EP0213297B1 - Moyen de connexion entre les carters d'un groupe de turbines - Google Patents

Moyen de connexion entre les carters d'un groupe de turbines Download PDF

Info

Publication number
EP0213297B1
EP0213297B1 EP86108225A EP86108225A EP0213297B1 EP 0213297 B1 EP0213297 B1 EP 0213297B1 EP 86108225 A EP86108225 A EP 86108225A EP 86108225 A EP86108225 A EP 86108225A EP 0213297 B1 EP0213297 B1 EP 0213297B1
Authority
EP
European Patent Office
Prior art keywords
housing
pressure
turbine
pressure turbine
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86108225A
Other languages
German (de)
English (en)
Other versions
EP0213297A1 (fr
Inventor
Axel Remberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0213297A1 publication Critical patent/EP0213297A1/fr
Application granted granted Critical
Publication of EP0213297B1 publication Critical patent/EP0213297B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing

Definitions

  • the invention relates to a turbo set with at least one low-pressure sub-turbine, which has an outer housing and an inner housing coaxial therewith, and with at least one further high-pressure and / or medium-pressure sub-turbine arranged coaxially and upstream of the low-pressure sub-turbine, the shafts of the sub-turbines are rigidly coupled together to form a shaft train, as further defined in the preamble of claim 1.
  • the axial clearances between adjacent rotor and guide vane rows become relatively larger with increasing size and power of the turbo set and with increasing distance from axis-normal reference planes for the shaft and housing displacement, because the axial extension of the shaft train along its length, calculated from its reference plane in the direction of + x (seen downstream) or -x (seen upstream) must be related to the axial expansion of the housing of the individual sub-turbines, and in particular to that of the inner housing of the individual low-pressure sub-turbines on their axial expansion length.
  • An axially and radially flexible bellows which is attached to a collar of the coupling rod on the one hand and to the outer housing on the other hand, serves in particular as a sealing element for sealing the bushing. It is therefore subject to relatively large shifts.
  • the seal can also be made using a sliding fit, but this is never completely vacuum-tight or requires very precise machining.
  • the turbine type A has an axis-normal reference plane for the axial housing expansion, which is placed in a turbine bearing between the medium-pressure and the first low-pressure partial turbine. This fixes the fixed point of the housing expansion for the inner housing of the low-pressure sub-turbines in the + x direction and for the connected housing of the medium-pressure and high-pressure sub-turbine in the - x direction.
  • the bearing blocks or bearing housings of the high-pressure and medium-pressure sub-turbine are each stationary, but the axial bearing or thrust bearing of the turbine shaft is movable, the housing of which is connected to the housing of the high-pressure sub-turbine by two horizontal connecting rods and the axial displacement of which follows.
  • the coupling or push rods for the axial displacement of the inner casing of the low-pressure partial turbines in the same direction are only indicated; the turbine bearings for the inner casing are - as in DE-AS 1 216 322 - not shown and not described. It is emphasized, however, that the known turbine type A allows a good adjustment of the axial rotor and housing thermal expansions occurring during operation, particularly in the LP (low pressure) part of the turbine.
  • the object is achieved in a turbo set according to the preamble of claim 1 by the features specified in the characterizing part of claim 1.
  • Advantageous further developments are specified in subclaims 2 to 15.
  • subclaims 2 to 7 and 10 prove to be particularly advantageous for accessibility in the sense of the first subtask.
  • An advantageous embodiment of the sealing membrane is treated in claim 8, and in claim 9 a streamlined shape of the support and claw arms is specified.
  • the subject matter of claim 11 proves to be favorable, in that in the area of the thrust-transmitting turbine bearings, a turnbuckle chamber is accessible from above by opening a sealing cover, in each of which a turnbuckle for axial adjustment or readjustment of the axial alignment of the Coupling rods is housed.
  • each of the low-pressure partial turbines ND1 and ND2 which are constructed identically to one another, has an outer housing nd and — as is shown in particular in FIGS. 10 and 11 — an additional one. coaxial inner housing 2. It is essential for the invention that at least one low-pressure turbine section, generally designated ND, is provided; However, as shown, two similar low-pressure part turbines ND1, ND2 or more than two can be provided.
  • each of the low-pressure sub-turbines usually has two evaporation flows 3/1, 3/11 and a common central inflow 4 (for which two diametrically opposed pipe sockets are provided), one speaks in a low-pressure sub-turbine of a double-flow design, in two low-pressure sub-turbines of four-flow design, etc.
  • a further high-pressure and / or medium-pressure partial turbine is provided coaxially and upstream of the first or only low-pressure partial turbine ND1 or ND.
  • a preferred, widespread so-called HMN design is shown with a medium-pressure turbine MD, axially in the direction -x adjacent to the low-pressure turbine ND1 and also with a high-pressure turbine HD, again in the axial direction - upstream or adjacent to the medium-pressure turbine MD.
  • the individual shafts of the sub-turbines HD, MD, ND1, ND2 are rigidly coupled to one another to form a shaft train W, which consists of sections. 10 and 11 can be seen, with the two shaft couplings 5.2, 5.3 with their clamped coupling flanges, not specified in more detail, and the two support bearings w6.2, w6.3 directly adjacent to the shaft couplings 5.2, 5.3 being particularly clearly recognizable from FIG. 11 .
  • the housings hd, md of the high-pressure and medium-pressure sub-turbines HD, MD, the inner housings 2 of the low-pressure sub-turbines ND1, ND2 and the common shaft train W are mounted on turbine bearings, generally designated 6, which are each located in axial spaces between the individual sub-turbines , namely the turbine bearings 6.1, 6.2 and 6.3, or which are located in front of the head of the high-pressure sub-turbine HD or in front of the head of the second low-pressure sub-turbine ND2 and are designated by 6.4 or 6.5.
  • the turbine bearings 6.1 to 6.5 are supported on foundation bolts for a table top designated as a whole with FR (see FIGS.
  • the turbine bearings each comprise housing bearings, which are generally designated in the figures and in particular in FIGS. 1 and 2 with g6.1, g6.2, etc., and shaft bearings, which with w6.1, w6.2, etc. would be designated. These shaft bearings are not shown in FIG. 1, with the exception of the schematically indicated shaft bearing w6.1, with its pressure or axial bearing 7 and its support bearing 8; 10 and 11, however, one can see the two shaft bearings w6.2 and w6.3 associated with the first low-pressure sub-turbine ND1 with their supporting or radial bearings 8.
  • a first axis-normal reference plane (yz) o is defined by the axial bearing 7 (FIG. 1A), from which the axial shaft expansion and displacement in the direction + x (see the coordinate cross shown) and in the direction - starts. It is essential for the axial bearing 7 that defines the first axis-normal reference plane that it is + x in the axial direction. seen, the low-pressure sub-turbine ND1 is upstream and that, even if a medium-pressure sub-turbine MD belongs to the turbo set, this sub-turbine is preferably also axially upstream, as shown. Furthermore, this axial bearing 7 preferably defines an axial fixed point for the shaft expansion, from which the expansion of the shaft when heated in the + x direction and - takes its exit.
  • the two shaft bundles formed by a shaft constriction lie against fixed thrust block blocks, the blocks of which are individually tiltable, which results in simpler, easily manageable ratios of the axial play and the axial shaft expansion for the assembly and operation of the turbo set (not shown in detail) .
  • the overall arrangement of the turbo set will first be explained with reference to the perspective, phantom-like overall illustration according to FIG. 15. From this one can see the table top FR and the individual partial turbines HD, MD, ND1, MD2 and also coaxially with the outline of the turbogenerator TG coupled to the shaft train with an upstream main exciter machine HE.
  • the high-pressure turbine section HD has two live steam inlet ports hd5, which are diametrically opposed to one another in an axis-transverse plane.
  • valve combinations V1 and V2 are connected to the live steam nozzle hd1 in a symmetrical arrangement, each valve combination consisting of a quick-closing valve V11 or V21 and a control valve V12 or V22 which is perpendicular to it with its valve axis.
  • the high-pressure part-turbine HD is designed in a pot design with the actual housing pot hd1 and the cover hd2 which is tightly clamped with this, as well as the evaporation nozzle hd3 (the evaporation line is not shown in FIG. 1, but from FIG. 15 recognizable and labeled there with hd4).
  • FIG. 15 also shows the two valve combinations V3 and V4, each consisting of an intercepting quick-closing valve V31 or V41 and an intercepting control valve V32 or V42, the valve axes of the quick-closing and control valve in turn being perpendicular to one another.
  • V3 and V4 each consisting of an intercepting quick-closing valve V31 or V41 and an intercepting control valve V32 or V42, the valve axes of the quick-closing and control valve in turn being perpendicular to one another.
  • the housing divided in the horizontal axis plane is designated by md, the upper housing part by md1, the lower part by md2, and the sealingly tightened housing flanges of the upper and lower parts with 9.1 and 9.2, the live steam inlet connection for the central inflow of this double-flow partial turbine with md3 (the latter are each assigned to an upper and lower housing part and are diametrically opposed to each other), connections for the connection of tapping lines with md4, which each in pairs Upper or lower part md1 or md2 are assigned.
  • the outer casing nd of the low-pressure partial turbines is divided in the horizontal axis plane xz into a hood-shaped upper part nd1, the cross-section of which has the shape of a circular segment, and a box-shaped lower part nd2, which is designed as a frame construction, the upper and lower parts having essentially rectangular part-joint flanges 11.1, 11.2 being vacuum-tight are tied together.
  • Upper and lower parts nd1, nd2 are drawn conically inward in the area of the two bushings of the shaft train W, so that there is space for shaft seal arrangements 12, cf. Fig. 11 and Fig. 12, wherein the tapered portions are designated 13.
  • an axially normal, flexible sealing wall 14 is fastened, which is penetrated by the shaft train W with play and in the area of its inner edge with one ring flange formed as a flexible bellows sealing membrane 16 is connected, the other ring flange is sealingly connected to an annular wall of the sealing arrangement 12, so that the conical indentations 13, each of the outer wall of outflow diffusers 1.1, 1.2 of the two vapor flows 3 / I and Form 3/11, can "breathe" together with the other parts of the outer housing, d. H. relative to the shaft or the shaft train W and relative to the sealing arrangement 12 can shift and relocate depending on the temperature and pressure in each case, without constraining forces arising from prevented thermal expansion and thus hindering the sealing function of the shaft sealing arrangements 12.
  • the outer casing nd of the low-pressure partial turbines is connected at a lower rectangular flange to the exhaust pipe part nd3, the latter in turn being connected to the steam condenser C, the latter, as is the case Force arrows a1 make clear that the building foundation F rests.
  • the table top FR (Fig. 15) is thus relieved of the weight of the outer casing nd of the low-pressure partial turbines ND1, ND2.
  • High-pressure turbine section HD can expand axially in the direction - x inside the housing bearing g6.4, see Fig. 7.
  • the two reference planes normal to the axis of the second type namely (yz) 11 and (yz), 2
  • this housing and shaft bearing principle has the advantage that the shaft and housing displacement takes place over practically the same axial extension length and in the same direction + x or - x while achieving minimal axial play between adjacent rotor and guide vane rings.
  • the latter can be seen from FIG. 11 and there are designated 17 (rotor blade ring) and 18 (guide blade ring) by way of example for the last blading stage.
  • the axial play between these two blade rings is labeled A x.
  • the described thrust transmission is now placed in the area of thrust-transmitting turbine bearings g6.2 and g6.3 by means of the coupling rods 14 (see in particular FIGS. 3, 4, 8 and 9).
  • the vacuum-tight implementation of the coupling rods 14 is structurally combined with a horizontally heat-moveable claw bearing of the inner housing 2 of the low-pressure partial turbines ND1 and ND2 on claw arms 19, cf. see also Fig. 2B and Fig. 10.
  • the claw arms 19 of the inner housing 2 extend in the direction parallel to the shaft, that is parallel to the direction x, and with slidable support and guide surfaces 19.1, 19.2 on the corresponding counter surfaces 20.1, 20.2 are stored and guided by fixed supports of the associated bearing housing 21.
  • the coupling rods 14 are non-positively coupled to the claw arms 19, see coupling points 23.
  • the bushings generally designated 24 through the end walls 15 concerned of the outer housing 15, on the one hand for the non-positive connection coupling rod 14 - claw arm 19 and on the other hand for the bearing engagement of the claw arm 19 on the support and guide surfaces 20.1, 20.2 of the fixed supports is in a common, with the evaporation space 2.0 (see FIGS. 10 and 11)
  • Low-pressure turbine part ND1 or ND2 communicating vacuum space is arranged, which is sealed to the outside by means of the membrane seals 16, cf. 4 and 8 in particular.
  • the membrane seal 16 is designed as an expansion bellows with a double wall 16.1 (outer wall) and 16.2 (inner wall) which is flexible in the axial direction x and is also flexible in the normal axis direction (any direction in the yx plane).
  • the inner wall 16.2 is formed with two expansion folds 25, one at each end of the inner wall 16.2.
  • the outer wall 16.1 can be more rigid and is therefore designed with a somewhat thicker wall.
  • the outer and inner walls 16.1, 16.2 of the sealing membrane 16 are each provided with an annular flange 26.1, 26.2.
  • the sealing membrane 16 With the outer ring flange 26.1, the sealing membrane 16 is screwed onto an end face 15.1 of the outer housing end wall 15, on the inside thereof, in a vacuum-tight manner, and with the inner ring flange 26.2, the sealing membrane 16 is attached to an annular shoulder 27 of the axially projecting support arm 21.1 of the bearing housing. Bracket 21 screwed tight vacuum-tight. Two pairs of ring seats, namely 26.1-15.1 and 26.2 ⁇ 27, are thus formed, the clamping screws of which are designated by 28.
  • the sealing can be done by a metallic system or by means of intermediate sealing layers between the ring seats pressed against each other (unspecified); these intermediate layers can consist of plastically deformable metal, klingerite or an aging and temperature-resistant plastic.
  • the external pressure is exerted on the outer parts of the sealing membrane wall 16.1, 16.2, while its interior 2.01 communicates with the vacuum or evaporation space 2.0 of the associated low-pressure partial turbine.
  • the other subspaces that communicate with this space 2.0 include the coupling channel 2.02, through which the coupling rod 14 is guided, and the turnbuckle chamber 2.03, which will be explained further below (FIG. 4).
  • the inner casing 2 of the low-pressure partial turbines ND is axially divided, namely in the axial parting line 29, which coincides with the horizontal axis plane xz of the turboset.
  • the upper part is 2.1, the lower part 2.2.
  • the latter has at its two ends two claw arms 19 protruding symmetrically on both sides of the vertical axis plane xy and protruding in the direction parallel to the shaft, which have already been mentioned, which are in the area or just below the axial parting line 29 and thus in or near the area of the largest inner housing Diameter D 2 are arranged.
  • FIG. 4, 5 and 8 show in side view and Fig. 10 in plan view that from the brackets 21.0 of the bearing housing 21 support arms 21.1, in pairs - symmetrically on each end face of the bearing housing 21 - in alignment with the claw arms 19, these each extend through the outer housing end wall 15 and on the upper and lower sliding support and guide surfaces 20.1, 20.2, which are arranged on the support lugs 20 of the support arms 21.1, from the claw arm ends with projections 30.1 formed by mouth-shaped recesses 19.3 (upper projection ) and 30.3 (lower ledge) are overlapped and undercut.
  • the upper projection 30.1 has on its underside the support and guide surfaces 20.1 already mentioned, the lower projection 30.3 on its upper side the support and guide surfaces 19.2.
  • the lower projection 30.3 is designed as an angled insert, which is fitted into a corresponding angular recess 19.4 on the underside of the support arm 19 and is screwed into it by means of bolts 310, in particular expansion screws. Since the lower projection 30.3 of the support arm 19 has no support function but only a guide function, this is permissible and useful.
  • the supporting and guiding surfaces also generally include adjusting and sliding inserts, designated by 31, which are inserted between the upper side of the supporting projection 20 and the lower side 19.1 of the upper projection 30.1 or between the upper side of the lower projection 30.3 of the supporting arm 19 and the lower side of the shoulder 20 are inserted.
  • This sliding fit between the support lugs 20 of the support arms 21.1 and the projections 30.1, 30.3 of the claw arms 19 allows the inner housing 2 to be guided horizontally and by heat on the support arms 21.1, i.e. H. a sliding movement in the axial direction x and in a plane that runs plane-parallel to the horizontal axis plane x-z when the inner housing 2 expands radially-centrically due to the heating or shrinks accordingly when it cools down.
  • a favorable design is that the coupling rods 14 are screwed with a threaded end 14.1 into a threaded blind hole 30.2 of the projection 30.1 of the claw arms 19, which threaded blind hole 30.2, as can be seen, above the mouth-shaped recess 19.3 in the as Anchor projection serving projection 30.1 is embedded.
  • the design of the coupling shown in FIG. lungs rod has a reinforced head for the threaded end 14.1, this head is fluted to the side of the shaft of the coupling rod 14, so that a thread of the same strength, the external threads of which bear largely evenly, is achieved.
  • 3 and 4 on the other hand, a simpler design of the coupling rod 14 is shown, the shaft of which there is even slightly larger in diameter than its head 14.1.
  • Fig. 9 shows that the support arms 19 have a circular basic cross-section and that adapted to this, the support projection 20 forms part of a circular cross-section, namely a circular cross-sectional zone.
  • the support arm 21.1 itself then also has a circular basic cross section; with this circular basic cross section, it is guided through the center of the essentially hollow cylindrical membrane seal 16.
  • the basic cross section of the claw arm 19 within the vacuum space 2.0 could also be elliptical (although the circular shape is more favorable for machining on lathes); it is essential that a small flow due to the circular or elliptical outer contour resistance to the steam flow prevailing in the vacuum space 2.0.
  • Fig. 4 and - partially - Fig. 3 show that the coupling rods 14 can be changed in length by turnbuckles 33 and the clutch channel 2.02 in an accessible area from above of the bearing housing brackets 21.0 to the already mentioned turnbuckle chamber 2.03, which the latter can be closed vacuum-tight by a sealing cover 33.1.
  • the turnbuckle body 33.0 has a substantially hollow cylindrical shape, it has a thread 33.2 at both ends thereof, one of which is a left-hand thread and the other a right-hand thread.
  • radial bores 33.3 are arranged in a cross shape, which are used for attaching clamping tools (e.g. insertion pins).
  • the turnbuckle 33 By turning the turnbuckle body 33.0 in one direction of rotation, the turnbuckle 33 can be loosened, tightened by turning in the other direction, so that the axial length of the coupling rod arrangement consisting of the individual coupling rod parts can be changed and adapted to the mounting position of the individual partial turbines.
  • the once adjusted coupling rod length is then fixed by the lock nuts 34. 2B shows the accessibility to the turnbuckle 33 from above.
  • the first axially normal reference plane (yz) o and the second axially normal reference plane (yz) are placed in the turbine bearing 6.1 between the high-pressure and medium-pressure partial turbine HD or MD in the turboset shown.
  • high-pressure and medium-pressure partial turbines HD, MD with their pairs of support brackets P 12 and P 2 are on this reference bearing 6.1 or on the corresponding housing bearing g6.1 in the area of their horizontal axis planes 35.0 (partial turbine HD) and 9.0 (MD partial turbine) axially fixed, but horizontally and radially-centrically heat-movably mounted.
  • the horizontal axis planes 35.0 and 9.0 coincide with the entire horizontal axis plane xz of the turbo set.
  • the support claws, generally designated P each have a block-shaped, step-shaped extension 36 and an adjacent recess 37, which is stepped upwards.
  • the bearing housing 21 is provided with a recess 38 for receiving the extension 36 and with a recess 38 on its strong top-side support flange 21b provided axially adjacent step-shaped edge elevation 39 for engagement in the recess 37 of the claw P.
  • sliding and adjusting inserts are inserted, which fill the resulting vertical gaps and are labeled 40a and which fill the emerging or remaining axial gaps and are labeled 40b.
  • Fig. 6 with 21a is still a strong base or anchor plate of the bearing housing, which is fixed with anchor bolts 41 on the foundation bolt fr.
  • 21c are end walls of the bearing housing pointing in the x direction, which are welded between the cover-side support flange 21b and the anchor plate 21a a, 21d is the side wall facing the observer.
  • 42 is a locking bolt, which is arranged in pairs per housing bearing g6.1 on both sides of the vertical axis plane and serves to secure the claws P, 2 , P 2 , the turbine parts against lifting forces and moments, and with strong anchor bolts 43, designed as expansion screws, is attached to the support flanges 21 b.
  • High-pressure and medium-pressure partial turbines HD, MD are axially and radially at their ends facing away from the reference bearing 6.1 with pairs of claws P 11 -P 11 and P 22 .
  • P 22 (only one claw of the pairs of claws can be seen here, too) -centrically-heat-movably mounted on the associated turbine bearings 6.4, 6.2 or housing bearings g6.4, g6.2.
  • the support brackets P 11 , P 22 are provided with step-shaped projections 36 and recesses 37, and the support flanges 21 b are provided with depressions 38 and raised edges 39; only it is the case that the recesses 38 are larger or wider, so that axially gap spaces 44 remain free for a free axial movement of the step-like projections 36 of the support claws, which is why the end faces of the edge elevations 39 pointing in the + x direction and in the direction - are not included corresponding wedges or adjusting inserts 40b are provided; only the adjustment inserts 40a required for the height alignment are inserted.
  • the safety latches which absorb the lifting forces and moments of the claws P 11 , P 22 , are designated 42.1 here. Their axial extent is smaller than that of the locking latch 42 because the latter are used for a double housing bearing.
  • the axially guided sliding and sliding movement of the housing end of the partial turbine MD pointing in the direction x is, as shown in FIG. 3, by the first of the coupling rods 14 and a turnbuckle 33 on the inner housing 2 of the axial neighboring sub-turbine ND1 transmitted.
  • the partial turbine MD ie its housing md
  • the partial turbine MD is provided with a pair of anchoring points, of which the one anchoring point 45 according to FIG. 3 can also be seen from FIG. 2A.
  • anchoring points 45 are arranged on extensions 46 of the exhaust nozzle md5, which extensions are extend in alignment with the coupling rods 14 and claw arms 19 of the inner housing 2 of the adjacent low-pressure partial turbine ND1 and symmetrically on both sides of the vertical axis plane xy.
  • the coupling channel 2.02 of the coupling rods 14 is sealed off to the side of the medium-pressure partial turbine MD by a sealing sleeve 47, which evidently surrounds the end 14.2 of the coupling rod 14 protruding from the coupling channel 2.02 and at one end with the opening edge 48 of the coupling channel 2.02 and at its end the other end is connected in a vacuum-tight manner to an annular collar 49 surrounding the anchoring point 45 on the extension 46.
  • FIGS. 2A and 2B generally refer to so-called center guides for the housings hd, md and nd of the individual sub-turbines in FIGS. 2A and 2B, which have the task of keeping the individual sub-turbine housings in axial alignment with one another and coaxial with the shaft axis x and for guiding them during thermal movement.
  • the center guides for the housings hd and md as well as for the outer housings nd of the low-pressure partial turbines ND1, ND2 will not be discussed in more detail; for the housings hd and md, the center guide is described in more detail in the already mentioned EP-A-0 211 198.
  • FIGS. 11 and 12 the inner casing 2 of the low-pressure partial turbine ND1 at its two ends and in its lower region where the outflow cross sections 3/1 and 3/11 of the diffusers 1.1 and 1.2 open downwards (this region lies at the same time in the area of the vertical axis plane xy), axial guide bolts 51 connected to the supporting grid construction 2.3 of the inner housing 2 are provided, which (see the section according to FIG.
  • this is a double centering, in which the guide rod 53 protrudes in both directions - and + x from the foundation bolt fr with its guide spurs 53.1 and grips into the recess 54 (see Fig. 13), which are formed by the two fork-like guide projections 51.2 of the guide pin 51 and are limited by the plane-parallel keys 51.2 in connection with the adapters in the form of the guide and sliding inserts 52 (the second, mirror-image half of the double centering 50.2 is not shown in Fig. 12).
  • the basic cross-section of the guide pin in the area of the outlet diffuser 1.2 is circular.
  • the circular shape is achieved in the region of the guide spur 53.1 by a cover segment 55 in the form of a segment of a circle, which is only put on after the lower housing part 2.2 has been inserted, that is to say when the fork-like projections 51.2 engage around the guide spur 53.1.
  • This cross-sectional shape is aerodynamically favorable and, given the large outlet cross sections available, means that no additional outlet losses can be determined.
  • Fig. 11 and Fig. 12 show that the respective guide rod 53 penetrates the outer housing, ie an end wall 15 of the same, in the lower region of the diffuser outer wall 13 with play 56 in a cylindrical opening 57 delimited by the cylinder wall 57.1, the through the play 56 formed annular space serves as a receiving space for a further sealing membrane 58, which concentrically surrounds the guide rod 53 and is connected on the one hand to the outer housing nd and on the other hand to the guide rod 53 in a vacuum-tight manner.
  • annular seat surface 60 is arranged on an end face of the bushing cylinder wall 57.1, which is welded to the inner circumference of the recess delimiting the opening 57 in the outer housing end wall 15 in general and the diffuser wall 13 in particular.
  • the guide rod 53 is cast by means of in-situ concrete 61 and a corresponding wall pipe 62 in the foundation bolt for or another suitable foundation part and is thereby clearly fixed; the guide pin 51 is screwed to the lattice structure of the inner housing 2 by expansion screws, the axes of which are indicated at 63.
  • corresponding flat mating surfaces 64 are provided between the guide bolt 51 and the lattice structure of the inner housing 2. 11 to 13, the guide rod 53 protrudes through the outer housing end wall 15 into the vacuum space, which is favorable for assembly and adjustment on the one hand and on the other hand eliminates the risk of contamination from dust particles from the outside.
  • FIG. 5 shows a coupling rod-free mounting of the claw arms 19 of an inner housing 2, which belongs to the turbine bearing 6.5 or the housing bearing g6.5 (FIG. 2B). Since no further low-pressure sub-turbine axially adjoins the sub-turbine ND2 in the exemplary embodiment shown, the need for thrust transmission is also eliminated; rather, the axially and horizontally heat-moveable mounting of the claw arms 19 on the corresponding lugs 20 of the support arms 21.1 is sufficient.
  • the leadthrough is sealed with a sealing membrane 65 (of the third type), which is of the same design as the sealing membranes of the first and second types 16 and 58.
  • the inner ring flange 65.1 is again vacuum-tight on a ring seat surface 66 of the support arm 21.1 by means of suitable, not fixed flange screws, the outer ring flange 65.2 in a corresponding manner on an annular seat surface 66.0 on the inner end face of a passage through the outer housing end wall 15 limiting housing wall 67 which, as with the other bushings of the support arms and guide rods, sealing with the inner circumference the corresponding end wall parts are welded.
  • the approach 20 would have to be provided with appropriate fitting wedges, adjusting inserts or the like in such a way that pushing against this approach in the + x and - x direction would be prevented, that is to say a corresponding axial fixation would have to be carried out, as for the claws P 12 and P 21 of the partial turbine HD and ND.
  • the thrust transmission by means of the coupling rods 14 would only begin on the right-hand side of the low-pressure partial turbine ND1 in FIG. 2B or, in other words, the turbine bearing 6.3 would only be formed, as shown in FIGS. 2B and 4 the push rod arrangement on the left side of the turbine section ND1 would be omitted.
  • the claw bearings for the medium-pressure and high-pressure sub-turbines MD or HD would have to be designed with the possibility of axial displacement, whereas in the area of the turbine bearing 6.2, the supporting claws would each be P 22 to arrange an axial fixed point because this turbine bearing 6.2 then also contains the thrust or axial bearing.
  • the claw arms 19 of the inner housing 2 are screwed to their supporting grid construction at a plurality of screwing points 68 and with corresponding mutual wing engagement (cf. FIGS. 8 and 10).
  • a welded connection is also possible here, as is the case with the fastening of the guide bolts 51 to the inner housing 2 according to FIG. 12. From FIG. 10 one can see on the left a somewhat modified sealing sleeve 47 for the coupling rod 14 with regard to position and design, which in this case since there is good accessibility from the outside - could be combined with the turnbuckle 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (15)

1. Turbogénérateur comportant au moins un élément de turbine à basse pression (ND) possédant un carter extérieur (nd) et un carter intérieur (2) coaxial au carter extérieur, et au moins un autre élément de turbine à haute pression et/ou à basse pression (HD, MD), disposé coaxialement à et en amont de l'élément de turbine à basse pression (ND), et dans lequel les arbres des éléments de turbine sont accouplés rigidement entre eux pour former une ligne d'arbres (W), et dans iequel le carter intérieur (2) de l'élément de turbine à basse pression (ND), les carters (hd, md) des éléments de turbine à haute pression et/ou à basse pression (HD, MD) et la ligne d'arbres (W) sont supportés dans des supports de turbine (6.1, 6.2, ...) englobant des supports de carters et des paliers d'arbres (g6.1, g6.2, ... ; w6.1, w6.2, ...), et les supports de turbine situés entre les éléments de turbine comportent des logements de support (21), qui sont portés par des blocs (fr) de l'embase de support (FR) de la turbine, dans des. espaces intercalaires axiaux présents entre les éléments de turbine, et sur les extrémités de ces derniers, tandis que le carter extérieur (nd) de l'élément de turbine à basse pression (ND) est soutenu d'une manière particulière, et qu'il est prévu, en outre, un support de turbine disposé en amont de l'élément de turbine à basse pression (ND) et comportant un palier axial (w6.1) pour la ligne d'arbres (W), ce palier axial définissant un premier plan de référence (y-z)o perpendiculaire à l'axe et à partir duquel se développent l'allongement et le déplacement axiaux des arbres, et dans lequel le carter intérieur (2) de l'élément de turbine à basse pression (ND) est supporté de manière à être mobile sous l'action de la chaleur, en restant centré radialement et à être déplaçable axialement, indépendamment du et par rapport au carter extérieur (nd), et est raccordé à l'extrémité, supportée de manière à être déplaçable axialement, d'un carter, voisin axialement, d'un élément de turbine ou d'un logement, voisin axialement, d'un support de turbine, au moyen de barres d'accouplement (14), qui transmettent une poussée et traversent également une paroi frontale (15) du carter extérieur (nd) avec possibilité de déplacement sous l'action de la chaleur et d'une manière étanche au vide grâce à la présence d'éléments d'étanchéité (16) permettant également un déplacement transversal limité, et dans lequel l'un des supports de turbine montés en amont de l'élément de turbine à basse pression (nd) définit un second plan de référence (y-z), perpendiculaire à l'axe et à partir duquel s'effectuent l'allongement et le déplacement axial du carter de l'élément de turbine, monté sur ce support de turbine, et des carters d'éléments de turbine, qui y sont accouplés, ainsi que du ou des carters internes à basse pression (nd), de sorte que le déplacement des arbres et des carters s'effectue sur une distance axiale d'allongement pratiquement identique et dans la même direction, moyennant l'obtention de jeux axiaux minimum entre des couronnes (17, 18), voisines l'une de l'autre, d'aubes mobiles et d'aubes directrices, caractérisé par le fait
- que la transmission de la poussée s'effectue au moyen des barres d'accouplement (14) dans la zone de supports des turbines (6.2, 6.3) transmettant la poussée et qu'à cet effet la traversée, étanche au vide, des barres d'accouplement (14) est réunie, du point de vue construction, à un soutien par griffes, avec possibilité de déplacement horizontal sous l'action de la chaleur, du carter intérieur (2) du ou des éléments de turbine à basse pression (ND) sur des bras à griffes (19) ;
- les bras à griffes (19) du carter intérieur (2) s'étendent dans une direction parallèle à l'axe de l'arbre et sont supportés et guidés par des surfaces de support et de guidage (19.1, 19.2), aptes à glisser, sur les surfaces antagonistes correspondantes (20.1, 20.2) d'appuis fixes du logement associé (21) de support ; et
- que dans la zone du support de turbine (6.2, 6.3) transmettant la poussée, les barres d'accouplement (14) sont accouplées selon une liaison de force aux bras à griffes (19) et que la traversée du carter extérieur (nd) pour la liaison à transmission de force barres d'accouplement (14) - bras à griffes (19) et pour l'engagement du bras à griffes (19) sur les surfaces de support et de guidage (20.1, 20.2) des appuis, s'effectue respectivement dans un espace commun sous vide, qui communique avec la chambre (2.0), contenant la vapeur d'échappement, de l'élément de turbine à basse pression (ND) et est respectivement fermée de façon étanche au moyen d'une membrane d'étanchéité (16) vis-à-vis de l'espace extérieur.
2. Turbogénérateur suivant la revendication 1, caractérisé par le fait que la membrane d'étanchéité (16) utilisée pour la traversée étanche au vide est raccordée, d'une manière étanche au vide, à une bride annulaire (26.1) située sur une face frontale (15.1) du carter extérieur (nd) de l'élément de turbine à basse pression (ND) et à une bride annulaire intérieure (26.2) présente sur une partie (21.1) du logement du support de turbine, cette partie logeant, dans son espace intérieur (2.02, 2.03), au moins la majeure partie des barres d'accouplement (14) et formant une partie de l'espace sous vide (2.0).
3. Turbogénérateur suivant la revendication 1 ou 2, caractérisé par le fait que les carters intérieurs (2) des éléments de turbine à basse pression (ND) sont subdivisés axialement et que leurs sections comportent, au niveau des extrémités, respectivement deux bras à griffes (19) qui font saillie symétriquement des deux côtés du plan axial vertical (x-y), dans une direction parallèle à l'axe de l'arbre, et sont disposées dans la zone des joints axiaux de séparation (29) ou légërement au-dessous de ces derniers et par conséquent dans ou à proximité de la zone de diamètre maximum (D2) des carters intérieurs.
4. Turbogénérateur suivant l'une des revendications 1 à 3, caractérisé par le fait que les appuis fixes sont formés par des consoles fixes (21.0) des logements (21) des supports, qui sont ancrées dans les blocs (fr) de l'embase de support, et dont les bras de support (21.1) s'étendent d'une manière alignée avec les bras à griffes (19), en direction de ces bras respectivement à travers la paroi frontale (15) du carter extérieur et que les extrémités des bras à griffes s'engagent, par des parties saillantes (30.1, 30.2) formées par suite de la présence d'évidements (19.3) en forme de mâchoires, au-dessus et au-dessous des consoles contre les surfaces de support et de guidage supérieure et inférieure (20.1, 20.2), aptes à glisser, qui sont situées sur les parties saillantes de support (20) des bras de support (21.1).
5. Turbogénérateur suivant la revendication 4, caractérisé par le fait que les barres d'accouplement (14), les consoles (21.0) et leurs bras de support (21.1) s'étendent, parallèlement à l'axe, dans des canaux d'accouplement (2.02), en direction des parties saillantes de support (20) du support de turbine considéré et au-dessus de l'ensemble aligné de ces parties saillantes, et que les extrémités des bras à griffes sont accouplées selon une liaison de forcé, au-dessus de leurs évidements (19.3) en forme de mâchoires, respectivement aux extrémités (14.1) des barres d'accouplement (14).
6. Turbogénérateur suivant les revendications 2, 4 et 5, caractérisé par le fait que les bras de support (19) traversent avec un certain jeu (32), par leurs canaux d'accouplement (2.02) et leurs barres d'accouplement (14), une ouverture (24) ménagée dans la paroi latérale (15) du carter extérieur respectivement contigu (nd) et que l'espace annulaire formé par le jeu sert d'espace de logement pour la membrane d'étanchéité (16).
7. Turbogénérateur suivant les revendications 2 et 6, caractérisé par le fait que le bras de support (21.1) comporte, au niveau de son extrémité tournée vers le bras à griffes (19), un épaulement annulaire (27), sur lequel est fixée de façon étanche la bride annulaire intérieure (26.2) de la membrane d'étanchéité, et que la bride annulaire extérieure (26.1) de la membrane d'étanchéité (16) est fixée de façon étanche sur le bord (15.1) de l'ouverture de la paroi frontale (15) du carter extérieur, sur le côté intérieur de cette paroi.
8. Turbogénérateur suivant l'une des revendications 1 à 7, caractérisé par le fait que la membrane d'étanchéité (16) est réalisée sous la forme d'un tube ondulé ou d'un soufflet de dilatation comportant une paroi double (16.1, 16.2) fléchissant aisément dans la direction axiale (x) et également déformable de façon limitée dans une direction perpendiculaire à l'axe.
9. Turbogénérateur suivant l'une des revendications 1 à 8, caractérisé par le fait que les bras de support et les bras à griffes (21.1, 19) possèdent une section transversale de base de forme circulaire ou elliptique.
10. Turbogénérateur suivant la revendication 5, caractérisé par le fait que les barres d'accouplement (14) peuvent être fixées par vissage, respectivement au moyen d'une extrémité filetée (14.1), dans un trou taraudé borgne (30.2) des bras à griffes, qui est ménagé dans une partie saillante d'ancrage (30.1), au-dessus de l'évidement en forme de mâchoire (19.3).
11. Turbogénérateur suivant la revendication 5 ou 10, caractérisé par le fait que la longueur des barres d'accouplement (14) peut être modifiée au moyen de tendeurs (33) et que le canal d'accouplement (2.02) s'élargit dans une zone, accessible par le haut, des consoles (21.0) du logement du support, pour former une chambre (2.0) pour le tendeur, chambre qui peut être fermée de façon étanche au vide par un couvercle d'étanchéité (33.1).
12. Turbogénérateur suivant l'une des revendications 1 à 11, comportant un élément de turbine à haute pression et un élément de turbine à basse pression, caractérisé par le fait
- que les premier et second plans de référence (y-z)o, (y-z), perpendiculaires à l'axe s'étendent dans le support de turbine (6.1) entre les éléments de turbine à haute pression et à moyenne pression (HD, ND),
- les éléments de turbine à haute pression et à moyenne pression (HD, MD) sont supportés, au niveau de leurs couples (P,2 ; P21) de griffes de support, sur ce support de référence, au niveau de leurs plans axiaux horizontaux (35.0 ; 9.0) et ce d'une manière fixe axialement, mais avec possibilité de se déplacer, sous l'action de la chaleur, horizontalement et d'une manière centrée radialement,
- que les éléments de turbine à haute pression et à moyenne pression (HD, MD) sont supportés, au niveau de leur extrémité tournée à l'opposé du support de référence (6.1), par des couples (P" ; P22) de griffes de support, sur les supports associés de turbine (6.4 ; 6.2), de manière à pouvoir se déplacer, sous l'action de la chaleur, d'une manière centrée axialement et radialement ; et
- que le carter (md) de l'élément de turbine à moyenne pression (MD) comporte, sur sa face tournée vers l'élément de turbine à basse pression voisin (ND ; ND1), des points d'ancrage (45) pour les barres d'accouplement (14), ces points d'ancrage étant accouplés au carter intérieur (2) de l'élément de turbine à basse pression voisin (ND, ND1).
13. Turbogénérateur suivant la revendication 12, dans lequel le carter (nd) de l'élément de turbine à moyenne pression (ND), comporte deux tubulures (md5) véhiculant la vapeur d'échappement, partant latéralement au-dessous du plan axial horizontal (x-y), caractérisé par le fait
- que les points d'ancrage (45) sont situés sur des prolongements (46) des tubulures (md5) de circulation de la vapeur d'échappement, qui s'étendent, d'une manière alignée, en direction des barres d'accouplement (14) et des bras à griffes (19) du carter intérieur (2) de l'élément de turbine à basse pression voisin (ND, ND1) et symétriquement des deux côtés du plan axial vertical (x-y), et
- que le canal d'accouplement (2.02) des barres d'accouplement est fermé de façon étanche, en direction de l'élément de turbine à moyenne pression (MD), par un manchon d'étanchéité (47), qui entoure l'extrémité (14.2), qui fait saillie hors du canal d'accouplement, des barres d'accouplement (14) et est relié d'une manière étanche, au niveau de l'une de ses extrémités, au bord (48) de l'ouverture du canal d'accouplement (2.02) ainsi qu'au niveau de son autre extrémité, à un collet annulaire (49) entourant le point d'ancrage (45) situé sur le prolongement (46).
14. Turbogénérateur suivant l'une des revendications 1 à 13, caractérisé par un guidage central (53.1-51.1) du carter intérieur (2) des éléments de turbine à basse pression (ND, ND1, ND2) dans le plan axial vertical (x-y) dans la zone inférieure de sa section transversale d'écoulement (3/1, 3/II), des boulons axiaux de guidage (51) reliés à la structure en forme de treillis de support (2.3) du carter intérieur (2) et des barres coaxiales de guidage (53) ancrées dans l'embase de support de turbine (fr, FR) s'engageant les uns dans les autres au moyen de surfaces verticales de guidage et de glissement (51.1 ; 52, 53.1), et par le fait
- que la barre de guidage (53) traverse avec un certain jeu (56) respectivement la paroi frontale voisine (15) du carter extérieur et que l'espace annulaire constitué par le jeu sert d'espace de logement pour une autre membrane d'étanchéité (58), qui entoure concentriquement la barre de guidage (53) et est reliée d'une manière étanche au vide d'une part au carter extérieur (nd) et d'autre part à la barre de guidage (53),
- que l'agencement et le type de fixation de l'autre membrane d'étanchéité (58) sont identiques à ceux de la première membrane d'étanchéité (16), et
- qu'à cet effet une bride annulaire intérieure (58.1) de l'autre membrane d'étanchéité (56) est reliée d'une manière étanche au vide à un épaulement annulaire (53.2) de la barre de guidage (53) et qu'une bride annulaire extérieure (58.2) de l'autre membrane d'étanchéité (58) est reliée de façon étanche au vide à une surface d'appui annulaire (60) située sur la face intérieure d'une paroi frontale (15, 57.1) du carter extérieur.
15. Turbogénérateur suivant l'une des revendications 1 à 14, caractérisé par le fait que la traversée du carter extérieur pour le système de support, ne transmettant aucune poussée et par conséquent exempt de barres de traction, des bras à griffes (19) d'un carter intérieur (2) des éléments de turbine à basse pression (ND, ND2) est fermée de façon étanche respectivement à l'aide de membranes d'étanchéité (65), au niveau des bras de support correspondants (21.1) des consoles (21.0) du logement du support, traversée
- qui est présente sur le côté extérieur aval d'un seul élément de turbine à basse pression (ND) ou du dernier, élément de turbine à basse pression (ND2) dans la direction axiale, dans le cas d'une installation à plus de deux flux,
- ou qui, dans le cas où le second plan de référence (y-z) perpendiculaire à l'axe définit le point fixe de l'allongement axial du carter, est présente à l'intérieur du support de turbine (6.2) situé d'une part entre l'élément de turbine à moyenne pression ou à haute pression (ND, HD) et d'autre part l'élément de turbine à basse pression raccordé (ND, ND1),

les membranes d'étanchéité possédant une même constitution et étant fixées de la même manière que la membrane d'étanchéité (16) du premier type dans la zone de traversée combinée (24) prévue pour la barre d'accouplement et le bras de support et transmettant la poussée.
EP86108225A 1985-06-27 1986-06-16 Moyen de connexion entre les carters d'un groupe de turbines Expired EP0213297B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853522916 DE3522916A1 (de) 1985-06-27 1985-06-27 Turbosatz mit wenigstens einer, ein aussengehaeuse und ein dazu koaxiales innengehaeuse aufweisenden niederdruck-teilturbine und mit hochdruck- und/oder mitteldruck-teilturbine
DE3522916 1985-06-27

Publications (2)

Publication Number Publication Date
EP0213297A1 EP0213297A1 (fr) 1987-03-11
EP0213297B1 true EP0213297B1 (fr) 1989-03-15

Family

ID=6274283

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86108225A Expired EP0213297B1 (fr) 1985-06-27 1986-06-16 Moyen de connexion entre les carters d'un groupe de turbines

Country Status (6)

Country Link
US (1) US4744726A (fr)
EP (1) EP0213297B1 (fr)
JP (1) JPS623106A (fr)
DE (3) DE8518569U1 (fr)
ES (1) ES2000180A6 (fr)
IN (1) IN165207B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403628B2 (en) 2009-12-16 2013-03-26 General Electric Company Low-pressure steam turbine hood and inner casing supported on curb foundation

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3742814C2 (de) * 1987-12-17 1996-07-04 Bbc Brown Boveri & Cie Mehrgehäusige Dampfturbine
JPH0742828B2 (ja) * 1989-04-04 1995-05-10 日本板硝子株式会社 複層ガラスのシール構造
US4961310A (en) * 1989-07-03 1990-10-09 General Electric Company Single shaft combined cycle turbine
DE59007880D1 (de) * 1990-12-10 1995-01-12 Asea Brown Boveri Lagerung einer thermischen Turbomaschine.
DE4129518A1 (de) * 1991-09-06 1993-03-11 Siemens Ag Kuehlung einer niederbruck-dampfturbine im ventilationsbetrieb
JPH0591520U (ja) * 1992-05-08 1993-12-14 川嶋工業株式会社 皮引きの刃カバー
DE19629933C1 (de) * 1996-07-24 1997-09-04 Siemens Ag Turbinenanlage mit Schubelement sowie Schubelement
US6092986A (en) * 1996-07-24 2000-07-25 Siemens Aktiengesellschaft Turbine plant having a thrust element, and thrust element
EP0952311A1 (fr) 1998-04-06 1999-10-27 Siemens Aktiengesellschaft Turbomachine avec un carter interieur et un carter extérieur
JP3772019B2 (ja) 1998-04-21 2006-05-10 株式会社東芝 蒸気タービン
JP3774321B2 (ja) * 1998-04-24 2006-05-10 株式会社東芝 蒸気タービン
EP1249579A1 (fr) 2001-04-11 2002-10-16 Siemens Aktiengesellschaft Turbine à vapeur
EP1806481B1 (fr) 2006-01-09 2013-12-18 Siemens Aktiengesellschaft Turbine à vapeur ayant des éléments de guidage
JP4991600B2 (ja) * 2008-02-29 2012-08-01 株式会社東芝 蒸気タービン
JP5180652B2 (ja) * 2008-03-31 2013-04-10 三菱重工業株式会社 蒸気タービンの車室構造
US8337151B2 (en) * 2009-06-30 2012-12-25 General Electric Company System and method for aligning turbine components
US20110088379A1 (en) * 2009-10-15 2011-04-21 General Electric Company Exhaust gas diffuser
US9249687B2 (en) 2010-10-27 2016-02-02 General Electric Company Turbine exhaust diffusion system and method
JP2014514481A (ja) 2011-03-01 2014-06-19 アルストム テクノロジー リミテッド コンバインドサイクル発電プラント
EP2546459A1 (fr) * 2011-07-14 2013-01-16 Siemens Aktiengesellschaft Train de rotor de système de turbines
EP2554801A1 (fr) * 2011-08-02 2013-02-06 Siemens Aktiengesellschaft Système de turbine comprenant un agencement de tige de poussée entre deux carters
DE102012202466B3 (de) * 2012-02-17 2013-07-11 Siemens Aktiengesellschaft Montage einer Strömungsmaschine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1332074A (fr) * 1963-12-16
DE520625C (de) * 1928-12-29 1931-03-12 Bbc Brown Boveri & Cie Mehrgehaeuseturbine
CH385893A (de) * 1959-08-13 1964-12-31 Licentia Gmbh Einrichtung zur Abstützung der beiden Gehäuse von Doppelmantelturbinen
DE1216322B (de) * 1962-05-30 1966-05-12 Creusot Forges Ateliers Dampf- oder Gasturbine mit mehreren, koaxial hintereinander angeordneten Teilturbinen
GB1145612A (en) * 1966-04-12 1969-03-19 Licentia Gmbh Improvements relating to steam turbines
DE1925752A1 (de) * 1969-05-21 1970-11-26 Augsburg Nuernberg Ag Zweignie Doppelgehaeuse fuer Dampfturbinen grosser Leistung
US3630635A (en) * 1970-09-10 1971-12-28 Gen Electric Turbine casing with raised horizontal joint
DE2200447A1 (de) * 1971-01-13 1972-12-07 Creusot Loire Niederdruck-Teilturbinen von Dampfturbinen
CH552130A (de) * 1972-11-28 1974-07-31 Bbc Brown Boveri & Cie Turbinengehaeuse.
FR2297999A1 (fr) * 1975-01-16 1976-08-13 Europ Turb Vapeur Fixation d'une piece de guidage d'une enveloppe de machine tournante
US4102598A (en) * 1975-11-11 1978-07-25 Westinghouse Electric Corp. Single case low pressure turbine
CH610983A5 (fr) * 1976-12-03 1979-05-15 Sulzer Ag
CH619507A5 (fr) * 1977-03-21 1980-09-30 Bbc Brown Boveri & Cie
DE3130376C2 (de) * 1981-07-31 1983-05-11 Kraftwerk Union AG, 4330 Mülheim Doppelschaliges Dampfturbinengehäuse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403628B2 (en) 2009-12-16 2013-03-26 General Electric Company Low-pressure steam turbine hood and inner casing supported on curb foundation

Also Published As

Publication number Publication date
EP0213297A1 (fr) 1987-03-11
US4744726A (en) 1988-05-17
ES2000180A6 (es) 1988-01-01
DE8518569U1 (de) 1988-07-14
DE3522916A1 (de) 1987-01-08
DE3662424D1 (en) 1989-04-20
IN165207B (fr) 1989-08-26
JPS623106A (ja) 1987-01-09

Similar Documents

Publication Publication Date Title
EP0213297B1 (fr) Moyen de connexion entre les carters d'un groupe de turbines
EP1774140B1 (fr) Turbine a vapeur et procede pour faire fonctionner une turbine a vapeur
DE19821889B4 (de) Verfahren und Vorrichtung zur Durchführung von Reparatur- und/oder Wartungsarbeiten im Innengehäuse einer mehrschaligen Turbomaschine
CH707755A2 (de) Dampfturbinentragschiene für ein Dampfturbinenbauteil.
CH642428A5 (de) Abdeckanordnung in einer turbine.
DE102006027237A1 (de) Dampfturbine
EP0991891B1 (fr) Dispositif pour raccorder des sections de conduites
EP2189720A1 (fr) Agencement de brûleur
EP0128343A1 (fr) Turbine à carter double avec au moins une soupape pour l'alimentation horizontale de la vapeur
EP0118051B1 (fr) Couplage entre les parties chaudes et froides d'un turbocompresseur non refroidi
EP2342425B1 (fr) Turbine à gaz avec plaque de fixation entre la base d'aube et le disque
EP2780632B1 (fr) Refroidisseur à injection
CH664191A5 (de) Von aussen zustellbare axialfixierung eines schaufeltraegers in einer turbine.
EP1707759A2 (fr) Carter d'une turbomachine
EP0914543A1 (fr) Installation de turbine a element de poussee et element de poussee pour installation de turbine
DE68901768T2 (de) Kompressorgehaeuse mit regelbarem innendurchmesser fuer eine turbomaschine.
DE3405941C2 (de) Turbinenwellen-Dichtungsanordnung
DE1476763B1 (de) Gasturbinenanlage mit einer Nutzleistungsturbine
DE2712307A1 (de) Einrichtung zum absperren zweier koaxialer rohrleitungen
EP2161415B1 (fr) Dispositif et procédé de réduction de la pression sur un joint de séparation entre au moins deux éléments de limitation
EP4155530A1 (fr) Pale de rotor pour éolienne et procédé de montage d'une pale de rotor pour éolienne
DE102009049691A1 (de) Dichtungsanordnung an einem Dampfturbinengehäuse, umfassend einen fixierbaren Dichtring
EP1422479B1 (fr) Chambre pour la combustion d' un mélange combustible fluide
DE102009049690A1 (de) Dichtungsanordnung an einem Dampfturbinengehäuse, umfassend einen justierbaren Dichtring
CH625030A5 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19870407

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN

17Q First examination report despatched

Effective date: 19871120

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 3662424

Country of ref document: DE

Date of ref document: 19890420

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890829

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890922

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900521

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900628

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910616

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST