EP0204909A1 - Elektrodenmaterial für eine Funkenstrecke - Google Patents

Elektrodenmaterial für eine Funkenstrecke Download PDF

Info

Publication number
EP0204909A1
EP0204909A1 EP86104346A EP86104346A EP0204909A1 EP 0204909 A1 EP0204909 A1 EP 0204909A1 EP 86104346 A EP86104346 A EP 86104346A EP 86104346 A EP86104346 A EP 86104346A EP 0204909 A1 EP0204909 A1 EP 0204909A1
Authority
EP
European Patent Office
Prior art keywords
tungsten
phase
electrode material
sintered
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86104346A
Other languages
English (en)
French (fr)
Other versions
EP0204909B1 (de
Inventor
Sylvia Härdtle
Rainer Dr. Schmidberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Dornier System GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH, Dornier System GmbH filed Critical Dornier GmbH
Publication of EP0204909A1 publication Critical patent/EP0204909A1/de
Application granted granted Critical
Publication of EP0204909B1 publication Critical patent/EP0204909B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/06Sound-producing devices using electric discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/24Selection of materials for electrodes

Definitions

  • the invention relates to an electrode material for a spark gap for generating shock waves for the contact-free comminution of concrements in bodies of living beings.
  • a device for crushing concrements located in the body of a living being with a focusing chamber is known, the focusing chamber being part of an ellipsoid of revolution and in one focus of which shock waves can be generated by spark discharge.
  • the concretion is in the second focus.
  • the focusing chamber is filled with a liquid.
  • the electrical energy stored in a capacitor is converted into mechanical shock wave energy by electrical underwater spark discharge. If the electrical underwater spark discharge is ignited in the focal point of the elliptical rotation focusing chamber, then Generate shock waves of high amplitude (1 Kbar with short pulse lengths (1 ⁇ sec) almost point-like in the second focal point.
  • the concretions in the body of living beings can be broken up into fragments that can be removed with these shock waves.
  • the materials for the electrode tips include Tantalum and tungsten suggested.
  • the electrodes are subject to high thermal and mechanical loads.
  • tantalum has a high thermal erosion resistance, its mechanical strength is not sufficient for a long service life, i. H. for the generation of a large number of underwater spark discharges.
  • tungsten also does not have a long service life due to its high brittleness. It is destroyed very quickly by the mechanical load.
  • Electrode materials commonly used in technology are composite materials, for example tungsten copper Alloys that combine the refractory properties of tungsten with the good electrical conductivity of copper. These materials, too, are too brittle for the applications mentioned and suffer severe mechanical abrasion. These materials have a copper content of ⁇ 20%. Since the electrodes are subjected to high thermal loads, a molten phase of Cu (melting point 1083 ° C) is formed, which extends from the surface over a depth of approx. 100 ⁇ m or more into the interior of the electrode tip. The higher the proportion of binder phase and the higher the melting temperature of the binder phase, the greater the erosion of such melting areas,
  • DE-OS 32 26 648 balancing bullets made of a pre-alloyed tungsten powder which contain very small polygonal tungsten grains (less than 5 pm) in the sintered state, between which a matrix metal is distributed in a thin layer.
  • the literature does not mention any electrical or thermal properties such as electrical or thermal conductivity, resistance to erosion, ignition behavior, scaling behavior, resistance to corrosion or oxidation, which would suggest transfer of the material from the defense technology to electrodes or spark gaps.
  • the invention has for its object to provide an electrode material, the erosion resistance compared to the previously used steel electrodes is significantly increased due to high thermal and mechanical stability, the erosion is evenly distributed over the surface (which has no material breakouts) and the electrical conductivity is sufficiently high ( ⁇ 10 4 ⁇ -1 cm -1 at room temperature).
  • Embodiments of the inventions are the subject of subclaims.
  • the use of already alloyed tungsten heavy metal powder according to the invention allows the production of very fine-grained sintered tungsten heavy metal electrodes, since the sintering process can take place without a liquid phase. These electrodes therefore have an extremely high yield strength and tensile strength.
  • the material mentioned offers the advantage of a combination of the high thermal load capacity of the tungsten with the high mechanical strength, which is given by the fine-grained composite material with a tough nickel-based alloy.
  • the fine-grained nature of the material is important in two ways. On the one hand, the fine-grained nature of the sintered material leads to an increase in the yield strength compared to conventionally liquid-phase sintered material (Hall-Petch relationship).
  • the fine granularity of the material ensures that the thermal and mechanical stress caused by the spark is always distributed over a large number of structural components (grains) at the point of the spark strike.
  • fine-grained material also acts against the very microscopic stress a spark as a composite material with the combined properties of high thermal load capacity of the tungsten and high strength and ductility of the binder alloy. Due to the fine grain of the material, the electrodes burn off very evenly. This causes a small migration of the spark base on the electrodes, so that, with focusing shock wave application, small pressure fluctuations occur in the second focus with successive spark discharges.
  • Coarse-grained tungsten heavy metal electrodes such as those obtained by liquid phase sintering, show coarse-eruption-like erosion, which results in very strong pressure fluctuations when the shock wave is focused.
  • the erosion of such electrodes is significantly greater than that of electrodes with a fine-grained structure.
  • cracks and spalling can be seen, which both lead to increased erosion and to the above lead to irregular sparks that do not originate from the geometric electrode tip and therefore lead to pressure fluctuations.
  • High strength even in the thermally stressed area of the electrode tips can therefore only be obtained using very fine-grained material.
  • Physical properties such as thermal conductivity and electrical conductivity of the material according to the invention do not differ from coarse-grained material of the same alloy composition. With a tungsten content of 90 percent by weight of the alloy, these physical properties are approximately the same as with pure tungsten.
  • the corrosion resistance of the electrodes according to the invention in aqueous media and moist air is significantly better than that of the steel electrodes.
  • Alloyed tungsten heavy metal powder with the composition 90% by weight of tungsten, 6% by weight of nickel, 2% by weight of cobalt, 2% by weight of iron is pressed under all-round pressure into cylinders 8 mm in length and 60 mm in length.
  • the pressure is 300 Nmm 2 .
  • the compacts are first presintered in a hydrogen atmosphere at 900 ° C. for 10 hours and then sintered in vacuo at a pressure of 1o -5 mbar for 5 h at 1 360 o .
  • the blanks then present have a diameter of approx. 5 mm and a length of 45 mm.
  • the blanks are machined into the desired electrode shape.
  • the erosion of such electrodes during underwater spark discharge is 2.5 times less than that of conventional steel electrodes.
  • FIG. 1 shows the metallographic cut of an electrode according to the invention after use in the region of the electrode tip.
  • the magnification scale is 50: 1.
  • the burnup is evenly distributed over the surface in the area of the tip.
  • FIG. 2 shows the structure in the tip area in a magnification of 1000 times. Over a depth of approx. 25 pm, the outer layer shows a structure with rounded tungsten grains. The rounding was carried out by melting the binder alloy under the influence of the spark discharge. A flattening of the tungsten grains on the outer edge under the influence of the pressure surges can also be clearly seen.
  • At the core of the electrode is the typical solid-phase sintered structure with polygonal tungsten grains.
  • FIG. 3 shows the structure in the transition area between the spark impact area and the less loaded area of the electrode, in which the binder alloy did not melt,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Powder Metallurgy (AREA)
  • Surgical Instruments (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Verwendung einer gesinterten mehrphasigen Wolframlegierung als Elektrodenmaterial für eine Funkenstrecke zur Erzeugung von Stoßwellen.

Description

  • Die Erfindung betrifft ein Elektrodenmaterial für eine Funkenstrecke zur Erzeugung von Stoßwellen für die berührungsfreie Zerkleinerung von Konkrementen in Körpern von Lebewesen.
  • Aus der DE-PS 23 51 247 ist eine Einrichtung zum Zerkleinern von im Körper eines Lebewesens befindlichen Konkrementen mit einer Fokussierkammer bekannt, wobei die Fokussierungskammer eih Teil eines Rotationsellipsoids ist und in deren einem Brennpunkt Stoßwellen durch Funkenentladung erzeugbar sind. Das Konkrement befindet sich im zweiten Brennpunkt. Die Fokussierungskammer ist dabei mit einer Flüssigkeit gefüllt. Mittels einer Funkenstrecke wird durch elektrische Unterwasserfunkenentladung die in einem Kondensator gespeicherte elektrische Energie in mechanische Stoßwellenenergie umgewandelt. Wird die elektrische Unterwasserfunkenentladung in dem Brennpunkt der rotationselliptischen Fokussierungskammer gezündet, so lassen sich nahezu punktförmig im zweiten Brennpunkt Stoßwellen hoher Amplitude ( 1 Kbar mit geringen Impulslängen ( 1 µsec) erzeugen. Die im Körper von Lebewesen befindlichen Konkremente können mit diesen Stoßwellen in abgangsfähige Bruckstücke zertrümmert werden.
  • Bekannt ist aus der DE-PS 26 35 635 eine Funkenstrecke mit zwei aus einer Halterung herausragenden Elektroden, wobei eine Elektrode verlängert und über eine Schleife zurückgeführt ist, so daß sich die Elektroden axial gegenüberliegen.
  • Als Material für die Elektrodenspitzen sind u.a. Tantal und Wolfram vorgeschlagen. Die Elektroden unterliegen hohen thermischen und meachanischen Belastungen. Tantal besitzt zwar eine hohe thermische Abbrandfestigkeit, ist jedoch in seiner mechanischen Festigkeit nicht ausreichend für eine hohe Standzeit, d. h. für die Erzeugung einer hohen Zahl von Unterwasserfunkenentladungen. Wolfram hat in diesem speziellen Anwendungsfall aufgrund seiner hohen Sprödigkeit ebenfalls keine hohen Standzeiten. Es wird durch die mechanische Belastung sehr schnell zerstört.
  • Andere in der Technik gebräuchliche Elektrodenwerkstoffe sind Verbundwerkstoffe, beispielsweise Wolfram-Kupferlegierungen, die die refraktären Eigenschaften von Wolfram mit der guten elektrischen Leitfähigkeit des Kupfers verbinden. Auch diese Werkstoffe sind für die genannten Anwendungen zu spröde und erleiden einen starken mechanischen Abtrag. Diese Werkstoffe besitzen einen Kupferanteil von ≥20 %. Da die Elektroden thermisch hoch belastet werden, bildet sich eine schmelzflüssige Phase von Cu (Schmelzpunkt 1083 °C), die von der Oberfläche über eine Tiefe von ca. 100 µm oder mehr in das Innere der Elektrodenspitze reicht. Die Erosion derartiger Schmelzbereiche ist umso stärker, je höher der Binderphasenanteil und je höher die Schmelztemperatur der Binderphase ist,
  • Aus der DE-OS 32 26 648 sind Wuchtgeschosse aus einem vorlegierten Wolframpulver bekannt, die im gesinterten Zustand sehr kleine polygone Wolframkörner (kleiner 5 pm)enthalten, zwischen denen in dünner Schicht ein Matrixmetall verteilt ist. Die Literaturstelle nennt keine elektrischen oder thermischen Eigenschaften wie elektrische oder thermische Leitfähigkeit, Abbrandfestigkeit, Zündverhalten, Zunderverhalten, Korosions- oder Oxidationsbeständigkeit, die eine Übertragung des Materials von der Wehrtechnik auf Elektroden oder Funkenstrecken nahelegen würden.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Elektrodenmaterial anzugeben, dessen Abbrandfestigkeit gegenüber den bisher verwendeten Stahlelektroden aufgrund hoher thermischer und mechanischer Stabilität wesentlich vergrößert ist, dessen Abbrand gleichmäßig über die Oberfläche verteilt erfolgt, (das keine Materialausbrüche aufweist) und dessen elektrische Leitfähigkeit ausreichend hoch ist (≥104Ω-1 cm -1 bei Raumtemperatur).
  • Diese Aufgabe wird erfindungsgemäß durch die Verwendung von Materialien gelöst, wie sie in der Patentanmeldung P 32 26 648 angegeben sind.
  • Ausgestaltungen der Erfindungen sind Gegenstände von Unteransprüchen.
  • Die erfindungsgemäße Verwendung bereits legierter Wolfram-schwermetallpulver erlaubt die Herstellung von sehr feinkörnigen gesinterten Wolfram-Schwermetallelektroden, da der Sinterprozeß ohne flüssige Phase erfolgen kann. Diese Elektroden weisen daher eine außerordentlich hohe Streckgrenze und Zugfestigkeit auf. Bei der erfindungsgemäßen Verwendung als Elektrodenmaterial bietet der genannte Werkstoff den Vorteil einer Kombination der hohen thermischen Belastbarkeit des Wolframs mit der hohen mechanischen Festigkeit,, die durch den feinkörnigen Verbundwerkstoff mit einer zähen Nickelbasislegierung gegeben ist. Die Feinkörnigkeit des Materials ist dabei in zweifacher Weise von Bedeutung, Einerseits führt die Feinkörnigkeit des gesintertern Materials zu einer Erhöhung der Streckgrenze gegenüber konventionell flüssigphasengesintertem Material (Hall-Petch-Beziehung). Zum anderen sorgt die Feinkörnigkeit des Materials dafür, daß an der Funkeneinschlagstelle die durch den Funken ausgelöste thermische und mechanische Belastung immer über eine Vielzahl von Gefügebestandteilen (Körnern) verteilt wird. Im Gegensatz zu grobkörnigem, flüssigphasengesintertem Material, bei dem die Größe der Funkeneinschlagstelle vergleichbar ist zur Gefügekorngröße, wirkt feinkörniges Material auch gegenüber der sehr mikroskopischen Belastung eines Funkeneinschlags als Verbundwerkstoff mit den kombinierten Eigenschaften hoher thermischer Belastbarkeit des Wolframs und hoher Festigkeit und Duktilität der Binderlegierung. Aufgrund der Feinkörnigkeit des Materials erfolgt der Abbrand der Elektroden sehr gleichmäßig. Dies bewirkt eine geringe Wanderung des Funken-Fußpunkts auf den Elektroden, sodaß bei fokussierender Stoßwellenanwendung geringe Druckschwankungen bei aufeinanderfolgenden Funkenentladungen im zweiten Fokus auftreten. Grobkörnige WOlfram-Schwermetall-Elektroden, wie sie durch Flüssigphasensinterung erhalten werden, zeigen grob-ausbruchartigen Abbrand, der sehr starke Druckschwankungen bei der Fokussierung der Stoßwelle zu Folge hat.
  • Auch bei konventionell flüssigphasengesintertem, grobkörnigem Material ist eine hohe Festigkeit durch mechanische Umformung zu erzielen. Im erfindungsgemäßen Anwendungsfall wird jedoch das Material auch thermisch sehr hoch belastet. In einer oberflächennahen Zone werden dabei Temperaturen von 1 450 °C überschritten. Dies führt bei konventionell flüssigphasengesintertem Material, das durch mechanische Kaltverformung verfestigt wurde, zu einer Entfestigung durch Rekristallisation.
  • Der Abbrand derartiger Elektroden ist deutlich größer als von Elektroden mit feinkörnigem Gefüge. Im Rekristallisationsbereich der Elektroden sind Rißbildungen und Ausplatzungen zu erkennen, die sowohl zu verstärktem Abbrand als auch zu den o. g. irregulär ausgebildeten Funken führen, die nicht von der geometrischen Elektrodenspitze ausgehen und daher zu Druckschwankungen führen. Hohe Festigkeit auch in dem thermisch belasteten Bereich der Elektrodenspitzen kann daher nur über sehr feinkörniges Material erhalten werden. Physikalische Eigenschaften wie Wärmeleitfähigkeit und elektrische Eeitfähigkeit des erfindungsgemäßen Materials unterscheiden sich nicht von grobkörnigem Material derselben Legierungszusammensetzung. Bei einem Wolframgehalt von 90 Gewichtprozent der Legierung sind diese physikalischen Eigenschaften ungefähr so wie bei reinem Wolfram. Die Korrosionsbeständigkeit der erfindungsgemäßen Elektroden in wässrigen Medien und feuchter Luft ist deutlich besser als die der Stahlelektroden.
  • Beispiel;
  • Legiertes Wolfram-Schwermetallpulver der Zusammensetzung 90 Gew% Wolfram, 6 Gew% Nickel, 2 Gew% Kobalt, 2 Gew% Eisen wird unter allseitigem Druck zu Zylindern von 8 mm 0 und 60 mm Länge verpreßt. Der Preßdruck beträgt 300 Nmm2. Die Preßlinge werden zunächst in Wasserstoffatmosphäre bei 900°C 10 h lang vorgesintert und anschließend im Vakuum bei einem Druck von 1o -5 mbar 5 h bei 1 360o fertig gesintert. Die dann vorliegenden Rohlinge besitzen einen Druchmesser von ca. 5mm bei einer Länge von 45 mm. Die Rohlinge werden durch spanende Formgebung in die gewünschte Elektrodenform gebracht. Der Abbrand derartiger Elektroden bei der Unterwasserfunkenentladung ist um einen Faktor 2,5 geringer als der gebräuchlicher Stahlelektroden. Figur 1 zeigt den metallographischen Schliff einer erfin dungsgemäßen Elektrode nach der Benutzung im Bereich der Elektrodenspitze. Der Vergrößerungsmaßstab ist 50 : 1. Der Abbrand ist gleichmäßig über die Oberfläche im Bereich der Spitze verteilt. Figur 2 zeigt in 1000 facher Vergrößerung das Gefüge im Spitzenbereich. Die äußere Schicht zeigt über eine Tiefe von ca. 25 pm ein Gefüge mit abgerundeten Wolframkörnern, Die Abrundung erfolgte durch Schmelzen der Binderlegierung unter dem:Einfluß der Funkenentladung. Deutlich ist auch eine Abplattung der Wolframkörner am äußeren Rand unter dem Einfluß der Druckstöße zu erkennen. Im Kern der Elektrode liegt das typische Festphasen-Sintergefüge mit polygonalen Wolfram-Körnern vor. Figur 3 zeigt das Gefüge im Übergangsbereich zwischen dem Funkeneinschlagsbereich und weniger belastetem Bereich der Elektrode, in dem kein Aufschmelzen der Binderlegierung erfolgte,

Claims (3)

1. Verwendung einer gesinterten, mehrphasigen Wolframlegierung mit hohem Wolframanteil nach Patentanmeldung P 32 26 648, wobei Wolfram in Form sehr kleiner Körner (kleiner 5 pm) vorliegt, die von einer dünnen Schicht einer Binderlegierung umhüllt sind, als Elektrodenmaterial für eine Funkenstrecke zur Erzeugung von Stoßwellen, insbesondere in Wasser oder anderen Flüssigkeiten.
2. Verfahren zur Herstellung von Elektrodenmaterial nach Anspruch 1, dadurch gekennzeichnet, daß nach dem Festphasensintern eine kurze Wärmebehandlung mit flüssiger Phase durchgeführt wird, bei der die polygonen Wolframkörner abgerundet werden.
3. Verfahren zur Herstellung von Elektrodenmaterial nach Anspruch 1, dadurch gekennzeichnet, daß die Preßlinge aus einem vorlegierten Pulver mit 90 % Wolfram, 6 % Nickel, 2 % Kobalt und 2 % Eisen bei 900 °C 10 Stunden vorgesintert und im Vakuum bei 1.360 °C 5 Stunden fertiggesintert werden.
EP19860104346 1985-05-29 1986-05-09 Elektrodenmaterial für eine Funkenstrecke Expired EP0204909B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853519163 DE3519163A1 (de) 1985-05-29 1985-05-29 Elektrodenmaterial fuer eine funkenstrecke
DE3519163 1985-05-29

Publications (2)

Publication Number Publication Date
EP0204909A1 true EP0204909A1 (de) 1986-12-17
EP0204909B1 EP0204909B1 (de) 1989-11-08

Family

ID=6271862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860104346 Expired EP0204909B1 (de) 1985-05-29 1986-05-09 Elektrodenmaterial für eine Funkenstrecke

Country Status (3)

Country Link
EP (1) EP0204909B1 (de)
JP (1) JPS61276549A (de)
DE (1) DE3519163A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326713A1 (de) * 1988-01-04 1989-08-09 GTE Products Corporation Wolfram-Nickel-Eisen-Legierungen
US5008071A (en) * 1988-01-04 1991-04-16 Gte Products Corporation Method for producing improved tungsten nickel iron alloys
FR2673492A1 (fr) * 1991-03-01 1992-09-04 Technomed Int Sa Electrode en alliage refractaire hautement allie et appareil de generation d'onde de pression en comportant application.
GB2278851A (en) * 1993-06-07 1994-12-14 Nwm De Kruithoorn Bv Heavy metal alloys
EP1083239A1 (de) * 1999-09-09 2001-03-14 Advanced Materials Technologies, Pte Ltd. Nichtmagnetische Wolfram-Legierung mit hoher Dichte
CN104889384A (zh) * 2015-06-10 2015-09-09 深圳市威勒达科技开发有限公司 一种W-Re复合粉末材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2649252B1 (fr) * 1989-06-30 1993-01-15 Technomed Int Sa Procede et dispositif de decharge d'un arc electrique dans un liquide electriquement conducteur et application au lithotrypteur
DE10112461C2 (de) * 2001-03-15 2003-12-24 Hmt Ag Vorrichtung zur Erzeugung elektrischer Entladungen in einem wässrigen Medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1297870B (de) * 1966-03-31 1969-06-19 Hermsdorf Keramik Veb Verfahren zur pulvermetallurgischen Herstellung einer quaternaeren Wolframlegierung mit verbesserter Bruchdehnung
US3557793A (en) * 1965-04-06 1971-01-26 Jury Grigorievich Ediny Method for crushing stones in urinary bladder and instrument for same
US3745000A (en) * 1970-10-22 1973-07-10 Gte Sylvania Inc Process for producing tungsten-alloy emitter type electrode
US4012230A (en) * 1975-07-07 1977-03-15 The United States Of America As Represented By The United States Energy Research And Development Administration Tungsten-nickel-cobalt alloy and method of producing same
DE2635635A1 (de) * 1976-08-07 1978-02-09 Dornier System Gmbh Funkenstrecke zur zerstoerung von konkrementen in koerpern von lebewesen
EP0098944A2 (de) * 1982-07-16 1984-01-25 DORNIER SYSTEM GmbH Wolframlegierungspulver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557793A (en) * 1965-04-06 1971-01-26 Jury Grigorievich Ediny Method for crushing stones in urinary bladder and instrument for same
DE1297870B (de) * 1966-03-31 1969-06-19 Hermsdorf Keramik Veb Verfahren zur pulvermetallurgischen Herstellung einer quaternaeren Wolframlegierung mit verbesserter Bruchdehnung
US3745000A (en) * 1970-10-22 1973-07-10 Gte Sylvania Inc Process for producing tungsten-alloy emitter type electrode
US4012230A (en) * 1975-07-07 1977-03-15 The United States Of America As Represented By The United States Energy Research And Development Administration Tungsten-nickel-cobalt alloy and method of producing same
DE2635635A1 (de) * 1976-08-07 1978-02-09 Dornier System Gmbh Funkenstrecke zur zerstoerung von konkrementen in koerpern von lebewesen
EP0098944A2 (de) * 1982-07-16 1984-01-25 DORNIER SYSTEM GmbH Wolframlegierungspulver

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326713A1 (de) * 1988-01-04 1989-08-09 GTE Products Corporation Wolfram-Nickel-Eisen-Legierungen
US5008071A (en) * 1988-01-04 1991-04-16 Gte Products Corporation Method for producing improved tungsten nickel iron alloys
FR2673492A1 (fr) * 1991-03-01 1992-09-04 Technomed Int Sa Electrode en alliage refractaire hautement allie et appareil de generation d'onde de pression en comportant application.
WO1992016039A1 (fr) * 1991-03-01 1992-09-17 Technomed International Electrode en alliage refractaire hautement allie et appareil de generation d'onde de pression en comportant application
GB2278851A (en) * 1993-06-07 1994-12-14 Nwm De Kruithoorn Bv Heavy metal alloys
US5462576A (en) * 1993-06-07 1995-10-31 Nwm De Kruithoorn B.V. Heavy metal alloy and method for its production
GB2278851B (en) * 1993-06-07 1997-04-09 Nwm De Kruithoorn Bv Heavy metal alloys
EP1083239A1 (de) * 1999-09-09 2001-03-14 Advanced Materials Technologies, Pte Ltd. Nichtmagnetische Wolfram-Legierung mit hoher Dichte
CN104889384A (zh) * 2015-06-10 2015-09-09 深圳市威勒达科技开发有限公司 一种W-Re复合粉末材料及其制备方法

Also Published As

Publication number Publication date
DE3519163A1 (de) 1986-12-04
JPS61276549A (ja) 1986-12-06
EP0204909B1 (de) 1989-11-08
DE3519163C2 (de) 1987-03-26

Similar Documents

Publication Publication Date Title
DE2621472C2 (de) Verwendung einer Hartlegierung für Schneid-,Scher-oder Verformungswerkzeuge
DE69837619T2 (de) Elektrodenstab für funkenbeschichtung, verfahren zu dessen herstellung und verfahren zur beschichtung mit supraschleif-enthaltender schicht
DE3509465C2 (de) Verfahren zur Herstellung poröser, nicht-verdampfbarer Gettereinrichtungen, so hergestellte Gettereinrichtungen und ihre Verwendung
EP0312674B1 (de) Erodierelektrode, insbesondere Drahtelektrode für die funkenerosive Bearbeitung
US5863492A (en) Ternary heavy alloy based on tungsten-nickel-manganese
AT503771A2 (de) Einphasige wolframlegierung für hohlladungseinlagen
CH677530A5 (de)
DE1263576B (de) Verfahren zur Herstellung von Cermets
DE60004613T2 (de) Nichtmagnetische Wolfram-Legierung mit hoher Dichte
DE3690073C2 (de) Drucksinterverfahren
DE3875594T2 (de) Verfahren zur herstellung eines gegenstandes aus pulverfoermigem material durch isostatisches pressen.
EP0204909B1 (de) Elektrodenmaterial für eine Funkenstrecke
EP0574727A1 (de) Verfahren zur Herstellung eines hochtemperatur-festen Bauteils aus zwei unterschiedlichen Werkstoffen
AT7187U1 (de) Verfahren zur herstellung einer molybdän-legierung
EP0062173B1 (de) Verfahren zur Herstellung eines Kolbens aus Aluminium mit hartoxidiertem Boden
DE2625233C2 (de) Verfahren zur Herstellung eines zur Sinterung geeigneten Metallpulvers sowie Kugelmühle zur Durchführung dieses Verfahrens
DE4434515C2 (de) Oxid-dispersionsverfestigte Legierung und daraus hergestellte Bauteile von Gasturbinen
EP0396185B1 (de) Verfahren zur Herstellung von warmkriechfesten Halbfabrikaten oder Formteilen aus hochschmelzendem Metall
DE2352620A1 (de) Werkzeugstahl sowie verfahren zur herstellung von werkstuecken aus demselben
DE2655726C2 (de)
DE10112461C2 (de) Vorrichtung zur Erzeugung elektrischer Entladungen in einem wässrigen Medium
CN1292311A (zh) 电接触器和电极用合金和其制备方法
EP0172852B1 (de) Hitzebeständige molybdän-legierung
DE2137650A1 (de) Carbid Metall Verbundstoff und Ver fahren zu dessen Herstellung
DE2453702A1 (de) Kompositerzeugnis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870116

17Q First examination report despatched

Effective date: 19880128

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORNIER GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB IT LI NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900531

Ref country code: CH

Effective date: 19900531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86104346.1

Effective date: 19910115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050509