchgeführt werden, und daß, wenn die noch vorhandene Pumpkapazität für den nächsten Pumpzyklus nicht mehr ausreicht, der Regeneriervorgang eingeleitet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Feststellung der Pumpkapazität in die zur Vorvakuumpumpe (18) und zum Rezipienten (30) geschlossene Kryopumpe eine bestimmte Gasmenge eingeleitet wird und danach die Zeit- oder dp dt
    Figure imgb0007
    -Messungen durchgeführt werden.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Feststellung der Pumpkapazität die Temperatur der Pumpflächen der zweiten Stufe überwacht wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet , daß ein partieller Regeneriervorgang durchgeführt wird, indem die Pumpflächen (13) und/oder (12) bei laufendem Refrigerator (4) auf eine Temperatur von etwa 70 K (zur Entfernung von He und H₂) oder etwa 150 K (zur Entfernung von N₂, Ar usw.) aufgeheizt werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , daß der Druck in der Kryopumpe während des Ablaufs des Regeneriervorgänge unterhalb des Sublimationspunktes von in der Pumpe vorhandenen kondensierbaren Gasen gehalten wird.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , daß der Druck p in der Kryopumpe während des Ablaufs der Regeneriervorgänge beim Vorhandensein explosionsfähiger Gase oder Gasgemische unterhalb desjenigen Druckes gehalten wird, bei dem eine Explosionsgefahr beginnt.
  7. Verfahren nach den Ansprüchen 5 oder 6, dadurch gekennzeichnet , daß die Aufrechterhaltung des Druckes in der Kryopumpe während der Regeneriervorgänge entweder mit Hilfe einer Steuerung der Heizleistung oder mit Hilfe eines dosierten Einlassens von Regeneriergasen durchgeführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , daß der Druck p in der Kryopumpe während des Ablaufs der Regeneriervorgänge beim Vorhandensein explosionsfähiger Gase oder Gasgemische überwacht wird und daß vor dem Erreichen desjenigen Druckes, bei dem eine Explosionsgefahr beginnt, alle sich in der Pumpe befindenden stromführenden Teile abgeschaltet werden.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Regenerierung der Kryopumpe durch Beheizung der Pumpflächen, durch Regeneriergaseinlaß oder durch eine Kombination dieser beiden Schritte durchgeführt wird.
  10. Kryopumpe zur Durchführung des Verfahrens nach Anspruch 1 mit einem Gehäuse (1), mit einer Gaseintrittsöffnung (8), an welche über ein Ventil (31) ein Rezipient (30) anschließbar ist, mit einer an das Gehäuse über ein Ventil (16) angeschlossenen Vakuumpumpe (18), mit einem im Gehäuse befindlichen zweistufigen Refrigerator (4) als Kältequelle, mit Pumpflächen (7, 12, 13) an den beiden Kühlköpfen (5, 11) des Refrigerators, welche mit einer elektrischen Heizung (23, 24) ausgerüstet sind, mit einem Sensor (41) zur Kontrolle des Druckes innerhalb des Pumpengehäuses (1), mit Mitteln (32, 33, 34) zum Einlaß von Regeneriergasen und mit einer Steuereinheit (28), mit der in Abhängigkeit der vom Sensor gelieferten Signale der Betrieb der Kryopumpe überwacht und gesteuert wird, dadurch gekennzeichnet, daß sie mit Mitteln (32', 39, 40) zum Einlaß einer geringen Gasmenge mit bestimmtem Volumen ausgerüstet ist, welche mindestens zwei mit der Steuereinheit (28) verbundene Ventile (39, 40) umfassen.
  11. Kryopumpe nach Anspruch 10, dadurch gekennzeichnet, daß die Vakuumpumpe (18) über ein Ventil (16) an das Gehäuse (1) der Kryopumpe angeschlossen ist, daß das Ventil (16) über eine Steuerleitung (52) mit der Steuereinheit (28) verbunden ist und daß zwischen dem Ventil (16) und der Vakuumpumpe (18) eine Adsorptionsfalle angeordnet ist, die ebenfalls mit einem Sensor (49) ausgerüstet ist.
  12. Kryopumpe nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Steuereinheit (28) über eine Steuerleitung (53) mit einem Ventil (34) für den Einlaß des Regeneriergases verbunden ist.
  13. Kryopumpe nach Anspruch 12, dadurch gekennzeichnet, daß ein Auffangbehälter (37, 37') für die die Kryopumpe verlassenden Regeneriergase vorhanden ist.
  14. Kryopumpe nach Anspruch 13, dadurch gekennzeichnet, daß der Auffangbehälter (37') an den Auslaß der Vakuumpumpe (16) und/oder über ein Ventil (38) an das Pumpengehäuse selbst angeschlossen ist und daß das Ventil (38) über eine Steuerleitung (57) mit der Steuereinheit (28) verbunden ist.
  15. Kryopumpe nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß weitere Sensoren (43, 44, 45) zur Überwachung der Temperatur der Pumpflächen der ersten und/oder zweiten Stufe des Refrigerators vorgesehen sind.
EP86108529A 1986-06-23 1986-06-23 Kryopumpe und Verfahren zum Betrieb dieser Kryopumpe Expired - Lifetime EP0250613B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP86108529A EP0250613B1 (de) 1986-06-23 1986-06-23 Kryopumpe und Verfahren zum Betrieb dieser Kryopumpe
DE8686108529T DE3680335D1 (de) 1986-06-23 1986-06-23 Kryopumpe und verfahren zum betrieb dieser kryopumpe.
US06922034 US4757689B1 (en) 1986-06-23 1986-10-22 Cryopump and a method for the operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86108529A EP0250613B1 (de) 1986-06-23 1986-06-23 Kryopumpe und Verfahren zum Betrieb dieser Kryopumpe

Publications (2)

Publication Number Publication Date
EP0250613A1 EP0250613A1 (de) 1988-01-07
EP0250613B1 true EP0250613B1 (de) 1991-07-17

Family

ID=8195213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86108529A Expired - Lifetime EP0250613B1 (de) 1986-06-23 1986-06-23 Kryopumpe und Verfahren zum Betrieb dieser Kryopumpe

Country Status (3)

Country Link
US (1) US4757689B1 (de)
EP (1) EP0250613B1 (de)
DE (1) DE3680335D1 (de)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044165A (en) * 1986-12-03 1991-09-03 Board Of Regents, The University Of Texas Cryo-slammer
US5001903A (en) * 1987-01-27 1991-03-26 Helix Technology Corporation Optimally staged cryopump
DE8804218U1 (de) * 1988-03-29 1988-05-11 Leybold Ag, 6450 Hanau, De
EP0336992A1 (de) * 1988-04-13 1989-10-18 Leybold Aktiengesellschaft Verfahren und Vorrichtung zur Überprüfung der Funktion einer refrigeratorbetriebenen Kryopumpe
DE3868264D1 (de) * 1988-04-22 1992-03-12 Leybold Ag Verfahren zur adaption einer zweistufigen refrigerator-kryopumpe auf ein betimmtes gas.
US5157928A (en) * 1988-09-13 1992-10-27 Helix Technology Corporation Electronically controlled cryopump
US6318093B2 (en) 1988-09-13 2001-11-20 Helix Technology Corporation Electronically controlled cryopump
US6022195A (en) 1988-09-13 2000-02-08 Helix Technology Corporation Electronically controlled vacuum pump with control module
US4918930A (en) * 1988-09-13 1990-04-24 Helix Technology Corporation Electronically controlled cryopump
US5010737A (en) * 1989-03-30 1991-04-30 Aisin Seiki Kabushiki Kaisha Multi-headed cryopump apparatus
JP2538796B2 (ja) * 1989-05-09 1996-10-02 株式会社東芝 真空排気装置および真空排気方法
USRE36610E (en) * 1989-05-09 2000-03-14 Kabushiki Kaisha Toshiba Evacuation apparatus and evacuation method
US5060481A (en) * 1989-07-20 1991-10-29 Helix Technology Corporation Method and apparatus for controlling a cryogenic refrigeration system
DE4006755A1 (de) * 1990-03-03 1991-09-05 Leybold Ag Zweistufige kryopumpe
JPH0497538A (ja) * 1990-08-14 1992-03-30 Horiba Ltd クライオスタット
DE59101463D1 (de) * 1990-11-19 1994-05-26 Leybold Ag Verfahren zur regeneration einer kryopumpe sowie zur durchführung dieses verfahrens geeignete kryopumpe.
JPH04326943A (ja) * 1991-04-25 1992-11-16 Hitachi Ltd 真空排気システム及び排気方法
DE9111236U1 (de) * 1991-09-10 1992-07-09 Leybold Ag, 6450 Hanau, De
AU2675192A (en) * 1991-09-19 1993-04-27 United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Miniature cryosorption vacuum pump
US5375424A (en) * 1993-02-26 1994-12-27 Helix Technology Corporation Cryopump with electronically controlled regeneration
GB2276228B (en) * 1993-03-18 1996-10-30 Elscint Ltd Cryogenic superconducting magnet system for use in magnetic resonance apparatus, and controlling the temperature of a heat shield therein
US6902378B2 (en) * 1993-07-16 2005-06-07 Helix Technology Corporation Electronically controlled vacuum pump
US5357760A (en) * 1993-07-22 1994-10-25 Ebara Technologies Inc. Hybrid cryogenic vacuum pump apparatus and method of operation
FR2708093B1 (fr) * 1993-07-23 1995-09-01 Air Liquide Installation de réfrigération à très basse température.
US5386708A (en) * 1993-09-02 1995-02-07 Ebara Technologies Incorporated Cryogenic vacuum pump with expander speed control
DE4336035A1 (de) * 1993-10-22 1995-04-27 Leybold Ag Verfahren zum Betrieb einer Kryopumpe sowie Vakuumpumpensystem mit Kryopumpe und Vorpumpe
US5513499A (en) * 1994-04-08 1996-05-07 Ebara Technologies Incorporated Method and apparatus for cryopump regeneration using turbomolecular pump
DE69531313T2 (de) * 1994-04-28 2004-05-13 Ebara Corp. Regeneration einer Kryopumpe
US5517823A (en) * 1995-01-18 1996-05-21 Helix Technology Corporation Pressure controlled cryopump regeneration method and system
DE19781645T1 (de) * 1996-03-20 1999-03-25 Helix Tech Corp Reinigungs- und Grob- bzw. Vorvakuum-Cryopumpenregenerationsverfahren, Cryopumpe und Steuer- bzw. Regeleinrichtung
US5906102A (en) * 1996-04-12 1999-05-25 Helix Technology Corporation Cryopump with gas heated exhaust valve and method of warming surfaces of an exhaust valve
DE19632123A1 (de) * 1996-08-09 1998-02-12 Leybold Vakuum Gmbh Kryopumpe
US6257001B1 (en) * 1999-08-24 2001-07-10 Lucent Technologies, Inc. Cryogenic vacuum pump temperature sensor
FR2840232B1 (fr) * 2002-05-30 2004-08-27 Cit Alcatel Piege cryogenique a regeneration rapide
US20040261424A1 (en) * 2003-06-27 2004-12-30 Helix Technology Corporation Integration of automated cryopump safety purge with set point
US6920763B2 (en) 2003-06-27 2005-07-26 Helix Technology Corporation Integration of automated cryopump safety purge
US6895766B2 (en) * 2003-06-27 2005-05-24 Helix Technology Corporation Fail-safe cryopump safety purge delay
DE602004005047T2 (de) * 2003-06-27 2007-09-27 Helix Technology Corp., Mansfield Integration einer automatisierten kryopumpensicherheitsspülung
DE102005028200A1 (de) * 2005-06-17 2006-12-21 Linde Ag Kryoverdichter mit Hochdruckphasentrenner
JP5084794B2 (ja) * 2009-07-22 2012-11-28 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの監視方法
JP5296811B2 (ja) * 2011-01-17 2013-09-25 住友重機械工業株式会社 クライオポンプ及び真空バルブ装置
JP5634323B2 (ja) * 2011-05-13 2014-12-03 住友重機械工業株式会社 クライオポンプシステム、クライオポンプのための再生方法
JP5846966B2 (ja) * 2012-03-01 2016-01-20 住友重機械工業株式会社 クライオポンプ及びその再生方法
JP6053551B2 (ja) * 2013-02-18 2016-12-27 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの運転方法
CN106428542B (zh) * 2016-08-16 2018-11-06 南京韬讯航空科技有限公司 一种共轴直升机操纵机构
CN106081094B (zh) * 2016-08-16 2018-01-23 葛讯 一种共轴直升机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH476215A (de) * 1968-08-20 1969-07-31 Balzers Patent Beteilig Ag Verfahren zum Betrieb einer kryogenen Pumpstufe und Hochvakuumpumpanordnung zur Durchführung des Verfahrens
US4361418A (en) * 1980-05-06 1982-11-30 Risdon Corporation High vacuum processing system having improved recycle draw-down capability under high humidity ambient atmospheric conditions
US4438632A (en) * 1982-07-06 1984-03-27 Helix Technology Corporation Means for periodic desorption of a cryopump
DE3422417A1 (de) * 1984-06-16 1985-12-19 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren und vorrichtung zur abtrennung einer gaskomponente aus einem gasgemisch durch ausfrieren
US4667477A (en) * 1985-03-28 1987-05-26 Hitachi, Ltd. Cryopump and method of operating same
DE3512614A1 (de) * 1985-04-06 1986-10-16 Leybold-Heraeus GmbH, 5000 Köln Verfahren zur inbetriebnahme und/oder regenerierung einer kryopumpe und fuer dieses verfahren geeignete kryopumpe

Also Published As

Publication number Publication date
US4757689A (en) 1988-07-19
US4757689B1 (en) 1996-07-02
DE3680335D1 (de) 1991-08-22
EP0250613A1 (de) 1988-01-07

Similar Documents

Publication Publication Date Title
EP0250613B1 (de) Kryopumpe und Verfahren zum Betrieb dieser Kryopumpe
DE69531313T2 (de) Regeneration einer Kryopumpe
DE69737315T2 (de) Auslasssystem
DE3512614A1 (de) Verfahren zur inbetriebnahme und/oder regenerierung einer kryopumpe und fuer dieses verfahren geeignete kryopumpe
EP0558495A1 (de) Verfahren zur regeneration einer kryopumpe sowie zur durchführung dieses verfahrens geeignete kryopumpe.
DE4491062B4 (de) Cryogene Vakuumpumpe mit elektronisch gesteuerter bzw. geregelter Regeneration
DE19781645B4 (de) Reinigungs- und Grob- bzw. Vorvakuum-Cryopumpenregenerationsverfahren, Cryopumpe und Steuer- bzw. Regeleinrichtung
DE4113174C2 (de)
EP0603180A1 (de) Kryopumpe.
EP0130319A2 (de) Verfahren und Vorrichtung zur Reinigung von Äthylenoxid oder einem Gemisch aus Äthylenoxid und einem fluorierten Chlorkohlenwasserstoff
DE1934938C3 (de) Hochvakuumpumpanordnung
DE3330146A1 (de) Vorrichtung und verfahren zur schnellen regeneration von autonomen kryopumpen
DE3046458A1 (de) Refrigerator-kryostat
DE2207509A1 (de) Verfahren und Vorrichtung zur Neon und Helium Erzeugung aus Luft
DE102006012209A1 (de) Verfahren zum Abfüllen eines verflüssigten Gases mit niedriger Temperatur
DE10303292A1 (de) Kühl-Container mit Adsorptions-Kühlapparat
DE19632123A1 (de) Kryopumpe
DE4028341A1 (de) Spruehtrockner zum trocknen von in organischen loesungsmitteln geloesten feststoffproben
EP0724689A1 (de) Verfahren zum betrieb einer kryopumpe sowie vakuumpumpensystem mit kryopumpe und vorpumpe
DE1929042U (de) Vorrichtung zum trennen von wasserstoff grosser reinheit aus einem wasserstoff-stickstoffgemisch.
DE2639301C2 (de) Flüssigkeitsverdampfer für die Erzeugung toxisch wirkender Dämpfe
DE19907517C2 (de) Vorrichtung zur Evakuierung eines Behälters und Betriebsverfahren hierfür
DE2512235C3 (de)
DE951817C (de) Einrichtung zum Auftauen eines Eisabscheiders einer Anlage mit einer Kaltgaskuehlmaschine
EP0739650B1 (de) Evakuierungssystem mit Abgasreiningung und Betriebsverfahren hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19880128

17Q First examination report despatched

Effective date: 19880802

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3680335

Country of ref document: DE

Date of ref document: 19910822

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920521

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 7

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990506

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990517

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990526

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050623