EP0326713A1 - Wolfram-Nickel-Eisen-Legierungen - Google Patents

Wolfram-Nickel-Eisen-Legierungen Download PDF

Info

Publication number
EP0326713A1
EP0326713A1 EP88121867A EP88121867A EP0326713A1 EP 0326713 A1 EP0326713 A1 EP 0326713A1 EP 88121867 A EP88121867 A EP 88121867A EP 88121867 A EP88121867 A EP 88121867A EP 0326713 A1 EP0326713 A1 EP 0326713A1
Authority
EP
European Patent Office
Prior art keywords
tungsten
iron
sintering
nickel
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88121867A
Other languages
English (en)
French (fr)
Inventor
James R. Spencer
James A. Mullendore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Sylvania Inc
Original Assignee
GTE Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Products Corp filed Critical GTE Products Corp
Publication of EP0326713A1 publication Critical patent/EP0326713A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals

Definitions

  • This invention relates to tungsten alloys. More particularly it relates to tungsten alloys with a tungsten content of from about 70% to about 98% by weight of tungsten having improved properties as a result of different nickel to iron ratios than in prior art materials.
  • Tungsten heavy alloys generally contain from about 88% to about 98% by weight of tungsten, balance iron and nickel. It is commonly believed that a 7:3 nickel to iron ratio gives the optimum properties for the tungsten-nickel-iron system.
  • a juxtaposdated tungsten base alloy body consisting essentially of from about 70% to about 98% by weight of tungsten, balance nickel and iron in essentially an 8:2 weight ratio.
  • a tungsten alloy containing from about 70% to about 90% by weight of tungsten is prepared by following essentially the same procedure as with the alloys having higher amounts of tungsten except that only solid state sintering is used , thus, sintering temperatures of less than about 1450°C are used.
  • a relatively uniform blend of the elemental metal powders is preferably prepared. While the elemental metal powders are preferred as the initial starting material, metallic salts having a fugitive nonmetallic components can be used as long as the proper amount of metallic elements are present in the blend.
  • the relative uniform blend is made by using conventional blending equipment such as a V blender, the material is heated to remove the volatile component if any are present. Time and temperatures will depend upon the materials that are used and will be known to those skilled in the art of powder metallurgy.
  • a typical consolidation technique for producing green bodies is an isostatic press using pressures of from about 30 psi to about 50 psi.
  • the green body is solid state sintered at a temperature below the melting point of any of the elements for a period of time sufficient to remove any binders used to aid in the pressing to form a green body and to achieve a density sufficient to enable handling which is generally greater than about 80% of theoretical.
  • nickel is the lowest melting element utilized in the practice of this invention, the initial temperature will be below about 1425°C and preferably about 1400°C.
  • the time required for sintering at about 1400°C is about 4 hours. Longer times are required for lower temperatures while shorter times are required at temperatures approaching the melting point of nickel.
  • the material is then sintered to full density by liquid phase sintering above the melting point of both iron and nickel to achieve full density and the desired microstructure, that is, rounded tungsten grains in a continuous second phase containing the iron and nickel.
  • the actual sintering temperature will vary depending upon the tungsten content, for example, for 93% tungsten about 1540-1545°C for about 45 minutes is sufficient to achieve full density which is about 10 to about 15°C higher than required for a 7:3 nickel to iron ratio material.
  • Alloys containing from about 70% to about 90% by weight of tungsten can be prepared by following essentially the same procedure as with the alloys having from about 88% or above of tungsten except that solid state sintering only is used, thus, sintering temperatures of less than about 1450°C are used. Sintering is carried out in a reducing atmosphere which includes hydrogen, hydrogen-nitrogen mixtures and dissassociated ammonia.
  • Alloys are prepared by blending elemental metal powders of the metals for about 90 minutes in a V-blender. Bars are made from the powder blends by isostatically pressing the blends at about 35 ksi. The bars are presintered in wet hydrogen for about 4 hours at about 1400°C which produces a 90% dense material. The partially densified bars are sintered in a wet hydrogen atmosphere at temperatures ranging from 1510 °C to about 1540°C for the 90% tungsten and the 93% tungsten alloys respectively.
  • An alloy containing 90% tungsten with an Ni:Fe weight ratio of 8:2 has an impact strength of over 50 ft-lbs as compared to 28 ft-lbs for a similar alloy having a 7:3 Ni:Fe weight ratio.
  • the tensile elongation is increased from an average of about 35% to an average of 41%.
  • the impact strength is increased from 18 ft-lbs to 32 ft-lbs and the tensile elongation improved from an average of 33% to an average of 38%.
  • Alloys each containing about 70% tungsten are prepared by solid state sintering at from about 1400°C to about 1420°C for about 4 hours in wet hydrogen. Rolled sheets of tunsten prepared as above are compared. The material having the 7:3 Ni:Fe ratio has a tensile elongation of about 15% while the material having the 8:2 Ni:Fe ratio has a tensile elongation of about 25%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
EP88121867A 1988-01-04 1988-12-29 Wolfram-Nickel-Eisen-Legierungen Withdrawn EP0326713A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14050488A 1988-01-04 1988-01-04
US140504 1988-01-04

Publications (1)

Publication Number Publication Date
EP0326713A1 true EP0326713A1 (de) 1989-08-09

Family

ID=22491540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88121867A Withdrawn EP0326713A1 (de) 1988-01-04 1988-12-29 Wolfram-Nickel-Eisen-Legierungen

Country Status (1)

Country Link
EP (1) EP0326713A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442834C2 (ru) * 2009-12-22 2012-02-20 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Нижегородский Государственный Университет Им. Н.И. Лобачевского" Способ улучшения механических свойств порошковых изделий из тяжелых сплавов на основе вольфрама и порошковое изделие с механическими свойствами, улучшенными этим способом
CN108315627A (zh) * 2018-03-27 2018-07-24 江西澳科新材料科技有限公司 改进型钨合金及其制备方法
CN108315626A (zh) * 2018-03-27 2018-07-24 江西澳科新材料科技有限公司 新型钨合金材料及其制备方法
CN108359873A (zh) * 2018-03-27 2018-08-03 江西澳科新材料科技有限公司 一种低密度钨合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050703A (fr) * 1951-04-06 1954-01-11 Plansee Metallwerk Pièce métallique frittée à poids spécifique élevé
US2793951A (en) * 1953-06-19 1957-05-28 Gen Electric Co Ltd Powder metallurgical process for producing dense tungsten alloys
US3888636A (en) * 1971-02-01 1975-06-10 Us Health High density, high ductility, high strength tungsten-nickel-iron alloy & process of making therefor
US3979234A (en) * 1975-09-18 1976-09-07 The United States Of America As Represented By The United States Energy Research And Development Administration Process for fabricating articles of tungsten-nickel-iron alloy
EP0204909A1 (de) * 1985-05-29 1986-12-17 Dornier Gmbh Elektrodenmaterial für eine Funkenstrecke

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050703A (fr) * 1951-04-06 1954-01-11 Plansee Metallwerk Pièce métallique frittée à poids spécifique élevé
US2793951A (en) * 1953-06-19 1957-05-28 Gen Electric Co Ltd Powder metallurgical process for producing dense tungsten alloys
US3888636A (en) * 1971-02-01 1975-06-10 Us Health High density, high ductility, high strength tungsten-nickel-iron alloy & process of making therefor
US3979234A (en) * 1975-09-18 1976-09-07 The United States Of America As Represented By The United States Energy Research And Development Administration Process for fabricating articles of tungsten-nickel-iron alloy
EP0204909A1 (de) * 1985-05-29 1986-12-17 Dornier Gmbh Elektrodenmaterial für eine Funkenstrecke

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442834C2 (ru) * 2009-12-22 2012-02-20 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Нижегородский Государственный Университет Им. Н.И. Лобачевского" Способ улучшения механических свойств порошковых изделий из тяжелых сплавов на основе вольфрама и порошковое изделие с механическими свойствами, улучшенными этим способом
CN108315627A (zh) * 2018-03-27 2018-07-24 江西澳科新材料科技有限公司 改进型钨合金及其制备方法
CN108315626A (zh) * 2018-03-27 2018-07-24 江西澳科新材料科技有限公司 新型钨合金材料及其制备方法
CN108359873A (zh) * 2018-03-27 2018-08-03 江西澳科新材料科技有限公司 一种低密度钨合金及其制备方法

Similar Documents

Publication Publication Date Title
US4784690A (en) Low density tungsten alloy article and method for producing same
Fujita et al. Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process
US5080712A (en) Optimized double press-double sinter powder metallurgy method
EP0331679B1 (de) Hochdichte gesinterte eisenlegierung
CA1184572A (en) Sintered high density boron carbide
US4612162A (en) Method for producing a high density metal article
WO2001091956A1 (en) A process for liquid-phase sintering of a multiple-component material
US7226492B2 (en) High-powder tungsten-based sintered alloy
US4851042A (en) Hardness and strength of heavy alloys by addition of tantalum
US5008071A (en) Method for producing improved tungsten nickel iron alloys
US20050191200A1 (en) Method and composition for metal free form fabrication
IE69760B1 (en) Method of forming diamond impregnated carbide via the in-situ conversion of dispersed graphite
US4343650A (en) Metal binder in compaction of metal powders
US3957451A (en) Ruthenium powder metal alloy
US4432795A (en) Sintered powdered titanium alloy and method of producing same
EP0323628B1 (de) Zusätze enthaltende Wolframschwermetallegierungen mit feinem Gefüge
EP0326713A1 (de) Wolfram-Nickel-Eisen-Legierungen
US3977841A (en) Ruthenium powder metal alloy and method for making same
EP0200691B1 (de) Eisenbasiertes gemischtes Legierungspulver
US4986961A (en) Fine grain tungsten heavy alloys containing additives
DE69434085T2 (de) Kompositmaterial und verfahren zu dessen herstellung
JPH05171321A (ja) 高密度粉末焼結用チタン合金
JP2551285B2 (ja) 高密度粉末焼結用チタン合金
KR20040091627A (ko) 안정화된 입자 크기의 난융 금속 분말 야금 밀 제품
JP2737487B2 (ja) 高密度粉末焼結用チタン合金の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900210