EP0193491A1 - Cuve d'électrolyse - Google Patents

Cuve d'électrolyse Download PDF

Info

Publication number
EP0193491A1
EP0193491A1 EP86810030A EP86810030A EP0193491A1 EP 0193491 A1 EP0193491 A1 EP 0193491A1 EP 86810030 A EP86810030 A EP 86810030A EP 86810030 A EP86810030 A EP 86810030A EP 0193491 A1 EP0193491 A1 EP 0193491A1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
tub
insulation
granulate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86810030A
Other languages
German (de)
English (en)
Inventor
Wilhelm Scharpey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Alusuisse Holdings AG
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Holdings AG, Schweizerische Aluminium AG filed Critical Alusuisse Holdings AG
Publication of EP0193491A1 publication Critical patent/EP0193491A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts

Definitions

  • the present invention relates to an electrotysis trough for the production of aluminum by melt flow electrolysis, consisting of an outer steel trough, a heat-insulating insulation and an inner lining consisting essentially of carbon with iron cathode bars, the bottom insulation at least partially consisting of a layer solidified by mechanical means a granulate consists of ground insulation layers with a grain size that varies substantially between 0.01 and 8 mm
  • the productive part of the energy consumption is needed to reduce the Al 3+ cations to metallic aluminum. This productive part of energy consumption cannot be reduced.
  • the energy losses can be divided into various components, all of which affect the environment as heat losses.
  • the heat generated during the electrolysis process always flows to colder parts of the tub, from where it escapes to the surroundings and thus draws energy from the production process. These heat losses can be controlled and must be reduced to a minimum.
  • the voltage drop and thus the energy loss in the electrical circuit can be reduced to a minimum.
  • EP-OS 0 063 547 describes an electrolysis bath in which at least the lower 80% of the floor insulation consists of a solidified volcanic ash layer, the remaining floor insulation consists of a leak barrier which shields the volcanic ash against the bath components penetrating the carbon lining
  • the inventors have set themselves the task of creating an electrolysis trough for the production of aluminum by melt flow electrolysis, in which the production costs for the thermal insulation can be further reduced without the quality of the trough in terms of thermal insulation and service life suffering as a result
  • the side walls of the trough contain mechanically compacted granules of ground insulation layers up to 70% of the height of the cathode bar elements, the curbs lining the thermally and electrically insulated steel trough and the conventional ramming compound sealing the joint between curbs and charcoal elements.
  • the side walls of the electrolysis tub preferably contain mechanically compacted granules up to the level of the upper edges or the uppermost surface line of the iron cathode bars
  • bottom carbon elements made of amorphous carbon, semigraphite or graphite are arranged at a lateral distance in the electrolysis trough and a joint ramming compound which is well known to the person skilled in the art is used in the joints according to a further development of the invention, at most the lower 70% can be obtained from mechanically solidified granules of ground insulation layers to be replaced.
  • the warm or cold, carbon-containing grout is introduced, which is calcined when the electrolytic cell is started up.
  • the grain size of the ground granules is preferably between 0.1 and 4 mm.
  • these four stone layers are broken out of the electrolysis tank to be replaced and processed by grinding. Any coal pieces are mechanically sorted out beforehand, as are the larger pieces of solidified aluminum.
  • the granules can also originate from electrolysis tanks, the insulation of which already contains or consists of ground granules. If the granulate is used several times, an electrolysis tank to be replaced is first dismantled until the mechanically consolidated granulate of the floor insulation is exposed. If this is still good, the electrolysis tank can be rebuilt with the side insulation without any further process steps. Any agglomerations are mechanically crushed, suitably by grinding. Larger pieces of carbon and / or aluminum are removed.
  • the preparation of the granulate can also be done in situ, i.e. in place in the electrolysis bath, for example by moving a vibrating slide back and forth up to 20 times.
  • Granules prepared outside the trough are poured dry into the cell and then mechanically compacted, for example by pounding and / or vibrating. Wet granules are appropriately dried beforehand.
  • the height of the solidified granulate layer of the floor insulation is preferably 250-400 mm.
  • the uppermost area, which corresponds to 0-25% of the total height of the floor insulation can expediently consist of a layer of firebricks, ground firebricks and / or metallurgical clay.
  • the lowest area, which also corresponds to 0-25% of the total height of the floor insulation can consist of Moler or Skamolex stones. Skamolex is an insulating stone from the Danish company SKAMOL.
  • a steel foil or sheet which is expediently connected to an impermeable, flexible graphite membrane (see, for example, TMS Paper No. LM 78/19 or DE-OS 28 17 202), are placed on the granules.
  • the electrolysis trough 10 shown in FIG. 1 has an outer steel trough 12, in which mechanically compacted, ground granules 14 of trough breakouts are embedded. A layer of fireclay bricks 16 is arranged on this granulate, which is covered by 5-10 mm fireclay grain 18. Granules 1 4 , firebricks 16 and firebrick grit 1 8 form the floor insulation.
  • the bottom carbon elements 20 lie horizontally on the chamotte grain 18, they have a height h.
  • the dashed line 22 indicates the level of the upper edges or uppermost surface line of the iron cathode bars, which are not visible in section.
  • the curb 24 (carbon or silicon carbide) is connected via an electrical and thermal insulation layer 25 made of chamotte plates or silicon carbide mortar, which in the present case consists of carbon and / or silicon carbide and up reaches down into the area below the bottom carbon elements 20.
  • the curb 24 is supported on a layer of firebricks 16.
  • the 20-25 cm wide joint 26 between the curb 24 and the bottom coal elements 20 is filled up to the level 22 of the upper edges or the uppermost surface line of the iron cathode bars with the granules 14 of the floor insulation and mechanically compacted.
  • a conventional grout 28 is arranged above it, which protects the granules 14 from the damaging attack by the melt flow contained in the electrolysis tub 10.
  • the side area can be equipped with further insulation materials, not shown in FIG. 1.
  • the bottom carbon elements 20 of height h are arranged at a distance and placed directly on the bottom insulation, which here consists exclusively of the granulate 14.
  • the joints 30 between the bottom carbon elements 20 are up to level 22 of the upper edges of the iron cathode bars 32 with the mechanically compacted granules 14 filled as the floor insulation.
  • the usual grout 28 is arranged above this.
  • the floor insulation of the entire height b shown in FIG. 3 supports the floor carbon elements 20, which rest on an approximately 20 mm thick chamotte grain 18. Underneath is the mechanically compacted granulate 14 made of ground insulation layers, which forms the main component of the floor insulation. The bottom part of the floor insulation consists of a layer of moler stones 34. These have excellent thermal insulation properties, but they are not very resistant to electrolytes. The entire floor insulation is supported by the steel tub 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
EP86810030A 1985-02-15 1986-01-21 Cuve d'électrolyse Withdrawn EP0193491A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH72085 1985-02-15
CH720/85 1985-02-15

Publications (1)

Publication Number Publication Date
EP0193491A1 true EP0193491A1 (fr) 1986-09-03

Family

ID=4193611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86810030A Withdrawn EP0193491A1 (fr) 1985-02-15 1986-01-21 Cuve d'électrolyse

Country Status (5)

Country Link
US (1) US4673481A (fr)
EP (1) EP0193491A1 (fr)
AU (1) AU5339186A (fr)
IS (1) IS3076A7 (fr)
NO (1) NO860521L (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002490A1 (fr) * 1987-09-16 1989-03-23 Eltech Systems Corporation Fond de cellule composite pour l'extraction d'aluminium par voie electrolytique
US6692620B2 (en) * 2002-04-27 2004-02-17 Moltech Invent S.A. Aluminium electrowinning cell with sidewalls resistant to molten electrolyte
CN101302629B (zh) * 2008-07-04 2011-06-15 河南神火铝业股份有限公司 铝电解槽筑炉工艺
RU2449060C2 (ru) * 2010-08-13 2012-04-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Подина электролизера для получения алюминия
CN103668329A (zh) * 2012-08-31 2014-03-26 沈阳铝镁设计研究院有限公司 侧部块复合填充材料结构
RU2608942C1 (ru) * 2015-09-10 2017-01-26 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Катодная футеровка электролизера производства первичного алюминия
CN112831803B (zh) * 2021-01-05 2021-11-16 中南大学 一种双层密闭铝电解槽及其上部保温罩

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1553345A (fr) * 1967-02-01 1969-01-10
DE2740340A1 (de) * 1976-09-07 1978-03-09 Mitsubishi Light Metal Ind Verfahren zur verminderung der waermeabstrahlung aus einer zelle zur elektrolytischen reduktion von aluminiumoxid
FR2388901A1 (fr) * 1977-04-25 1978-11-24 Union Carbide Corp Garnissage du fond de la coque exterieure en acier d'une cuve de reduction electrolytique de minerai
GB2103657A (en) * 1981-07-18 1983-02-23 British Aluminium Co Ltd Electrolytic cell for the production of aluminium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2338336A1 (fr) * 1976-01-13 1977-08-12 Pechiney Aluminium Nouveau procede de brasquage des cuves pour electrolyse ignee
CH653711A5 (de) * 1981-04-22 1986-01-15 Alusuisse Elektrolysewanne.
US4411758A (en) * 1981-09-02 1983-10-25 Kaiser Aluminum & Chemical Corporation Electrolytic reduction cell
CH657629A5 (de) * 1983-08-25 1986-09-15 Alusuisse Elektrolysewanne.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1553345A (fr) * 1967-02-01 1969-01-10
DE2740340A1 (de) * 1976-09-07 1978-03-09 Mitsubishi Light Metal Ind Verfahren zur verminderung der waermeabstrahlung aus einer zelle zur elektrolytischen reduktion von aluminiumoxid
FR2388901A1 (fr) * 1977-04-25 1978-11-24 Union Carbide Corp Garnissage du fond de la coque exterieure en acier d'une cuve de reduction electrolytique de minerai
GB2103657A (en) * 1981-07-18 1983-02-23 British Aluminium Co Ltd Electrolytic cell for the production of aluminium

Also Published As

Publication number Publication date
IS3076A7 (is) 1986-08-16
AU5339186A (en) 1986-08-21
NO860521L (no) 1986-08-18
US4673481A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
DE69809202T2 (de) Aluminium-herstellungszelle und kathode
DE69532052T2 (de) Mit versenkten Nuten drainierte horizontale Kathodenoberfläche für die Aluminium Elektrogewinnung
DE2105247C3 (de) Ofen für die Schmelzflußelektrolyse von Aluminium
EP0517100B1 (fr) Cellule d'électrolyse pour l'obtention de l'aluminium
DE2817202A1 (de) Aus expandiertem graphit bestehende barriere am boden einer elektrolytischen zelle
CH643885A5 (de) Elektrodenanordnung einer schmelzflusselektrolysezelle zur herstellung von aluminium.
EP0063547B1 (fr) Cuve d'électrolyse
EP0193491A1 (fr) Cuve d'électrolyse
DE3506200A1 (de) Kathodenwanne fuer eine aluminium-elektrolysezelle und verfahren zur herstellung von deren seitenwand bildenden verbundkoerpern
EP0552402B1 (fr) Matériau refractaire pour un four électrolytique, procédé pour la production et l'utilisation
DE3405762C2 (de) Zelle zur Raffination von Aluminium
DE3880940T2 (fr)
CH496932A (de) Auskleidung für Wannen-Öfen zur Aufnahme von geschmolzenem Metall
EP0142459B1 (fr) Cuve d'électrolyse
DE69837966T2 (de) Zelle für aluminium-herstellung mit drainierfähiger kathode
DE1146259B (de) Verfahren zum Auskleiden der Waende der Kathodenwanne einer Aluminium-elektrolysezelle und nach diesem Verfahren hergestellte Kathodenwanne
DE3828280C2 (de) Elektrischer Schmelzofen zur Verfestigung von hochgradig radioaktivem Abfall in Glas
EP0099331B1 (fr) Cuve cathodique pour cellule d'électrolyse d'aluminium
DE1153538B (de) Aluminiumelektrolyseofen
EP0109358A1 (fr) Cathode pour cellule d'électrolyse à bain fondu
DE1092216B (de) Stromfuehrungselemente und deren Verwendung in elektrolytischen Zellen zur Gewinnung oder Raffination von Aluminium
DE3435200A1 (de) Zelle zur reduktion von aluminiumoxid
AT208090B (de) Zelle für die Schmelzflußelektrolyse von Verbindungen solcher Metalle, deren Dichte größer ist als die Dichte des Elektrolysebades, insbesondere von Al2O3
EP3350358B1 (fr) Fond servant de cathode destiné à la fabrication d'aluminium
EP0136969A1 (fr) Cellule pour le raffinage électrolytique de l'aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19870216

17Q First examination report despatched

Effective date: 19880229

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19880802

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHARPEY, WILHELM