EP0203255B1 - Ponçeuse vibrante équilibrée - Google Patents

Ponçeuse vibrante équilibrée Download PDF

Info

Publication number
EP0203255B1
EP0203255B1 EP86101186A EP86101186A EP0203255B1 EP 0203255 B1 EP0203255 B1 EP 0203255B1 EP 86101186 A EP86101186 A EP 86101186A EP 86101186 A EP86101186 A EP 86101186A EP 0203255 B1 EP0203255 B1 EP 0203255B1
Authority
EP
European Patent Office
Prior art keywords
eccentric
rotation
output shaft
relation
grinding shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86101186A
Other languages
German (de)
English (en)
Other versions
EP0203255A3 (en
EP0203255A2 (fr
Inventor
Peter Dipl.-Ing. Maier (Fh)
Horst Dr. Haberhauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Priority to AT86101186T priority Critical patent/ATE56904T1/de
Publication of EP0203255A2 publication Critical patent/EP0203255A2/fr
Publication of EP0203255A3 publication Critical patent/EP0203255A3/de
Application granted granted Critical
Publication of EP0203255B1 publication Critical patent/EP0203255B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/04Portable grinding machines, e.g. hand-guided; Accessories therefor with oscillating grinding tools; Accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18544Rotary to gyratory
    • Y10T74/18552Unbalanced weight

Definitions

  • the invention is based on an orbital sander with the features of the preamble of claim 1 and claim 3.
  • the case may arise in which the elastic members with which the sanding shoe is fastened to the housing already generate significant lateral forces when the sanding shoe is brought into oscillating or orbital movement with respect to the housing.
  • a balancing weight the center of gravity of which is in the extension of the normal intersecting the two axes of rotation, would only permit inadequate balancing.
  • the sanding shoe is driven by two eccentrics arranged parallel to one another along the axis.
  • Each of the two eccentrics is non-rotatably connected to a balancing weight in order to compensate for the centrifugal force caused by the oscillating grinding shoe.
  • the eccentrics and thus the balancing weights run synchronously with the same phase position in order to generate the desired movement of the grinding shoe.
  • the object of the invention is to create an orbital sander, in particular a hand-held orbital sander, which generates less vibrations on the housing or on the handle in the grinding operation.
  • the existing balance weight slightly rotated anyway or to store it so that it is adjustable with respect to the eccentric.
  • the connecting line between the axis of rotation of the eccentric in the housing and the center of gravity of the balancing weight should be approximately parallel or opposite to the sum vector from the centrifugal force of the grinding shoe moving along the circular path and the transverse force acting on the eccentric.
  • the buzzer vector due to the comparatively low transverse forces, has no appreciably larger amount than the amount of the force vector due to the centrifugal force.
  • the mass of the at least one balancing weight and / or the distance from its center of gravity from the axis of rotation which is stationary in the housing is dimensioned such that a force and a vector arise at a specific rotational speed of the eccentric, the magnitude of which is equal to the sum vector , but this is opposite.
  • the balancing which is unchangeable in this way and which is dimensioned for the load case, results in poorer balancing when the orbital sander is lifted, which in itself is normally not particularly troublesome because the orbital sander lifted does not need to run.
  • the balancing weight is firmly connected to the eccentric, which in turn is rotatably mounted on an output shaft of the drive device.
  • the axis of rotation about which the eccentric can be rotated on the output shaft lies between the axis of rotation which is fixed in the grinding shoe and the axis of rotation which is fixed in the housing and runs parallel to both axes of rotation, the eccentric being coupled in a torsionally elastic manner to the output shaft via an elastic member.
  • both the balancing weight and the eccentric are rotatably mounted on the output shaft of the drive device, the axis of rotation of which forms the fixed axis of rotation of the eccentric in the housing.
  • the output shaft is coupled to the eccentric in a torsionally flexible manner, while a gear element is mounted in the eccentric which, when the eccentric rotates around the output shaft, rotates the balancing weight in the same direction around the output shaft, but by a larger angle.
  • This gear element thus acts much like a planet gear, which is arranged between the output shaft and the centrifugal weight, while the eccentric itself represents the planet carrier.
  • an orbital sander 1 in the housing 2 of which a drive device in the form of an electric or compressed air motor is arranged, which serves to set an abrasive thrust 3 elastically connected to the housing 2 in an oscillating movement relative to the housing 2 .
  • the housing 2 represents the fixed reference point and should remain as quiet as possible.
  • an output shaft 4 of the drive device is rotatably mounted in a bearing flange 5 of the housing 2 by means of a radial deep groove ball bearing 6 about an axis of rotation 7 which extends at right angles to a plane defined by the grinding shoe 3.
  • the oscillating movement of the grinding shoe 3 produces an eccentric 8, which is fixed in a rotationally fixed manner on the end of the output shaft 4 protruding from the deep groove ball bearing 6 and has a cylindrical outer peripheral surface, the axis of symmetry 9 of which is radially offset with respect to the axis of rotation 7 of the output shaft 4.
  • On the eccentric 8 is another radial deep groove ball bearing 11, which is pushed onto a shoulder 12 of the eccentric 8 until it abuts.
  • the axis of symmetry 9 thereby forms the axis of rotation of the eccentric 8 in the grinding shoe 3, which is parallel to the axis of rotation 7.
  • the outer bearing of the deep groove ball bearing 11 is in a bearing bore 13 which is mounted in the dome-like attachment 14 of the grinding shoe 3.
  • the dome-like attachment 14 is an integral part of the grinding shoe 3 and bulges towards the underside of the housing 2. It is located approximately in the center of the rectangular sanding shoe 3, which is glued or otherwise fastened on its underside, and carries an elastic support plate 15, which represents the contact surface for the back of an abrasive paper to be clamped.
  • the fastening devices for holding the sanding paper are omitted for the sake of clarity.
  • a balancing weight 16 is integrally formed on the eccentric 8, which rotates in the cavity which is delimited by the dome-like attachment 14 and the support plate 15.
  • the eccentric 8 is axially secured on the output shaft 4 by means of a countersunk screw 17 which is screwed into a coaxial threaded bore 19 of the output shaft 4 with the interposition of a washer 18.
  • the washer 18 forms the contact surface for the underlying end face of the eccentric 8 or the balancing weight 16.
  • Fig. 2 contains a highly schematic top view View of the grinding shoe 3 and the eccentric 8, with all other structural details that are unimportant in this context being omitted for a clear illustration of the forces acting on the eccentric 8.
  • the eccentric 8 should be understood as a one-armed lever, the length of which corresponds to the distance between the two mutually parallel axes of rotation 7 and 9. Furthermore, they assumed that the entire mass of the grinding shoe 3 is concentrated in the free end of the imaginary one-armed lever, ie in the axis of rotation 9, and that the friction and cutting forces caused by the grinding shoe 3 also act at this point. Since the eccentric 8 rotates around the axis 7, which is as spatially fixed as possible, as a forced axis of rotation, the mass of the grinding shoe 3 concentrated in the axis of rotation 9 rotates about the axis of rotation 7 with a radius corresponding to the distance between the axis of rotation 7 and the axis of rotation 9.
  • the mass of the grinding shoe 3 generates a centrifugal force according to the formula where ⁇ is the angular velocity, r is the distance between the two axes of rotation 7 and 8 and m is the mass of the grinding shoe 3.
  • This centrifugal force acts on the axis of rotation 9 and acts, as an arrow 25 illustrates, in the extension of the connecting straight line between the two axes of rotation 7 and 9, namely in the extension of the imaginary one-armed lever. Arrow 25 thus illustrates the centrifugal force vector.
  • the cutting force that arises when the orbital sander 1 is used acts at right angles to the centrifugal force, as does the frictional forces that occur between the grinding shoe 3 and the housing 2.
  • the eccentric 8 rotates counterclockwise, as indicated by an arrow 26, about the axis of rotation 7, the cutting and frictional forces act in the direction of an arrow 27, which illustrates the force vector running at right angles to the centrifugal force vector 25.
  • Both forces together result in a total force corresponding to the vectorial addition of the two force vectors 25 and 27, i.e. the cutting and friction forces on the one hand and the centrifugal force on the other.
  • the resulting sum force is represented in FIG. 2 by a sum vector according to arrow 28.
  • the center of gravity of the balance weight is therefore on the connecting straight line through the two axes of rotation 7 and 9, i.e. in extension of the centrifugal force vector 25.
  • the effective mass of the balancing weight 16 is dimensioned such that its centrifugal force compensates for the centrifugal force of the grinding shoe 3. As long as no cutting forces occur, a very low-vibration operation is obtained in this way, in which the housing 2, which is held in the hand by the operator, remains largely in ruble.
  • the balancing weight 16 is therefore arranged slightly rotated.
  • the center of gravity 29 of the balancing weight 16 lies next to the connecting straight line which intersects the two axes of rotation 7 and 9 of the eccentric 8 at right angles and is located in a plane which contains the center of gravity 29.
  • the offset of the center of gravity 29, i.e. the rotation of the balance weight 16 with respect to the eccentric 8 or the output shaft 4 is determined so that the centrifugal force acting on the center of gravity 29 of the balance weight 16 acts in a direction which runs parallel to the sum vector 28 and is opposite thereto.
  • these two balancing weights can in turn be combined in a known manner to form a single balancing weight which, compared to the balancing weight for compensating the centrifugal force according to the force vector 25, has a larger effective mass and a changed center of gravity.
  • the condition is met again in the operating case that the centrifugal force vector acting on the center of gravity 29 has the same amount as the sum vector 28, but has the opposite effect.
  • the orbital sander constructed according to FIGS. 1 and 2 shows a greater smoothness in operation or load than when it is lifted off the workpiece and freewheels, because then the fleeing from the center of gravity 29 force vector no longer runs parallel to the centrifugal force vector 25, which is now exclusively present; the cutting forces corresponding to the force vector 27 have decreased to zero in the freewheeling case. If this behavior interferes, it is possible to provide a dynamic adjustment of the position of the center of gravity 29 of the balancing weight relative to the centrifugal force vector 25 or the sum vector 28, as shown in the following figures. In these embodiments, the signal transmitted from the output shaft 4 to the grinding shoe 3 torque is used, the adjustment of the force 'vectors in the load and to realize the free-running case.
  • FIG. 3 shows a section of the region of the orbital sander that can be seen in the broken-open part of FIG. 1, insofar as it is necessary for the explanation.
  • the same reference numerals are used for the individual components, insofar as they are already shown in the previous figures.
  • An eccentrically arranged cylindrical sleeve 31 is seated on the end of the output shaft 4 protruding from the deep groove ball bearing 6, on which the eccentric 8 is in turn rotatably but axially secured.
  • the torque transmission from the output shaft 4 to the eccentric 8 takes place by means of a torsionally flexible coupling member 32, which is mounted on the one hand in a rotationally fixed manner with the output shaft 5 in the area between the deep groove ball bearing 6 and the upper end face of the eccentric sleeve 31, and on the other hand in a rotationally fixed manner with the outer peripheral surface of the Eccentric 8 is connected.
  • the balancing weight 16 in turn sits in one piece on the eccentric 8.
  • a total of three axes of rotation occur in this embodiment: the axis of rotation 7 and the axis of rotation 9, as already described above, and a new axis of rotation 33, which runs parallel to the axes of rotation 7 and 9 and extends located between them, ie the axis of rotation 33 runs at a distance from the axis of rotation 7 and also at a distance from the axis of rotation 9, but the two axes of rotation 7 and 9 are located on different sides of the axis of rotation 33.
  • the axis of rotation 7 which coincides with the axis of the output shaft 4 and is stationary in the housing 2, should remain at rest as far as possible.
  • the axis of rotation 9 runs, as previously described, on a circular path around the axis of rotation 7, so that the distance between the two axes of rotation 7 and 9 defines the grinding circle diameter from one another.
  • the rotation occurs because a torque acts on the axis of rotation 7, which acts in the clockwise direction, while the grinding force vector 27 on the axis of rotation 9 produces a counter torque, which together cause a corresponding rotation of the axes with respect to the axis of rotation 33.
  • the centrifugal force vector 25, which illustrates the centrifugal force of the grinding shoe 3 always extends in an extension of the normal through the two axes of rotation 7 and 9, it also swivels clockwise in the illustrated relative rotation between the output shaft 4 and the eccentric 8, which results in a corresponding Rotation of the cutting force vector 27 and the resulting sum vector 28 leads.
  • the centrifugal force vector 30, which illustrates the centrifugal force emanating from the balancing weight 16 and acting on the center of gravity 29, also pivots around, but counterclockwise, because this vector 30 extends through the center of gravity 29 and the axis of rotation in the extension of the normal 7.
  • the sum vector 28 and the centrifugal force vector 30 are thus rotated in the plane with respect to the axis of rotation 7 such that they act parallel to one another, but in opposite directions.
  • torsionally flexible coupling member 32 leads to a turning back of the eccentric 8 into the starting position as soon as the Cutting force, for example because of the lifting of the orbital sander 1, disappears from the workpiece, so that the position according to FIG. 4 is assumed again.
  • the eccentric 8 on the cylindrical sleeve 31 can only be rotated back and forth between two end positions, one of which corresponds to the freewheeling case according to FIG. 4, while the other end position 5 is matched to the load case.
  • 8 stops are to be provided in a known manner on the outer peripheral surface of the cylindrical sleeve 31 and in the corresponding receiving bore of the eccentric.
  • the intrinsic elasticity of the torsionally flexible coupling member 32 is dimensioned so that it ensures a reliable return of the eccentric to the position according to FIG. 4 on the one hand in the event of a freewheel, but on the other hand a rotation of the eccentric 8 in at a force which is less than the smallest cutting force 5, ie the other end position is not prevented.
  • FIG. 6 Another embodiment for a load-dependent adjustment of the balancing weight 16 is shown in a further simplified form in FIG. 6, which, similar to FIGS. 2, 4 and 5, illustrates a cross section at right angles to the output shaft 4.
  • the eccentric 8 is rotatably seated on the output shaft 4, which in turn is coupled to the output shaft 4 via a non-illustrated torsionally elastic member for torque transmission.
  • the balance weight 16 is also rotatably seated on the output shaft 4 below the eccentric 8.
  • a two-armed lever 34 is rotatably mounted, which engages on the one hand in a recess 35 of the output shaft 4 and on the other hand in a recess 36 of the balancing weight 16.
  • This two-armed lever 34 acts similarly to a planet gear of a plate gear, the output shaft 4 corresponding to the sun gear.
  • the centrifugal force vector which acts on the center of gravity of the balancing weight 16 is rotated in the direction parallel to the sum vector from the centrifugal force of the grinding shoe and the cutting force.
  • the torsionally flexible coupling member rotates the eccentric 8 back into the position shown, so that optimal balancing as in the exemplary embodiment according to FIG. 3 is also ensured for the freewheeling case.

Claims (6)

1. Ponceuse vibrante à oscillations (1) comportant un corps (2) contenant un dispositif d'entraînement, avec sur un côté du corps une semelle de ponçage (3) fixé de façon mobile et comportant un excentrique (8) accouplé au dispositif d'entraînement, qui met la semelle de ponçage (3) en mouvement orbital par rapport au corps (2), et qui présente deux axes de rotation (7, 9) parallèles l'un à l'autre et situés à une certaine distance l'un de l'autre, dont l'un (7) est fixe par rapport au corps (2) et dont l'autre (9) est fixe par rapport à la semelle de ponçage (3), comportant également au moins un poids (16) d'équilibrage tournant de façon synchrone avec l'excentrique (8), qui est monté de façon fixe sur un arbre de sortie (14) du dispositif d'entraînement, et qui compense le balourd que produit la semelle de ponçage (3) oscillante par rapport au corps (2), caractérisée par le fait qu'en vue de la compensation des forces tranversales (27) provoquées par les forces de frottement et de coupe, le centre de gravité (29) du ou des poids d'équilibrage (16) présente un décalage par rapport à la perpendiculaire qui coupe les deux axes de rotation (7, 9) de l'excentrique (8) et qui est située dans un plan perpendiculaire aux axes de rotation (7, 9) et contenant le centre de gravité (29), de manière telle que la force centrifuge appliqué au centre de gravité (29) ait une direction à peu près parallèle au vecteur (28) représentant la somme de la force centrifuge (25) de la semelle de ponçage (3) et de la force transversale (17) appliquée à l'excentrique (8).
2. Ponceuse vibrante selon la revendication 1, caractérisée par le fait que la masse du ou des poids d'équilibrage (16), et/ou l'écart entre son centre de gravité (29) et l'axe de rotation (7) fixe par rapport au corps (2) sont choisis de façon telle que, pour une vitesse de rotation déterminée de l'excentrique (8), il se produise une force dont le vecteur a une valeur qui est équivalente à celle du vecteur somme (28), mais dont le sens est opposé.
3. Ponceuse vibrante à oscillations (1) comportant un corps (2) contenant un dispositif d'entraînement, avec sur un côté du corps une semelle de ponçage (3) fixée de façon mobile et, comportant un excentrique (8) accouplé au dispositif d'entraînement qui met la semelle de ponçage (3) en mouvement orbital par rapport au corps (2) et qui présente deux axes de rotation (7, 9) parallèles l'un à l'autre et situés à une certaine distance l'un de l'autre, dont l'un (7) est fixe par rapport au corps (2) et dont l'autre (9) est fixe par rapport à la semelle de ponçage (3), comportant également au moins un poids d'équilibrage (16) tournant de façon synchrone avec l'excentrique (8), qui compense le balourd que produit la semelle de ponçage (3) oscillante par rapport au corps (2), carcté- risée par le fait que l'excentrique (8) et le ou les poids d'équilibrage (16), soft montés sur un arbre de sortie (4) du dispositif d'entraînement, de façon rotative par rapport à l'arbre de sortie (4) et couplés à celui-ci par l'intermédiaire d'un élément (32) élastique en rotation, et par le fait qu'en vue de la compensation des forces transversales (27) provoquées par les forces de frottement et de coupe, la distance du centre de gravité du poids d'équilibrage (16) se règle automatiquement en fonction de la force de coupe (27), par rapport à une perpendiculaire qui coupe les deux axes (7, 9) de l'excentrique (8) et qui est située dans un plan perpendiculaire aux axes de rotation (7, 9) qui contient le centre de gravité (29), de façon telle que la force centrifuge qui s'applique au centre de gravité (29) ait une direction approximativement parallèle au vecteur (28) représentant la somme de la force centrifuge (25) de la semelle de ponçage (3) et de la force transversale (17) appliquée à l'excentrique (8).
4. Ponceuse vibrante selon la revendication 3, caractérisée par le fait que le poids d'équilibrage (16) est relié, de façon fixe en rotation, à l'excentrique (8) qui est monté à rotation sur l'arbre de sortie (4) du dispositif d'entraînement, l'axe de rotation (33) autour duquel peut tourner l'excentrique (8) sur l'arbre de sortie étant situé entre les axes (7, 9) dont l'un est fixe par rapport à la semelle de ponçage (3) et dont l'autre est fixe par rapport au corps (2), et étant parallèle aux deux axes de rotation (7, 9) et que l'excentrique (8) est couplé à l'arbre de sortie (4) de manière élastique en rotation, par l'intermédiaire de l'élément (32) élastique en rotation.
5. Ponceuse vibrante selon la revendication 3, caractérisée par le fait que l'arbre de sortie (4) est couplé à l'excentrique (8) de manière élastique en rotation et que dans l'excentrique (8) est monté un élément d'engrenage (34) qui, dans le cas où l'excentrique (8) tourne autour de l'arbre de sortie (4), fait tourner le poids d'équilibrage (16) dans le même sens autour de l'arbre de sortie (4), mais avec un angle de rotation plus important.
6. Ponceuse vibrante selon l'une des revendications 3 à 5, caractérisée par le fait que l'angle de rotation de l'excentrique (8) par rapport à l'arbre de sortie (4) est limité.
EP86101186A 1985-05-25 1986-01-30 Ponçeuse vibrante équilibrée Expired - Lifetime EP0203255B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86101186T ATE56904T1 (de) 1985-05-25 1986-01-30 Ausgewuchteter schwingschleifer.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853518984 DE3518984A1 (de) 1985-05-25 1985-05-25 Ausgewuchteter schwingschleifer
DE3518984 1985-05-25

Publications (3)

Publication Number Publication Date
EP0203255A2 EP0203255A2 (fr) 1986-12-03
EP0203255A3 EP0203255A3 (en) 1988-03-30
EP0203255B1 true EP0203255B1 (fr) 1990-09-26

Family

ID=6271730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86101186A Expired - Lifetime EP0203255B1 (fr) 1985-05-25 1986-01-30 Ponçeuse vibrante équilibrée

Country Status (6)

Country Link
US (1) US4729194A (fr)
EP (1) EP0203255B1 (fr)
JP (1) JP2558256B2 (fr)
AT (1) ATE56904T1 (fr)
DE (1) DE3518984A1 (fr)
ES (1) ES8704109A1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517766A1 (de) * 1984-09-08 1986-03-20 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Schwingschleifer
US5206967A (en) * 1989-12-27 1993-05-04 Makita Electric Works, Ltd. Electric wax applicator
DE4302953C1 (de) * 1993-02-03 1994-05-26 Barthelt Hans Peter Dipl Ing Schwingschleifer
US5626510A (en) * 1993-02-04 1997-05-06 Robert Bosch Gmbh Power tool for surface treatment
GB9415011D0 (en) * 1994-07-26 1994-09-14 Black & Decker Inc Improved oscillating hand tool
US5885146A (en) * 1995-12-06 1999-03-23 Black & Decker Inc. Oscillating hand tool
DE19617573A1 (de) * 1996-05-02 1997-11-06 Bosch Gmbh Robert Handgeführter Schwingschleifer
DE19617478B4 (de) * 1996-05-02 2006-06-29 Robert Bosch Gmbh Handschleifmaschine
US6257970B1 (en) * 1997-01-23 2001-07-10 Hao Chien Chao Ergonomically friendly random orbital construction
IT1298934B1 (it) * 1997-02-27 2000-02-07 Bosch Gmbh Robert Gruppo portatile azionato a motore
US5885145A (en) * 1997-05-01 1999-03-23 O'mara; John E. Powered drywall sander and painter
US5947804A (en) * 1998-04-27 1999-09-07 Ryobi North America, Inc. Adjustable eccentricity orbital tool
US6062960A (en) * 1998-04-27 2000-05-16 Ryobi North America, Inc. Orbital tool
US6213851B1 (en) 1998-07-07 2001-04-10 Delta International Machinery Corp. Abrading apparatus
US6206771B1 (en) * 1999-01-25 2001-03-27 Dynabrade, Inc. Balancer for orbital abrading machine
US7121762B2 (en) 2001-10-09 2006-10-17 Somero Enterprises, Inc. Apparatus for screeding uncured concrete surfaces
CN1636094B (zh) 2001-10-09 2011-11-23 索诺企业有限公司 整平与振动未固化混凝土表面的轻型装置
US6974362B2 (en) * 2002-05-14 2005-12-13 Skf Autobalance Systems Ab System and method for automatically compensating for unbalanced resistance forces
US7022002B2 (en) * 2004-03-03 2006-04-04 Dynabrade, Inc. Modular counterweight apparatus for an orbital abrading machine
DE102004035859A1 (de) * 2004-07-23 2006-02-16 Robert Bosch Gmbh Vorrichtung mit wenigstens zwei Auswuchtgewichten
EP1714739A1 (fr) * 2005-04-19 2006-10-25 Positec Power Tools (Suzhou) Co., Ltd. Ponceuse portative
US20080050177A1 (en) * 2006-08-22 2008-02-28 Ronald Lee Sager Orbital vibrating hand trowel
DE102007007787A1 (de) * 2007-02-16 2008-08-21 Robert Bosch Gmbh Schleifteller für eine Exzenterschleifmaschine
DE102007018466A1 (de) * 2007-04-19 2008-10-23 Robert Bosch Gmbh Motorisch angetriebene Werkzeugmaschine
DE102007062560A1 (de) * 2007-12-22 2009-06-25 J. Wagner Gmbh Flächenschleifmaschine
CA2710847C (fr) * 2008-01-03 2014-12-09 Somero Enterprises, Inc. Dispositif d'aplanissement a roues
DE102008004638A1 (de) 2008-01-16 2009-07-23 Robert Bosch Gmbh Motorisch angetriebene Werkzeugmaschine
CA2717005C (fr) * 2008-02-27 2015-08-04 Somero Enterprises, Inc. Appareil de finition de beton
US7851345B2 (en) * 2008-03-19 2010-12-14 Stats Chippac, Ltd. Semiconductor device and method of forming oxide layer on signal traces for electrical isolation in fine pitch bonding
US8172642B2 (en) * 2008-08-20 2012-05-08 Black & Decker Inc. Multi-sander
DE102010027205A1 (de) * 2010-07-06 2012-01-12 C. & E. Fein Gmbh Handwerkzeug
DE102010039637A1 (de) * 2010-08-23 2012-02-23 Robert Bosch Gmbh Handwerkzeugmaschine mit einem Spannhals
US8919215B2 (en) * 2011-03-07 2014-12-30 Roger C. Keith Orbital motion attachment with counterweight for angle die grinder
JP2013220493A (ja) * 2012-04-13 2013-10-28 Makita Corp サンダ
ES2798101T3 (es) * 2012-10-02 2020-12-09 Balance Systems Srl Procedimiento y dispositivo de balanceo para un cuerpo rotatorio
US20160121450A1 (en) * 2014-11-04 2016-05-05 Black & Decker Inc. Power tool counterweight arrangement and mass member
US10549567B2 (en) * 2016-11-26 2020-02-04 Ricoh Company, Ltd. Drying device and printing apparatus
KR101805738B1 (ko) 2016-12-23 2017-12-08 주식회사 드림트리 건축 마감재 파쇄기
DE102017130995A1 (de) * 2017-12-21 2019-06-27 Vorwerk & Co. Interholding Gmbh Antriebssystem zum exzentrischen Antrieb eines Schwingelementes und Feuchtreinigungsgerät mit einem Antriebssystem
WO2022178661A1 (fr) * 2021-02-23 2022-09-01 Techtronic Cordless Gp Outil électrique doté d'un ensemble anti-vibration

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2220309A (en) * 1938-11-09 1940-11-05 Wilms Martin Cigarette package cutter
US2367668A (en) * 1942-12-11 1945-01-23 Roy J Champayne Rubbing machine
US2751725A (en) * 1954-08-13 1956-06-26 Roy J Champayne Orbital action rubbing machine
US2893174A (en) * 1956-03-07 1959-07-07 Sunbeam Corp Surface treating machine
US2918761A (en) * 1957-04-24 1959-12-29 Sundstrand Corp Rubbing machine
US3345784A (en) * 1964-12-29 1967-10-10 Rockwell Mfg Co Orbital finishing sander
US3375616A (en) * 1965-01-11 1968-04-02 Portable Electric Tools Inc Dual motion surface-dressing machine
CH506423A (de) * 1969-04-11 1971-04-30 Polyservice Ag Rüttelvorrichtung
DE2025208A1 (de) * 1970-05-23 1971-12-02 C F Scheer & Cie, 7000 Stuttgart Feuerbach Schwingschleifer
DE2048649A1 (de) * 1970-10-03 1972-04-06 Robert Bosch Gmbh, 7000 Stuttgart Schwingschleifer
US3722381A (en) * 1971-04-03 1973-03-27 Vibro Verken Ab Dual amplitude vibration generator
DE2316286A1 (de) * 1973-03-31 1974-10-17 Bosch Gmbh Robert Schwingschleifer
GB1528057A (en) * 1976-01-20 1978-10-11 Westland Aircraft Ltd Vibration absorbers
JPS56166146U (fr) * 1980-05-14 1981-12-09
DE3326854A1 (de) * 1983-07-26 1985-02-14 Festo KG, 7300 Esslingen Handwerkzeugmashine mit doppeltexzentrisch gelagerter werkzeugplatte

Also Published As

Publication number Publication date
ATE56904T1 (de) 1990-10-15
US4729194A (en) 1988-03-08
JP2558256B2 (ja) 1996-11-27
DE3518984C2 (fr) 1992-03-26
ES555256A0 (es) 1987-03-16
EP0203255A3 (en) 1988-03-30
DE3518984A1 (de) 1986-11-27
JPS61274871A (ja) 1986-12-05
EP0203255A2 (fr) 1986-12-03
ES8704109A1 (es) 1987-03-16

Similar Documents

Publication Publication Date Title
EP0203255B1 (fr) Ponçeuse vibrante équilibrée
EP0615483B1 (fr) Meuleuse a disque a excentrique
EP0591876A1 (fr) Ponçeuse à plateau excentrique avec frein du plateau abrasif
EP1347860A1 (fr) Machine-outil a main
EP0424720A1 (fr) Accessoire pour une meuleuse d'angle
EP0893198B1 (fr) Outil portable motorisé
DE3000942C2 (fr)
WO1986001761A1 (fr) Ponceuse orbitale
EP2072183A1 (fr) Meuleuse de surfaces
DE2409417A1 (de) Schwingungserreger mit zwei relativ zueinander in der phasenlage kontinuierlich verstellbaren unwuchten
EP0749803A1 (fr) Dispositif de verrouillage de la broche pour les pièces d'un tour
DE2511081C2 (de) Schlitz- oder Stemm-Maschine
DE3727487C2 (fr)
EP0525328A1 (fr) Meuleuse à ecxentrique
EP0136716A2 (fr) Machine-outil pour le traitement des surfaces
EP0016219B1 (fr) Machine-outil à affûter
DE4447162B4 (de) Vorrichtung zur Bearbeitung von Oberflächen
DE3206710A1 (de) Vorrichtung zur verdichtung des bodens mitttels einer vibrationsplatte
DE3907736C1 (en) Cutting device for cutting a web of material longitudinally
EP0045433B1 (fr) Machine à meuler ou à polir comprenant une broche porte-outil entraînée d'un mouvement axial oscillant et d'un mouvement rotatif
AT403336B (de) Handgeführte, selbstfahrende arbeitsmaschine
DE102021114550B3 (de) Angetriebene Handwerkzeugmaschine mit einem Exzenterantrieb
DE3915199C1 (en) Grinder for vehicle brake discs - incorporates opposed grinding wheels and reciprocating spindles
DE703683C (de) Einstellvorrichtung
EP0070343A1 (fr) Vibrateur à masse déséquilibrée en fonction de la vitesse de rotation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT FR GB IT NL

17P Request for examination filed

Effective date: 19880518

17Q First examination report despatched

Effective date: 19890717

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900926

REF Corresponds to:

Ref document number: 56904

Country of ref document: AT

Date of ref document: 19901015

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910130

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991213

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991221

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050130