EP0190098B1 - Seitliche Isolation eines Kammerofens für das Brennen von Kohlenstoffblöcken - Google Patents

Seitliche Isolation eines Kammerofens für das Brennen von Kohlenstoffblöcken Download PDF

Info

Publication number
EP0190098B1
EP0190098B1 EP86810023A EP86810023A EP0190098B1 EP 0190098 B1 EP0190098 B1 EP 0190098B1 EP 86810023 A EP86810023 A EP 86810023A EP 86810023 A EP86810023 A EP 86810023A EP 0190098 B1 EP0190098 B1 EP 0190098B1
Authority
EP
European Patent Office
Prior art keywords
bricks
wall
insulation according
layer
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86810023A
Other languages
English (en)
French (fr)
Other versions
EP0190098A1 (de
Inventor
Willem Venus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Aluminium AG filed Critical Schweizerische Aluminium AG
Publication of EP0190098A1 publication Critical patent/EP0190098A1/de
Application granted granted Critical
Publication of EP0190098B1 publication Critical patent/EP0190098B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • F27B13/08Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics

Definitions

  • the present invention relates to a lateral insulation in the area between the outermost fire pit and the outer wall of a chamber furnace for burning carbon blocks, in particular anodes for the production of aluminum by means of melt flow electrolysis.
  • Chamber furnaces for burning carbon blocks which serve in particular as anodes in the electrolytic extraction of aluminum, have long been known. They consist of several chambers arranged in rows, which are either installed in the floor or arranged directly on the floor. Fire shafts are arranged between the combustion chambers that receive the carbon blocks.
  • the chambers are usually vertical and, depending on the type, are open at the top or closed with a removable cover.
  • a dough-like mixture is formed into blocks under a press or in a vibrator, which are brought to the kiln.
  • These green carbon blocks are stacked on top of each other in the combustion chambers and embedded in coke or anthracite powder.
  • the combustion chambers are then largely sealed off in an air-tight manner.
  • the heating is done with gas, oil or electrical energy.
  • the firing process takes several days, with the temperature of the carbon blocks being above 1100 ° C for a certain time. It is therefore necessary to take special measures so that energy losses are limited and the immediate vicinity of the chamber furnace is not exposed to excessive heat. For this reason, it is customary to build the walls and the bottom of the chamber furnace relatively thick and from fireproof, heat-insulating ceramic material.
  • a chamber furnace with thick side insulation is known from AT-PS-261 723, which consists of firebricks with a large heat capacity. When the chamber furnace is heated to working temperature, this thick chamotte insulation exerts pressure on the fire shaft, which can even be moved out of its vertical position.
  • FIG. 1 a vertical partial section through a chamber furnace, another known variant is shown.
  • a tub consisting of a base plate 10 and an outer wall 12 made of concrete, is with a multilayer layer of firebricks 14 or a lateral insulation z.
  • B. made of foam stones 16 or other insulation stones (hereinafter referred to simply as foam stones).
  • foam stones 16 or other insulation stones hereinafter referred to simply as foam stones.
  • the outermost fire shaft 18 is arranged, which has a thinner wall made of firebricks 14 against the interior of the chamber furnace.
  • the first anode cassette 20 in which the green carbon bodies are stacked, there follows a normal fire shaft 22, which is bricked up on both sides with a thin wall of firebricks 14.
  • the top area of the chamber furnace is protected by cover plates 24.
  • the inventor has set himself the task of creating a lateral insulation in the area between the outermost fire pit and the outer wall of a chamber furnace for burning carbon blocks, in particular anodes, for the production of aluminum by means of melt flow electrolysis, which in known embodiments comparable work and material expenditure has a higher efficiency and a longer service life.
  • the thick layers of firebricks with a density of about 2.1 g / cm 3 are largely made of insulating material with a density of 0.5 g / cm 3 with a small heat capacity and / or also lighter moler bricks ( Density 0.63 g / cm 3 ).
  • the smaller thermal capacity of the foam blocks also results in a much better temperature insulation curve. The temperature drops faster in the insulation material than in the refractory bricks with a large heat capacity.
  • the furnace pan which is usually made of concrete and therefore can hardly withstand temperatures above 100 ° C, is largely protected, which significantly increases their lifespan.
  • the area between the outer wall of the chamber furnace and the outermost fire shaft is completely sealed.
  • This area includes the layer (s) made of refractory insulating foam bricks and the layer (s) of mole stones.
  • fixation of the insulating, refractory foam stones in the outer wall without a space claimed as the last feature of the invention is of essential importance. If these fixings are dispensed with, experience shows that over time, material (e.g. coke and anthracite powder) penetrates between the insulation and the concrete trough, causing the insulation to be irreversibly pressed inwards.
  • material e.g. coke and anthracite powder
  • the fixations according to the invention have the essential advantage that the side insulation is not damaged or even has to be torn out during inspection work on the fire shaft.
  • the metallic fixings probably conduct some heat to the outside, but this is not essential for the overall energy balance of the chamber furnace.
  • Foam stones as well as so-called burnout stones and moler stones are used as the material for the insulating, refractory stones.
  • a 90-150 mm, in particular 110-120 mm, layer of firebrick is preferably used for the side walls of the outermost fire shaft.
  • the adjoining layer (s) of insulating, refractory foam stones is / are preferably a total of 230-400 mm, in particular 300-350 mm, thick.
  • the layer (s) of moler or calcium silicate stones immediately adjoining the outer wall is / are preferably a total of 200-300 mm, in particular 240-260 mm, thick.
  • the cantilever covering the insulating layers of refractory foam stones and moler or calcium silicate stones is preferably a concrete nose.
  • this is expediently placed on the concrete outer wall and attached to it.
  • the concrete nose is formed in one piece with the outer wall.
  • the cavity between the cantilever and the above-mentioned insulating layers is preferably filled with slag or silicate wool.
  • the mutually engaging sealing elements of the projection and the outermost fire pit are expediently designed such that the projection has a steel profile with a U-shaped cross section.
  • an L-shaped steel profile is fastened in such a way that its free leg runs vertically downwards after being inserted into the U-profile.
  • the sealing effect of the interlocking steel profiles can be further improved by additionally inserting a sealing material.
  • the insulating, refractory foam stones are preferably fixed in the outer wall by steel anchors which penetrate the layer (s) of moler or calcium silicate stones.
  • the steel anchors can be fastened in the layer of foam stones, for example, by means of concrete foundations embedded in the appropriate location.
  • the section of a chamber furnace shown in FIG. 2 shows the concrete slab 10 forming the tub and the outer wall 12, which is also made of concrete, these are designed similarly to known embodiments.
  • the outer wall 12 has in the uppermost region a concrete nose 26 which is formed in one piece and extends to the outermost fire shaft 18 and forms the projection.
  • the side walls of the outermost fire shaft 18 are kept exactly at a distance by holding or supporting stones 28.
  • a cover plate 30 with a conventional insulation 31 closes the outermost fire shaft 18.
  • This outermost fire shaft 18 is constructed in exactly the same way as all the other normal fire shafts.
  • a layer is initially made between the outermost fire shaft 18 and the outer wall 12 insulating, refractory foam stones 16, then two layers of moler stones 32 are arranged.
  • steel anchors 34 are fastened to a vertical profile 36, which reach through the layers of moler stones 32, merge into the layer of foam stones 16 and are fastened there in concrete foundations 38.
  • the cavity between the concrete nose 26 and the insulating layers of foam stones 16 and moler stones 32 is filled with slag or silicate wool 40.
  • a U-profile 46 made of steel is fastened on the concrete nose 26 provided with reinforcements 42 via a retaining lug 44.
  • An L-shaped steel profile 50 is welded to an angle profile 48 of the cover plate 30 of the outer fire shaft 18, the free leg 52 of which points vertically downward and engages in the U-profile 46 of the concrete nose 26.
  • a sealing compound 54 which is made of flexible material, e.g. B. there is asbestos-free, fireproof braid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf eine seitliche, im Bereich zwischen dem äussersten Feuerschacht und der Aussenwand liegende Isolation eines Kammerofens für das Brennen von Kohlenstoffblöcken, insbesondere von Anoden für die Herstellung von Aluminium mittels Schmelzflusselektrolyse.
  • Kammeröfen für das Brennen von Kohlenstoffblöcken, die insbesondere als Anoden bei der elektrolytischen Gewinnung des Aluminiums dienen, sind seit langem bekannt. Sie bestehen aus mehreren in Reihen angeordneten Kammern, die entweder im Boden eingebaut oder unmittelbar auf dem Boden angeordnet sind. Zwischen den Brennkammern, welche die Kohlenstoffblöcke aufnehmen, sind Feuerschächte angeordnet. Die Kammern stehen meist senkrecht und sind je nach Bauart oben offen oder mit einem abhebbaren Deckel verschlossen.
  • Für die Herstellung der Kohlenstoffblöcke wird eine teigartige Mischung unter einer Presse oder in einer Rüttelmaschine zu Blöcken geformt, die zum Brennofen gebracht werden. Diese grünen Kohlenstoffblöcke werden in den Brennkammern aufeinandergestapelt und in Koks- oder Anthrazitpulver eingebettet. Danach werden die Brennkammern weitgehend luftdicht abgeschlossen Im Zusammenwirken mit dem kohlenstoffhaltigen Pulver kann damit während des Brennprozesses die Oxidation der Kohlenstoffkörper verhindert werden. Die Heizung erfolgt mit Gas, Öl oder elektrischer Energie.
  • Der Brennprozess dauert mehrere Tage, wobei die Temperatur der Kohlenstoffblöcke eine gewisse Zeit über 1100° C liegt. Es ist deshalb erforderlich, besondere Massnahmen zu treffen, damit die Energieverluste beschränkt und die unmittelbare Umgebung des Kammerofens keiner zu starken Hitzeentwicklung ausgesetzt ist. Aus diesem Grund ist es üblich, die Wände und den Boden des Kammerofens verhältnismässig dick und aus feuerfestem, wärmeisolierendem keramischem Material zu bauen.
  • Aus der AT-PS-261 723 ist ein Kammerofen mit dicker Seitenisolation bekannt, welche aus Schamottesteinen mit grosser Wärmekapazität besteht. Bei der Erwärmung des Kammerofens auf Arbeitstemperatur übt diese dicke Schamotte-Isolierung einen Druck auf den Feuerschacht aus, wobei dieser sogar aus seiner vertikalen Lage verschoben werden kann.
  • In Fig. 1, einem vertikalen Teilschnitt durch einen Kammerofen, ist eine weitere bekannte Variante dargestellt. Eine Wanne, bestehend aus einer Bodenplatte 10 und einer Aussenwand 12 aus Beton, ist mit einer mehrschichtigen Lage von Schamottesteinen 14 bzw. einer seitlichen Isolation z. B. aus Schaumsteinen 16 oder anderen Isolationssteinen (nachfolgend einfachheitshalber als Schaumsteine bezeichnet) ausgelegt. Nach einer dicken seitlichen Schicht aus Schamottesteinen 14 ist der äusserste Feuerschacht 18 angeordnet, der gegen das Innere des Kammerofens eine dünnere Wand aus Schamottesteinen 14 hat. Nach der ersten Anodenkassette 20, in welcher die grünen Kohlenstoffkörper aufgestapelt werden, folgt ein normaler Feuerschacht 22, der beidseits mit einer dünnen Wand aus Schamottesteinen 14 aufgemauert ist. Der oberste Bereich des Kammerofens ist durch Abdeckplatten 24 geschützt.
  • Nach der in Fig. 1 dargestellten bekannten Ausführungsform eines Kammerofens gibt es also zwei Arten von Feuerschächten, die leichteren normalen 22 und die schweren äussersten 18, welche der Aussenwand 12 benachbart sind.
  • Der Erfinder hat sich die Aufgabe gestellt, eine seitliche, im Bereich zwischen dem äussersten Feuerschacht und der Aussenwand liegende Isolation eines Kammerofens für das Brennen von Mohlenstoffblöcken, insbesondere von Anoden, für die Herstellung von Aluminium mittels Schmelzflusselektrolyse, zu schaffen, welche bei mit bekannten Ausführungsformen vergleichbarem Arbeits- und Materialaufwand einen höheren Wirkungsgrad und eine längere Lebensdauer aufweist.
  • Die Aufgabe wird erfindungsgemäss gelöst durch
    • - die Anordnung von mindestens je einer Schicht von Schamottesteinen als Wand des äussersten Feuerschachts, isolierenden feuerfesten Schaumsteinen und Moler- bzw. Kalziumsilikatsteinen bei der Aussenwand des Kammerofens;
    • - eine die isolierenden Schichten in Abstand überdeckende Auskragung der Aussenwand, wobei der Hohlraum mit einem komprimierbaren, feuerfesten Isolationsmaterial gefüllt ist, und Abdichtungselemente der Auskragung und des äussersten Feuerschachtes miteinander in Eingriff stehen, und
    • - die Schicht aus isolierenden, feuerfesten Schaumsteinen ohne Spielraum in der Aussenwand fixiert ist.
  • Nach einem ersten Merkmal der Erfindung werden also die dicken Schichten von Schamottesteinen mit einer Dichte von etwa 2,1 g/cm3 grösstenteils durch Isoliermaterial mit einer Dichte von 0,5 g/cm3 mit kleiner Wärmekapazität und/ oder durch ebenfalls leichtere Molersteine (Dichte 0,63 g/cm3) ersetzt. Bei kleinerem Volumenpreis für das Isoliermaterial entsteht dank der kleineren Wärmekapazität der Schaumstoffsteine auch eine wesentlich bessere Temperaturisolationskurve. Die Temperatur fällt im Isolationsmaterial schneller ab als in den Schamottesteinen mit grosser Wärmekapazität. Dadurch wird die Ofenwanne, welche meist aus Beton besteht und daher Temperaturen über 100°C nur schlecht erträgt, weitgehend geschont, was ihre Lebensdauer beträchtlich erhöht.
  • Nach einem weiteren Merkmal der Erfindung wird der Bereich zwischen der Aussenwand des Kammerofens und dem äussersten Feuerschacht vollständig abgedichtet. Dieser Bereich umfasst die Schicht/en aus feuerfesten Isolierschaumsteinen und die Schicht/en von Molersteinen.
  • Die als letztes Merkmal der Erfindung beanspruchte Fixierung der isolierenden, feuerfesten Schaumsteine in der Aussenwand ohne Zwischenraum ist von wesentlicher Bedeutung. Bei Verzicht auf diese Fixierungen zeigt die Erfahrung, dass im Laufe der Zeit Material (z. B. Koks und Anthrazitpulver) zwischen Isolation und Betonwanne eindringt, wodurch die Isolation irreversibel nach innen gedrückt wird. Neben dieser Halterungsfunktion haben die erfindungsgemässen Fixierungen den wesentlichen Vorteil, dass bei Revisionsarbeiten am Feuerschacht die Seitenisolation nicht beschädigt wird oder gar herausgerissen werden muss. Die metallischen Fixierungen leiten wohl etwas Wärme nach aussen, dies ist jedoch für die ganze Energiebilanz des Kammerofens nicht von wesentlicher Bedeutung.
  • Als Material für die isolierenden, feuerfesten Steine werden sowohl Schaumsteine als auch sog. Ausbrandsteine sowie Molersteine eingesetzt.
  • Für die Seitenwände des äussersten Feuerschachtes wird vorzugsweise eine 90 - 150 mm, insbesondere 110 120 mm, dicke Schamotteschicht eingesetzt. Die daran anschliessende/n Schicht/en aus isolierenden, feuerfesten Schaumsteinen ist/sind insgesamt vorzugsweise 230 - 400 mm, insbesondere 300 - 350 mm, dick. Die Unmittelbar an die Aussenwand anschliessende/n Schicht/en aus Moler- bzw. Kalziumsilikatsteinen ist/sind insgesamt vorzugsweise 200 - 300 mm, insbesondere 240 - 260 mm, dick. Die in der Praxis angewandten exakten Masse der Dicke der einzelnen Schichten ergeben sich weitgehend aus den Normmassen der entsprechenden Steine, nur die groben Dicken werden durch Berechnung festgelegt.
  • Die die isolierenden Schichten aus feuerfesten Schaumsteinen und Moler- bzw. Kalziumsilikatsteinen in Abstand überdeckende Auskragung ist bevorzugt eine Betonnase. Diese wird bei bestehenden Kammeröfen zweckmässig auf die aus Beton bestehende Aussenwand aufgesetzt und daran befestigt. Beim Bau von neuen Kammeröfen dagegen wird die Betonnase einstückig mit der Aussenwand ausgebildet.
  • Der Hohlraum zwischen der Auskragung und den oben erwähnten isolierenden Schichten wird vorzugsweise mit Schlacken- bzw. Silikatwolle ausgefült.
  • Die miteinander in Eingriff stehenden Abdichtungselemente der Auskragung und des äussersten Feuerschachtes sind zweckmässig so ausgestaltet, dass die Auskragung ein im Querschnitt U-förmiges Stahlprofil hat. Im obersten Bereich des äussersten Feuerschachtes bzw. dessen Abdeckung ist ein L-förmiges Stahlprofil derart befestigt, dass dessen freier Schenkel nach dem Einsetzen in das U-Profil vertikal nach unten verläuft. Die Dichtungswirkung der ineinandergreifen den Stahlprofile kann noch verbessert werden, indem zusätzlich ein Dichtungsmaterial eingefügt wird.
  • Die Fixierung der isolierenden, feuerfesten Schaumsteine in der Aussenwand erfolgt bevorzugt durch Stahlanker, welche die Schicht/en aus Moler- bzw. Kalziumsilikatsteinen durchgreifen. Die Befestigung der Stahlanker in der Schicht aus Schaumsteinen kann beispielsweise durch am entsprechenden Ort eingelassene Betonfundamente erfolgen.
  • Die Vorteile der erfindungsgemässen seitlichen Isolation eines Kammerofens können wie folgt zusammengefasst werden:
    • - Der spezifische Energieverbrauch wird wegen der geringeren Wärmekapazität vermindert.
    • - Es besteht kein Qualitätsunterschied von Kohlenstoffkörpern, die in der äussersten oder in einer normalen Brennkammer kalziniert werden.
    • - Die Investitionskosten für die feuerfesten Materialien sind geringer.
    • - Die Ersatzkosten für den äussersten Feuerschacht werden dank der dünnwandigeren Schicht aus Schamottesteinen und den in der Aussenwand fixierten Schaumstoffsteinen um mehr als die Hälfte reduziert.
  • Die Erfindung wird anhand der Zeichnung beispielsweise näher erläutert. Die schematischen Vertikalschnitte zeigen in
    • - Fig. 2 einen seitlichen Abschluss eines Kammerofens, und
    • - Fig. 3 Abdichtungselemente der Auskragung und des äussersten Feuerschachtes.
  • Der in Fig. 2 dargestellte Ausschnitt aus einem Kammerofen zeigt die die Wanne bildende Betonplatte 10 und die ebenfalls aus Beton bestehende Aussenwand 12, diese sind ähnlich wie in bekannten Ausführungsformen ausgebildet. Die Aussenwand 12 hat jedoch im obersten Bereich eine einstückig ausgebildete, sich bis zum äussersten Feuerschacht 18 erstreckende, die Auskragung bildende Betonnase 26.
  • Die Seitenwände des äussersten Feuerschachts 18 sind durch Halterungs- bzw. Stützsteine 28 genau in Abstand gehalten. Eine Abdeckplatte 30 mit einer üblichen Isolation 31 verschliesst den äussersten Feuerschacht 18. Dieser äusserste Feuerschacht 18 ist genau gleich wie alle übrigen, normalen Feuerschächte ausgebildet.
  • Auf der Betonplatte 10 befinden sich mehrere Schichten 14 von Schamottesteinen, aus welchen auch die Wände der Feuerschächte bestehen.
  • Zwischen dem äussersten Feuerschacht 18 und der Aussenwand 12 ist vorerst eine Schicht aus isolierenden, feuerfesten Schaumsteinen 16, dann zwei Schichten aus Molersteinen 32 angeordnet.
  • In der Aussenwand 12 sind an einem Vertikalprofil 36 Stahlanker 34 befestigt, welche die schichten aus Molersteinen 32 durchgreifen, in die Schicht aus Schaumsteinen 16 übergehen und dort in Betonfundamenten 38 befestigt sind.
  • Der Hohlraum zwischen der Betonnase 26 und den isolierenden Schichten aus Schaumsteinen 16 und Molersteinen 32 ist mit Schlacken- bzw. Silikatwolle 40 ausgefüllt.
  • Die im Bereich A von Fig. 2 miteinander in Eingriff stehenden Abdichtungselemente der Betonnase 26 und des äusseren Feuerschachtes 18 sind in Fig. 3 in grösserem Maßstab dargestellt. Auf der mit Armierungen 42 versehenen Betonnase 26 ist über eine Haltefahne 44 ein U-Profil 46 aus Stahl befestigt. An einem Winkelprofil 48 der Deckplatte 30 des äusseren Feuerschachtes 18 ist ein L-förmiges Stahlprofil 50 angeschweisst, wobei dessen freier Schenkel 52 vertikal nach unten weist und in das U-Profil 46 der Betonnase 26 eingreift. Zwischen den beiden miteinander in Eingriff stehenden Stahlprofilen 46, 50 ist noch eine Dichtungsmasse 54 angeordnet, die aus flexiblem Material, z. B. asbestfreiem, feuerfestem Geflecht besteht.

Claims (10)

1. Seitliche, im Bereich zwischen dem äussersten Feuerschacht (18) und der Aussenwand (12) liegende Isolation eines Kammerofens für das Brennen von Kohlenstoffblöcken, insbesondere von Anoden für die Herstellung von Aluminium mittels Schmelzflusselektrolyse,
gekennzeichnet durch
- die Anordnung von mindestens je einer Schicht von Schamottesteinen (14) als Wand des äussersten Feuerschachts (18), isolierenden feuerfesten Schaumsteinen (16) und Moler- bzw. Kalziumsilikatsteinen (32) bei der Aussenwand (12) des Kammerofens,
- eine die isolierenden Schichten (16, 32) in Abstand überdeckende Auskragung (26) der Aussenwand (12), wobei der Hohlraum mit einem komprimierbaren, feuerfesten Isolationsmaterial (40) gefüllt ist, und Abdichtungselemente (46, 52) der Auskragung (26) und des äussersten Feuerschachtes (18) miteinander in Eingriff stehen, und
- die Schicht aus isolierenden, feuerfesten Schaumsteinen (16) ohne Spielraum in der Aussenwand (12) fixiert ist.
2. Isolation nach Anspruch 1, dadurch gekennzeichnet, dass die Schicht aus Schamottesteinen (14) 90 -150 mm, diejenige/n aus Schaumsteinen (16) 230 -400 mm und diejenige/n aus Moler- bzw. Kalziumsilikatsteinen (32) 200 - 300 mm dick sind.
3. Isolation nach Anspruch 2, dadurch gekennzeichnet, dass die Schicht aus Schamottesteinen (14) 110 - 120 mm, diejenige/n aus Schaumsteinen (16) 300 - 350 mm und diejenige/n aus Moler- bzw. Kalziumsilikatsteinen (32) 240 - 260 mm dick sind.
4. Isolation nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die die isolierenden Schichten (16, 32) in Abstand überdeckende Auskragung (26) eine Betonnase ist.
5. Isolation nach Anspruch 4, dadurch gekennzeichnet, dass die Auskragung (26) eine einstückig mit der Aussenwand (12) ausgebildete Betonnase ist.
6. Isolation nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Hohlraum zwischen der Auskragung (26) und den isolierenden Schichten (16, 32) mit Schlacken- bzw. Silikatwolle (40) gefüllt ist.
7. Isolation nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die miteinander in Eingriff stehenden Abdichtungselemente (46, 50) der Auskragung (26) und des äussersten Feuerschachtes (18) ineinanderliegende U- und L-förmige Stahlprofile sind.
8. Isolation nach Anspruch 7, dadurch gekennzeichnet, dass zwischen den ineinanderliegenden Schenkeln der Stahlprofile (46, 50) ein Dichtungsmaterial (54) angeordnet ist.
9. Isolation nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Schicht/en aus isolierenden, feuerfesten Schaumsteinen (16) mit die Schicht/en aus Moler- bzw. Kalziumsilikatsteinen (32) durchgreifenden Stahlankern (34) in der Aussenwand (12) fixiert ist/sind.
10. Isolation nach Anspruch 9, dadurch gekennzeichnet, dass die Stahlanker (34) mittels eines Betonfundaments (38) in den Schaumsteinen (16) befestigt sind.
EP86810023A 1985-01-30 1986-01-17 Seitliche Isolation eines Kammerofens für das Brennen von Kohlenstoffblöcken Expired EP0190098B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH407/85 1985-01-30
CH40785 1985-01-30

Publications (2)

Publication Number Publication Date
EP0190098A1 EP0190098A1 (de) 1986-08-06
EP0190098B1 true EP0190098B1 (de) 1989-01-04

Family

ID=4186335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86810023A Expired EP0190098B1 (de) 1985-01-30 1986-01-17 Seitliche Isolation eines Kammerofens für das Brennen von Kohlenstoffblöcken

Country Status (11)

Country Link
US (1) US4629423A (de)
EP (1) EP0190098B1 (de)
JP (1) JPS61180883A (de)
CN (1) CN86100307A (de)
AU (1) AU587216B2 (de)
CA (1) CA1258169A (de)
DE (1) DE3661655D1 (de)
ES (1) ES8700749A1 (de)
HU (1) HUT43714A (de)
NO (1) NO164801C (de)
ZA (1) ZA86294B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671796B1 (fr) * 1991-01-17 1994-01-07 Vesuvius France Sa Materiau refractaire monolithe isolant - procede de realisation et piece selon le procede .
US6112970A (en) * 1998-08-17 2000-09-05 Kanto Yakin Kogyo K.K. Continuous atmosphere heat treating furnace
GB9928352D0 (en) * 1999-12-02 2000-01-26 Microtherm International Limit Composite body and method of manufacture
CN101363685B (zh) * 2007-08-09 2010-04-07 沈阳铝镁设计研究院 一种铝用阳极焙烧炉

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB114751A (de) *
US1341594A (en) * 1916-02-26 1920-05-25 Samuel H Mensch Furnace construction
US1351305A (en) * 1919-03-19 1920-08-31 Albert G Smith Furnace construction
US3448971A (en) * 1968-01-26 1969-06-10 Dresser Ind Carbon baking furnaces
IT1155874B (it) * 1978-03-10 1987-01-28 Elettrocarbonium Spa Camera perfezionata per forni continui ad anello di tipo hoffmann

Also Published As

Publication number Publication date
CA1258169A (en) 1989-08-08
AU587216B2 (en) 1989-08-10
ES551450A0 (es) 1986-11-16
NO164801C (no) 1990-11-14
JPS61180883A (ja) 1986-08-13
EP0190098A1 (de) 1986-08-06
DE3661655D1 (en) 1989-02-09
CN86100307A (zh) 1986-07-30
AU5222786A (en) 1986-08-07
ZA86294B (en) 1986-09-24
ES8700749A1 (es) 1986-11-16
HUT43714A (en) 1987-11-30
NO860302L (no) 1986-07-31
US4629423A (en) 1986-12-16
NO164801B (no) 1990-08-06

Similar Documents

Publication Publication Date Title
EP0316411B1 (de) Koksofendecke
DE3121434C2 (de) Feuerfester Stein für Drehrohröfen
EP0190098B1 (de) Seitliche Isolation eines Kammerofens für das Brennen von Kohlenstoffblöcken
DE3729193C2 (de)
DE1146259B (de) Verfahren zum Auskleiden der Waende der Kathodenwanne einer Aluminium-elektrolysezelle und nach diesem Verfahren hergestellte Kathodenwanne
DE2162893C3 (de) Schachtofenboden, insbesondere für einen Hochofen
WO2007042056A1 (de) Kassettenkammer eines tiefofens sowie formstein dafür und verfahren zur herstellung des formsteins
DE3430470C2 (de) Deckenelement für einen Industrieofen
DE2724982C3 (de) Koksofenkammertürstopfen aus feuerfesten Steinen
DE1207050B (de) Elektrolichtbogenofen
DE3505551C2 (de) Koksofentür mit einem keramischen Stopfen
DE920505C (de) Verfahren zur Gestaltung frei tragender Ofenbauteile
DE1806017C3 (de) Elektroofen, insbesondere Licht bogenofen
DE102011106782A1 (de) Rauchgaswand für offenen Ringbrennofen
EP1275924A1 (de) Ringkammerofen
EP0053875A1 (de) Wärmeisolierende Auskleidungsplatte für hohe Temperaturen
SU1723095A1 (ru) Батаре горизонтальных коксовых печей
DE60202150T2 (de) Verfahren zur schaffung einer wärmestabilen basiskonstruktion und ofen mit einer wärmestabilen basiskonstruktion
DE2818315C3 (de) Umrahmung für Abgas- oder Beschickungsöffnungen im Deckel von Elektrolichtbogenofen
DE10061359C2 (de) Kühleinrichtung für Schachtöfen
DE1254804B (de) Decke, insbesondere fuer industrielle Feuerungen und OEfen
DE1204778B (de) Kontinuierlich von aussen nachzustellende Ofendecke
DE7918516U1 (de) Wagen fuer schnellbrennoefen, besonders fuer produkte aus keramikmaterial wie kacheln u.ae.
AT212032B (de) Kathodenwanne für Aluminiumelektrolyseöfen
DE2759804C2 (de) Koksofenkammertürstopfen aus feuerfesten Steinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870123

17Q First examination report despatched

Effective date: 19880527

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3661655

Country of ref document: DE

Date of ref document: 19890209

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86810023.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041229

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050117

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20050129

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050228

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060117

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20060117

EUG Se: european patent has lapsed