EP0189767A2 - Ölgekühlter, mehrteiliger Tauchkolben für Hubkolbenbrennkraftmaschinen - Google Patents

Ölgekühlter, mehrteiliger Tauchkolben für Hubkolbenbrennkraftmaschinen Download PDF

Info

Publication number
EP0189767A2
EP0189767A2 EP86100309A EP86100309A EP0189767A2 EP 0189767 A2 EP0189767 A2 EP 0189767A2 EP 86100309 A EP86100309 A EP 86100309A EP 86100309 A EP86100309 A EP 86100309A EP 0189767 A2 EP0189767 A2 EP 0189767A2
Authority
EP
European Patent Office
Prior art keywords
piston
wall
piston part
oil
dome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86100309A
Other languages
English (en)
French (fr)
Other versions
EP0189767A3 (en
EP0189767B1 (de
Inventor
Horst Lindner
Jordan Gentscheff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel GmbH
Original Assignee
MAN B&W Diesel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN B&W Diesel GmbH filed Critical MAN B&W Diesel GmbH
Publication of EP0189767A2 publication Critical patent/EP0189767A2/de
Publication of EP0189767A3 publication Critical patent/EP0189767A3/de
Application granted granted Critical
Publication of EP0189767B1 publication Critical patent/EP0189767B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • F02F3/225Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid the liquid being directed into blind holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • F01M2001/086Lubricating systems characterised by the provision therein of lubricant jetting means for lubricating gudgeon pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel

Definitions

  • the invention relates to an oil-cooled, multi-part plunger for reciprocating internal combustion engines with features as specified in the preamble of claim 1.
  • Such an oil-cooled plunger is known from DE-OS 1 526 598.
  • the lower piston part is made of aluminum, while the upper piston part is made of a steel material.
  • Such a piston is particularly unsuitable for very high ignition pressures because of the aluminum lower piston part, because the deformation of the lower piston part becomes very large under the acting ignition pressures, which could cause piston seizures.
  • This disadvantage could be remedied by producing the lower piston part with a corresponding ovality and crowning so that it can absorb the deformation resulting from the action of the ignition pressures.
  • the piston to be created should be designed to provide more favorable cooling oil guidance for the best effect of the cooling oil to be passed through, in particular with a view to reducing the amount of oil to be carried out; furthermore, the piston to be created, while avoiding a large number of lubricating oil scraper rings for a given low lubricating oil consumption, should enable such favorable lubricating oil regulation that the oil present is in any case so distributable that at places on the circumference of the piston where lubricating oil is absolutely necessary, e.g. on the cylinder running surface in the area of the pressure and counter pressure side of the piston, is lubricated more intensively than at other circumferential locations of the piston.
  • the upper piston part is made of nodular cast iron or steel material
  • the lower part of the piston is made of gray cast iron or nodular cast iron
  • the material can also be used to take account of extremely high loads that will occur later in operation.
  • the ignition pressures acting on the plunger during operation are further enhanced by the dome-like design of the piston-bolt carrying chair according to the invention the special support of the upper piston part on the lower piston part as well as the dome-like limitation of the internal cooling space are taken into account.
  • the cooling oil guide according to the invention in the piston not only achieves a very favorable cooling effect; by appropriate distribution of the transfer bores between the inner and outer cooling space, in particular by different distances between them with a corresponding clustering and size and inclination dimensioning, the uneven temperature distribution acting in the upper piston part can be influenced so favorably that uneven deformations of the piston crown in the radial direction can be avoided.
  • the latter in conjunction with the support of the piston upper part according to the invention in the region of its bending-neutral zone, contributes to the fact that its outer wall remains largely cylindrical even under the action of the thermal and mechanical load.
  • the inventive design of the lower edge of the lower piston part also advantageously achieves that effect that there is always sufficient lubricating oil on the cylinder wall on the pressure side of the plunger and its counterpressure side, while in the remaining peripheral regions of the plunger, in which no such heavy lubrication is required is that the lubricating oil is largely stripped off the cylinder running surface when the plunger moves downward.
  • the oil-cooled plunger shown in the drawing consists of a piston lower part, generally designated 1, and an upper piston section, generally designated 2.
  • the one-piece upper piston part 2 comprises a piston crown 3 and an outer wall 4 with a cylindrical outer surface 5 and a plurality of ring grooves, into which piston rings 6 are inserted.
  • the outer wall 4 of the piston upper part 2 is composed of a wall section 7 of large cross-section adjoining the piston crown 3 and a wall section 9 of smaller diameter adjoining its lower edge 8.
  • an undercut 10 with a circular-cylindrical centering surface 11 and a contact surface 12 perpendicular to the piston axis is formed in the cross-sectional wall part 7 of the outer wall 4.
  • the upper piston part “2 is supported on the outer end face 13 of a support collar 14, which is formed on the upper side of a piston bolt support chair designated by 15 and forming part of the lower piston part 1.
  • the upper piston part 2 is in this exemplary embodiment via the circular-cylindrical centering surface 11 centered with respect to the lower piston part 1 on a circular cylindrical centering surface 16 formed thereon on the supporting collar 4.
  • an axially projecting supporting collar 17 is formed on the inside of the piston crown 3, which has a contact surface 18 at the bottom transverse to the longitudinal axis of the piston With this contact surface 18, this upper piston part 2 is supported on the end face 13 of the support collar 14.
  • this upper piston part 2 is supported via the lower edge 19 of its outer wall 4 on the upper edge 20 of the outer wall of the lower piston part 1, generally designated 21.
  • This upper piston is centered Part 2 here by a circular cylindrical outer surface 22, arranged coaxially to the longitudinal axis of the piston, of a centering collar 23 projecting above the upper edge 20, against which the outer wall 4 of this upper piston part 2 rests with its inner surface 24 which is circular cylindrical in the lower region.
  • the upper piston part 2 is fastened to the lower piston part 1 generally by means of a plurality of clamping screws 25, which are only indicated by dash-dotted lines in the drawing.
  • a piston pin is designated, which is anchored in a bearing bore 27 which penetrates the piston piston support frame 15 in the lower piston part 1.
  • a bearing sleeve 28 sits on this piston pin 26, the position of which is fixed between fixing surfaces 29, 30 and 31, 32 parallel to the longitudinal axis of the piston.
  • the plunger is articulated via the piston pin 26 and the bearing sleeve 28 seated thereon to a connecting rod 33 connected to the crankshaft (not shown) of a reciprocating piston internal combustion engine in the region of the connecting rod head 34, this connection being produced via a receiving bore 35 which penetrates the connecting rod head 34 transversely and encompasses the bearing sleeve 28 is.
  • a projection is designated, which is arranged on the upper side 37 of the piston bolt support chair 15 and either - as shown in Figures 1 to 3 - formed in one piece with the latter or - as shown in Figure 4 - only in one piece with the lower part Piston-bolt support chair 15 can be formed, in which case the upper section is realized by a tubular attachment piece 38.
  • This protrusion 36, 38 like the piston-piston carrying chair 15, is penetrated overall by a central cooling oil passage hole 39 arranged coaxially to the piston longitudinal axis.
  • the projection 36, 38 generally protrudes into the area of the piston upper part 2 and, with its upper edge 40, limits the cooling oil fill level of an inner cooling space, which is designated overall by 41.
  • the latter is delimited in its lower region by the inner surface 42 of the support collar 14, furthermore the upper side 37 of the piston bolt support chair 15 and the outer surface 43 of the projection 36, 38 and in its upper region by a recess in the upper piston part 2.
  • This inner cooling space 41 is connected via inclined transfer holes 44 formed in the upper piston part 2 to an outer cooling space, designated overall by 45, which extends both in the upper piston part 2 and in the lower piston part 1, there around the supporting collar 14.
  • the upper piston part 2 is made in one piece from nodular cast iron or steel material, while the lower piston part 1 is also made in one piece from gray cast iron or nodular cast iron.
  • the plunger is designed for a special type of shaker cooling; the cooling oil is supplied from the connecting rod 33 through a feed bore 46, an annular channel 47 around the bearing sleeve 28 and a spray bore 48 in the connecting rod head 34 through the cooling oil passage hole 39 into the inner cooling space 41. From there, the cooling oil, as a result of the piston movements during operation, passes through the transfer bores 44 into the outer cooling chamber 45 and from there via outlet openings 49 arranged in its lower region back into the engine room of the reciprocating piston internal combustion engine.
  • the inner cooling space 41 is provided by a dome-like cavity, which is radially on the outside by a correspondingly curved shape of the inner wall 42 of the support collar 14, and subsequently by a correspondingly continuously curved shape in the case of the plunger from FIGS. 1 to 3 of the inner surface 50 of the cross-sectionally large wall part 7 the outer wall 4 of the upper piston part 2 or, in the case of the plunger of FIG. 4, the inner surface 51 of the support collar 17 and then subsequently formed by a correspondingly continued curvature of the inner surface 52 of the piston crown 3.
  • an elevation 53 is provided on the inner surface 52 of the piston crown 3, which contributes to a favorable introduction and distribution of the cooling oil in the inner cooling space 41.
  • the outer cooling chamber 45 is in the plunger according to Fig.l to 3 in the area of the piston upper part 2 on the one hand by several on the circumference, slightly obliquely with respect to the piston longitudinal axis from the lower edge 8 of the cross-sectional wall part 7 of the outer wall 4 formed in the latter, and on the other hand through an annular space 55 is formed, into which the blind holes 54 open.
  • a transition bore 44 opens into each blind hole 54, which branches off from the inner cooling space 41 in the area of the inner surface 50 of the wall section 7 with a large cross section and diagonally upwards into the associated one Blind hole 54 opens near its closed end.
  • the space 55 is delimited radially on the outside by the inner surface 56 of the lower-section lower wall part 9 of the outer wall 4 of the upper piston part 2 and radially on the inside by the outer surface 57 of the support collar 14 and above by the lower edge 8 of the thick-section wall part 7 of the outer wall 4 of the upper piston part 2.
  • the outer cooling space 45 continues downward within the lower piston part 1 through an annular space 58 which extends down to the piston-piston carrying chair 15.
  • the outer cooling space 45 in the region of the piston upper part 2 is formed by an annular upper cooling chamber part 59, which is delimited on the outside by the inner surface 24 of the outer wall 4 of the upper piston part 2, on the inside by the outer surface 60 of the support collar 17 and downwards an existing in the lower piston part 1 of the lower cooling chamber part 61 is open, which, like in the exemplary embodiment according to FIGS.
  • the piston pin support chair 15 is generally dome-like, like the boundary wall of the inner cooling space 41, that is to say designed in the manner of a hollow spherical section-shaped dome, in such a way that it surrounds the connecting rod head 34, which has an essentially round outer contour 62 within the lower piston part 1, with a small clearance.
  • this dome-shaped piston pin supporting chair 15 has bearing eyes 63 and 64 on both sides of the connecting rod head 34, as can be seen in FIG. 2, which are penetrated by the bearing bore 27 and serve to receive the piston pin ends projecting on both sides of the connecting rod head 34.
  • the outer wall 21 of the piston lower part 1 is interrupted in each case by an opening 65 or 66 through which the piston pin 26 is assembled.
  • the dome-shaped piston pin support chair 15 preferably has a wall thickness which is essentially the same everywhere, so that the part of the outer cooling space 45 present in the lower piston part 1 partially extends down to the level of the piston pin 26, as can be seen from FIG.
  • a plurality of stiffening beads 67 are arranged on the top 37 of the dome-like piston pin support chair 15 and are distributed around the circumference.
  • the annular support collar 14 has at its upper end such a diameter that it supports the piston upper part 2 lying on its annular contact surface 13 in its bending-neutral zone.
  • those peripheral areas of the lower edge 68 of the piston lower part 1 are generally formed as oil-scraper edges 69 in the area axially below the two openings 65 and 66 in the outer wall 21, as can be seen in FIG. 2, while the remaining areas in the area of the pressure and the circumferential regions of the lower edge 68 of the lower piston part 1 lying on the counterpressure side of the plunger are chamfered or rounded as oil delivery surfaces 70.
  • This special design of the lower edge 68 on the lower piston part 1 ensures that in the region of the pressure side and the counter-pressure side of the plunger there is always a sufficient lubricating film between the cylindrical outer surface 71 of the lower piston part 1 and the associated cylinder wall, which is ensured by the oil delivery surfaces 70, while in the remaining circumferential areas of the plunger, namely the areas below the openings 65 and 66, in which significantly less lubricating oil is naturally required, the lubricating oil film adhering to the cylinder wall is reduced to a minimum film thickness by the sharp-edged oil wiping edges 69 when the piston is moving downward. This results in a significant reduction in oil consumption in machine operation.
  • the radius of the outer boundary surface 72 adjacent to the outer contour 62 of the connecting rod head 34 is preferably, as can be seen from FIG. 1, somewhat larger than the radius of the outer contour 62 of the connecting rod head 34.
  • the entry region of the cooling oil passage hole 39 is conical to the connecting rod head 34 expanded. This ensures a perfect transfer of the cooling oil leaving the spray bore 48 in the connecting rod head 26 into the cooling oil passage hole 39 and a favorable transfer of the cooling oil through the latter into the inner cooling space 41.
  • the outer wall 4 on the upper piston part 2 and the outer wall 21 on the lower piston part 1 in the plunger piston according to FIGS. 1 to 3 are preferably matched in their height so that after connecting the upper piston part 2 and lower piston part 1 between the flat lower edge 73 of the outer wall 4 of the upper piston part 2 and the flat upper edge 74 of the outer wall 21 of the lower piston part 1, an annular gap 75 remains free, through which oil from the bottom, which is arranged on the upper piston part 2 of the piston rings 6 from the cylinder wall, can enter the outer cooling space 45.
  • the dome-shaped piston-piston carrying chair 15 is - as can be seen from FIG. 1 - connected to the outer wall 21 of the piston lower part 1 approximately at the level of a piston transverse plane containing the piston pin longitudinal axis.
  • the features according to the invention and in particular their combinatorial combination in a plunger ensure that the plunger can function properly even at the highest ignition pressures of the order of 180 bar, for example.
  • the piston upper part 2 in a bending-neutral zone in connection with the dome-like design of the piston pin support, chair 15 and the dome-like limitation of the inner cooling space 41, it is ensured that the ignition pressures acting on the plunger in machine operation in the best possible way via the support collar 14 and the piston pin 76 can be introduced into the connecting rod 33 in such a way that the cylindricity and coaxiality of the outer wall 4 of the upper piston part 2 and the outer wall 21 of the lower piston part 1 are largely preserved.
  • the cooling oil guide in particular in the upper piston part 2, also ensures intensive cooling of the same. Negative influences from the temperatures prevailing in machine operation on the shape of the piston upper part 2 can therefore also be largely avoided by the type of coolant guidance in the piston upper part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Bei einem ölgekühlten, aus einem Kolbenunterteil und einem Kolbenoberteil zusammengesetzten Tauchkolben ist durch spezielle konstruktive Maßnahmen im Bereich der Abstützung der beiden Kolbenteile, deren Materialpaarung und der Kühlölführung sichergestellt, daß mit dem Tauchkolben hohe Zünddrücke sicher ohne nennenswerte Deformation der Kolbenteile beherrschbar sind. Durch Maßnahmen an der Unterkante des Kolbenunterteils ist außerdem sichergestellt, daß in den der Druckseite und Gegendruckseite des Tauchkolbens liegenden Umfangsbereichen immer ein genügend dicker Schmierölfilm an der Zylinderwand gegeben ist, während in den restlichen Umfangsbereichen der Schmierölfilm auf ein Minimum reduziert wird. Durch eine derartige Schmierölregulierung läßt sich der Ölverbrauch erheblich reduzieren.

Description

  • Die Erfindung betrifft einen ölgekühlten, mehrteiligen Tauchkolben für Hubkolbenbrennkraftmaschinen mit Merkmalen, wie im Oberbegriff des Anspruchs 1 angegeben.
  • Ein derartiger ölgekühlter Tauchkolben ist aus der DE-OS 1 526 598 bekannt. Dabei besteht das Kolbenunterteil aus Aluminium, während das Kolbenoberteil aus einem Stahlwerkstoff besteht. Ein solcher Kolben ist insbesondere wegen des aus Aluminium bestehenden Kolbenunterteiles für sehr hohe Zünddrücke nicht geeignet, weil die Deformation des Kolbenunterteiles unter den einwirkenden Zünddrücken sehr groß wird, was Kolbenfresser hervorrufen könnte. Man könnte diesem Nachteil zwar dadurch abhelfen, daß das Kolbenunterteil mit entsprechender Ovalität und Balligkeit hergestellt wird, so daß es die von der Einwirkung der Zünddrücke herrührende Deformation aufnehmen kann. Die auftretende Deformation eines solchermaßen gestalteten Kolbenunterteiles wirkt sich jedoch wieder nachteilig auf den Schmierölverbrauch aus, denn die Mantelfläche des Kolbenunterteils nimmt eine unrunde Form ein, infolgedessen an bestimmten Stellen der Zylinderwand mehr Schmieröl als notwendig vorhanden ist. Diesem Sachverhalt wird bei dem bekannten Kolben durch das Vorsehen mehrerer Ölabstreifringe Rechnung getragen, deren Funktion durch zu hohen Verschleiß eingeschränkt wird. Außerdem erweist sich die dort gegebene Art der Kühlöldurchschleusung von außen nach innen ebenfalls nicht als wirtschaftlich, weil ein kompliziert gestalteter Kolbenbolzen für die Kühlölzuführung notwendig ist. Der Kolbenbolzen braucht mehrere Quer- und Längsbohrungen für die Kühlöldurchleitung. Ein solcher mit Quer- und Längsbohrungen durchsetzter Kolbenbolzen ist von seiner Tragfähigkeit her nicht für die Beherrschung hoher Zünddrücke geeignet.
  • Es ist daher Aufgabe der Erfindung, einen ölgekühlten Tauchkolben der eingangs genannten Art so weiterzubilden, daß er sich auch unter der Einwirkung hoher Zünddrücke in seiner Form nur unwesentlich deformiert, wobei insbesondere die Kolbenringpartie am Kolbenoberteil ihre zylindrische Form beibehalten und eine Ovalisierung des unteren Bereiches des Kolbenunterteils gegenüber dem oberen Bereich desselben weitestgehend verhindert werden soll; außerdem soll der zu schaffende Kolben eine günstigere Kühlölführung für eine beste Wirkung des durchzuschleusenden Kühlöles insbesondere im Hinblick auf eine Reduzierung der durchzusetzenden Ölmenge gestaltet sein; ferner soll der zu schaffende Kolben unter Vermeidung von einer Vielzahl von Schmierölabstreifringen bei gegebenem niedrigem Schmierölverbrauch eine solch günstige Schmierölregulierung ermöglichen, daß das anstehende Öl in jedem Fall so verteilbar ist, daß an Stellen des Kolbenumfangsbereiches, wo unbedingt Schmieröl erforderlich ist, z.B. an der Zylinderlauffläche im Bereich der Druck- und Gegendruckseite des Kolbens, intensiver geschmiert wird, als an anderen Umfangsstellen des Kolbens.
  • Diese Aufgabe ist erfindungsgemäß bei einem ölgekühlten Tauchkolben der eingangs genannten Art durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen dieser Lösung sind in den Unteransprüchen angegeben.
  • Dadurch, daß das Kolbenoberteil aus Sphäroguß bzw. Stahlmaterial, das Kolbenunterteil dagegen aus Grauguß bzw. Sphäroguß hergestellt ist, kann schon vom Material her auch später im Betrieb einwirkenden extrem hohen Belastungen Rechnung getragen werden. Den im Betrieb auf den Tauchkolben einwirkenden Zünddrücken wird außerdem durch die erfindungsgemäße domartige Gestaltung des Kolbenbolzentragstuhles, ferner die spezielle AbstUtzung des Kolbenoberteiles am Kolbenunterteil sowie die ebenfalls domartige Begrenzung des inneren Kühlraumes Rechnung getragen. Durch die erfindungsgemäße Kühlölführung im Kolben wird nicht nur eine sehr günstige Kühlwirkung erzielt; durch entsprechende Verteilung der Überleitbohrungen zwischen dem inneren und äußeren Kühlraum, insbesondere durch unterschiedliche Abstände derselben mit einer entsprechenden Häufung sowie Größen- und Neigungsbemessung derselben, ist die im Kolbenoberteil wirkende ungleichmäßige Temperaturverteilung so günstig beeinflußbar, daß ungleichmäßige Deformationen des Kolbenbodens in radialer Richtung vermeidbar sind. Letzteres trägt in Verbindung mit der erfindungsgemäßen Abstützung des Kolbenoberteiles im Bereich von dessen biegeneutraler Zone dazu bei, daß dessen Außenwand auch unter der Einwirkung der thermischen und mechanischen Belastung weitestgehend zylindrisch bleibt.
  • Durch die erfindungsgemäße Gestaltung der Unterkante des Kolbenunterteiles wird außerdem in vorteilhafter Weise jener Effekt erreicht, daß auf der Druckseite des Tauchkolbens und dessen Gegendruckseite immer genügend Schmieröl an der Zylinderwand vorhanden ist, während in den restlichen Umfangsbereichen des Tauchkolbens, in denen keine so starke Schmierung erforderlich ist, das Schmieröl beim Abwärtsgang des Tauchkolbens weitestgehend von der Zylinderlauffläche abgestreift wird.
  • Nachstehend sind zwei Ausführungsbeispiele eines nach der Erfindung gestalteten ölkgekühlten Tauchkolbens anhand der Zeichnung näher beschrieben. In der Zeichnung zeigen:
    • Fig.l einen senkrecht zur Kolbenbolzenachse stehenden Querschnitt durch einen nach der Erfindung gestalteten ölgekühlten Tauchkolben,
    • Fig.2 einen durch die Kolbenbolzenlängsachse gehenden Querschnitt durch den Tauchkolben gemäß Fig.l.
    • Fig.3 einen Querschnitt durch den Tauchkolben entlang der in Fig.l eingetragenen Schnittlinie III-III.
    • Fig.4 einen Teilquerschnitt durch einen anderen nach der Erfindung gestalteten Tauchkolben.
  • In den Figuren sind gleiche bzw. einander entsprechende Teile der dargestellten Tauchkolben mit gleichen Bezugszeichen versehen.
  • Der in der Zeichnung dargestellte ölgekühlte Tauchkolben besteht aus einem insgesamt mit 1 bezeichneten Kolbenunterteil und einem insgesamt mit 2 bezeichneten Kolbenoberteil. Das einstückige Kolbenoberteil 2 umfaßt einen Kolbenboden 3 sowie eine Außenwand 4 mit zylindrischer Außenfläche 5 und mehrere Ringnuten, in die Kolbenringe 6 eingesetzt sind. Beim Tauchkolben gemäß den Figuren 1 bis 3 setzt sich die Außenwand 4 des Kolbenoberteils 2 aus einem an den Kolbenboden 3 anschliessenden querschnittsstarken Wandteil 7 und einem an dessen Unterkante 8 anschließenden durchmesserschwächeren Wandteil 9 zusammen. von der Unterkante 8 ausgehend ist in das querschnittsstarke Wandteil 7 der Außenwand 4 eine Hinterschneidung 10 mit einer kreiszylindrischen Zentrierfläche 11 und einer zur Kolbenachse senkrecht stehenden Anlagefläche 12 eingeformt. Mit dieser Anlagefläche 12 ist das Kolbenoberteil" 2 auf der äußeren Stirnfläche 13 eines Tragbundes 14 abgestützt, der an der Oberseite eines mit 15 bezeichneten und ein Teil des Kolbenunterteils 1 bildenden Kolbenbolzentragstuhles angeformt ist. Über die kreiszylindrische Zentrierfläche 11 ist das Kolbenoberteil 2 bei diesem Ausführungsbeispiel in bezug auf das Kolbenunterteil 1 an einer dort am Tragbund 4 oben angeformten kreiszylindrischen Zentrierfläche 16 zentriert. Beim Tauchkolben gemäß Fig.4 dagegen ist an der Innenseite des Kolbenbodens 3 ein axial vorspringender Abstütztbund 17 angeformt, der unten eine quer zur Kolbenlängsachse stehende Anlagefläche 18 aufweist. Mit dieser Anlagefläche 18 ist dieses Kolbenoberteil 2 auf der Stirnfläche 13 des Tragbundes 14 abgestützt. Außerdem ist dieses Kolbenoberteil 2 über die Unterkante 19 seiner Außenwand 4 auf der Oberkante 20 der generell mit 21 bezeichneten Außenwand des Kolbenunterteils 1 abgestützt. Zentriert ist dieses Kolbenoberteil 2 hier durch eine kreiszylindrische, koaxial zur Kolbenlängsachse angeordnete Außenfläche 22 eines die Oberkante 20 überragenden Zentrierbundes 23, an der die Außenwand 4 dieses Kolbenoberteils 2 mit ihrer im unteren Bereich kreiszylindrischen Innenfläche 24 anliegt.
  • Befestigt ist das Kolbenoberteil 2 am Kolbenuntereil 1 generell mittels mehrerer in der Zeichnung nur durch strichpunktierte Linien angedeuteter Spannschrauben 25.
  • Mit 26 ist ein Kolbenbolzen bezeichnet, der in einer den Kolbenbolzentragstuhl 15 im Kolbenunterteil 1 quer durchdringenden Lagerbohrung 27 verankert ist. Auf diesem Kolbenbolzen 26 sitzt eine Lagerhülse 28, deren Lage zwischen zur Kolbenlängsachse parallelen Fixierungsflächen 29, 30 sowie 31, 32 fixiert ist. Der Tauchkolben ist über den Kolbenbolzen 26 und die darauf sitzende Lagerhülse 28 an eine mit der nicht dargestellten Kurbelwelle einer Hubkolbenbrennkraftmaschine verbundene Pleuelstange 33 im Bereich des Pleuelstangenkopfes 34 angelenkt, wobei dieser Anschluß über eine den Pleuelstangenkopf 34 quer durchdringende, die Lagerhülse 28 umgreifende Aufnahmebohrung 35 hergestellt ist.
  • Mit 36 ist ein Vorsprung bezeichnet, der an der Oberseite 37 des Kolbenbolzentragstuhles 15 angeordnet und entweder - wie in den Figuren 1 bis 3 dargestellt - insgesamt einstückig mit letzterem ausgebildet oder - wie in Fig.4 dargestellt - nur in seinem unteren Teilstück einstückig mit dem Kolbenbolzentragstuhl 15 ausgebildet sein kann, wobei dann das obere Teilstück durch ein rohrförmiges Aufsatzstück 38 realisiert ist. Dieser Vorsprung 36, 38 ist ebenso wie der Kolbenbolzentragstuhl 15 insgesamt von einem zentralen, koaxial zur Kolbenlängsachse angeordneten Kühlöldurchtrittsloch 39 durchsetzt. Der Vorsprung 36, 38 ragt generell in den Bereich des Kolbenoberteils 2 hinein und begrenzt mit seiner Oberkante 40 den Kühlölfüllstand eines insgesamt mit 41 bezeichneten inneren Kühlraumes. Letzterer ist in seinem unteren Bereich von der Innenfläche 42 des Tragbundes 14, ferner der Oberseite 37 des Kolbenbolzentragstuhles 15 und der Außenfläche 43 des Vorsprungs 36, 38 sowie in seinem oberen Bereich durch eine Vertiefung im Kolbenoberteil 2 begrenzt. Dieser innere Kühlraum 41 steht über schräge, im Kolbenoberteil 2 ausgebildete Überleitbohrungen 44 mit einem insgesamt mit 45 bezeichneten äußeren Kühlraum in Verbindung, der sich sowohl im Kolbenoberteil 2 als auch im Kolbenunterteil 1, dort um den Tragbund 14 herum, erstreckt.
  • Das Kolbenoberteil 2 ist einstückig aus Sphäroguß bzw. Stahlmaterial hergestellt, während das kolbenunterteil 1 ebenfalls einstückig aus Grauguß bzw. Sphäroguß hergestellt ist.
  • Der Tauchkolben ist für eine spezielle Art der Shaker-Kühlung ausgebildet; die Kühlölzuführung erfolgt dabei von der Pleuelstange 33 durch eine Zuführbohrung 46, einen Ringkanal 47 um die Lagerhülse 28 sowie eine Spritzbohrung 48 im Pleuelstangenkopf 34 aus durch das Kühlöldurchtrittsloch 39 hindurch in den inneren Kühlraum 41 hinein. Von dort aus gelangt das Kühlöl infolge der Kolbenbewegungen während des Betriebes durch die Überleitbohrungen 44 in den äußeren Kühlraum 45 und von dort aus über in seinem unteren Bereich angeordnete Austrittsöffnungen 49 in den Triebwerksraum der Hubkolbenbrennkraftmaschine zurück.
  • Der innere Kühlraum 41 ist durch einen domartigen Hohlraum gegeben, der radial außen durch eine entsprechend gekrümmte Formgebung der Innenwand 42 des Tragbundes 14, daran anschließend durch entsprechend fortführend gekrümmte Formgebung im Fall des Tauchkolbens von Fig.1 bis 3 der Innenfläche 50 des querschnittsstarken Wandteiles 7 der Außenwand 4 des Kolbenoberteiles 2 bzw. im Fall des Tauchkolbens von Fig.4 der Innenfläche 51 des Abstützbundes 17 und daran anschließend durch eine entsprechend fortgeführte Wölbung der Innenfläche 52 des Kolbenbodens 3 gebildet ist. Koaxial zur Kolbenlängsachse ist an der Innenfläche 52 des Kolbenbodens 3 eine Erhebung 53 vorhanden, die zu einer günstigen Einleitung und Verteilung des Kühlöles im inneren Kühlraum 41 beiträgt.
  • Der äußere Kühlraum 45 ist beim Tauchkolben gemäß Fig.l bis 3 im Bereich des Kolbenoberteils 2 einerseits durch mehrere am Umfang verteilte, bezüglich der Kolbenlängsachse leicht schräg stehend von der Unterkante 8 des querschnittsstarken Wandteils 7 der Außenwand 4 in letzteres eingeformte Sacklöcher 54 und andererseits durch einen ringförmigen Raum 55 gebildet, in den die Sacklöcher 54 ausmünden. In jedes Sackloch 54 mündet eine Überleitbohrung 44 ein, die im Bereich der Innenfläche 50 des querschnittsstarken Wandteils 7 vom inneren Kühlraum 41 abzweigt und schräg nach oben in das zugehörige Sackloch 54 nahe von dessen geschlossenem Ende einmündet. Der Raum 55 Ist radial außen von der Innenfläche 56 des querschnittsschwächeren unteren Wandteils 9 der Außenwand 4 des Kolbenoberteils 2 sowie radial innen von der Außenfläche 57 des Tragbundes 14 und oben durch die Unterkante 8 des querschnittsstarken Wandteils 7 der Außenwand 4 des Kolbenoberteils 2 begrenzt. Im Anschluß an diesen so begrenzten Raum 55 setzt sich der äußere Kühlraum 45 nach unten innerhalb des Kolbenunterteils 1 durch einen ringförmigen Raum 58 fort, der bis zum Kolbenbolzentragstuhl 15 herabreicht.
  • Beim Tauchkolben gemäß Fig.4 ist der äußere Kühlraum 45 im Bereich des Kolbenoberteils 2 durch ein ringförmiges oberes Kühlraumteil 59 gebildet, das außen von der Innenfläche 24 der Außenwand 4 des Kolbenoberteils 2, innen von der Außenfläche 60 des Abstützbundes 17 begrenzt und nach unten zu einem im Kolbenunterteil 1 vorhandenen unteren Kühlraumteil 61 hin offen ist, das ebenso wie beim Ausführungsbeispiel gemäß Fig.l bis 3 bis zum Kolbenbolzentragstuhl 15 herunterreicht.
  • Der Kolbenbolzentragstuhl 15 ist generell ebenso wie die Begrenzungswand des inneren Kühlraumes 41 domartig, also nach Art einer hohlkugelabschnittsförmigen Kuppel ausgebildet, und zwar so, daß er den innerhalb des Kolbenunterteiles 1 eine im wesentlichen runde Außenkontur 62 aufweisenden Pleuelstangenkopf 34 mit geringem Abstand umgibt. Außerdem weist dieser domartig geformte Kolbenbolzentragstuhl 15 beiderseits des Pleuelstangenkopfes 34, wie aus Fig.2 ersichtlich, Lageraugen 63 und 64 auf, die von der Lagerbohrung 27 durchsetzt sind und zur Aufnahme der beiderseits des Pleuelstangenkopfes 34 vorstehenden Kolbenbolzenenden dienen. Im Bereich vor den äußeren Enden des jeweiligen Lagerauges 63 bzw. 64 ist die Außenwand 21 des Kolbenunterteils 1 jeweils von einem Durchbruch 65 bzw. 66 unterbrochen, durch den die Montage des Kolbenbolzens 26 erfolgt.
  • Der domartig ausgebildete Kolbenbolzentragstuhl 15 weist vorzugsweise eine im wesentlichen überall gleiche Wandstärke auf, so daß der im Kolbenunterteil 1 vorhandene Teil des äußeren Kühlraumes 45 partiell - wie aus Fig.l ersichtlich - bis in die Ebene des Kolbenbolzens 26 herunterreicht.
  • Der Vorsprung 36 und der ringförmige Tragbund 14, die beide an der Oberseite 37 des domartigen Kolbenbolzentragstuhles 15 angeformt sind, weisen vorzugsweise jeweils eine etwa dem Durchmesser des Kolbenbolzens 26 entsprechende Höhe auf.
  • Zwischen der Außenfläche 43 des Vorsprunges 36, 38 und der Innenseite 42 des Tragbundes 14 erstrecken sich an der Oberseite 37 des domartigen Kolbenbolzentragstuhles 15 mehrere am Umfang verteilt angeordnete Versteifungswülste 67.
  • Der ringförmige Tragbund 14 besitzt an seinem oberen Ende einen solchen Durchmesser, daß er das auf seiner ringförmigen Anlagefläche 13 auflieliegende Kolbenoberteil 2 in dessen biegeneutraler Zone unterstützt.
  • Darüber hinaus sind generell jene Umfangsbereiche der Unterkante 68 des Kolbenunterteils 1 im Bereich axial unterhalb von den beiden Durchbrüchen 65 und 66 in der Außenwand 21 - wie aus Fig.2 ersichtlich - scharfkantig als Ölabstreifkanten 69 ausgebildet, während die restlichen, im Bereich der Druck- und der Gegendruckseite des Tauchkolbens liegenden Umfangsbereiche der Unterkante 68 des Kolbenunterteiles 1 abgeschrägt bzw. gerundet als Ölförderflächen 70 ausgebildet sind. Durch diese spezielle Ausgestaltung der Unterkante 68 am Kolbenunterteil 1 wird sichergestellt, daß im Bereich der Druckseite und der Gegendruckseite des Tauchkolbens immer ein ausreichender Schmierfilm zwischen der zylindrischen Außenfläche 71 des Kolbenunterteils 1 und der zugehörigen Zylinderwand gegeben ist, was durch die Ölförderflächen 70 sichergestellt wird, während in den restlichen Umfangsbereichen des Tauchkolbens, - nämlich den Bereichen unterhalb der Durchbrüche 65 und 66, in denen naturgemäß wesentlich weniger Schmieröl benötigt wird, der an der Zylinderwand anhaftende Schmierölfilm durch die scharfkantigen Olabstreifkanten 69 beim Kolbenabwärtsgang jeweils auf eine minimale Filmdicke reduziert wird. Hierdurch ergibt sich im Maschinenbetrieb eine erhebliche Olverbrauchsreduzierung.
  • Der Radius der äußeren, der Außenkontur 62 des Pleuelstangenkopfes 34 benachbarten Begrenzungsfläche 72 ist vorzugsweise - wie aus Fig.l ersichtlich - etwas größer als der Radius der Außenkontur 62 des Pleuelstangenkopfes 34. Wie weiterhin aus Fig.l ersichtlich, ist der Eintrittsbereich des Kühlöldurchtrittsloches 39 keglig zum Pleuelstangenkopf 34 hin erweitert ausgebildet. Hierdurch sind ein einwandfreier Übertritt des die Spritzbohrung 48 im Pleuelstangenkopf 26 verlassenden Kühlöles in das Kühlöldurchtrittsloch-39 und eine günstige Weiterleitung des Kühlöles durch letzteres in den inneren Kühlraum 41 hinein sicherstellt.
  • Die Außenwand 4 am Kolbenoberteil 2 und die Außenwand 21 am Kolbenunterteil 1 sind beim Tauchkolben nach den Fig.l bis 3 in ihrer Bauhöhe vorzugsweise so aufeinander abgestimmt, daß nach Verbindung von Kolbenoberteil 2 und Kolbenunterteil 1 zwischen der ebenen Unterkante 73 der Außenwand 4 des Kolbenoberteils 2 und der ebenen Oberkante 74 der Außenwand 21 des Kolbenunterteils 1 ein Ringspalt 75 frei bleibt, durch den vom untersten, der am Kolbenoberteil 2 angeordneten Kolbenringe 6 von der Zylinderwand abgestreiftes Öl in den äußeren Kühlraum 45 eintreten kann.
  • Der domartig ausgebildete Kolbenbolzentragstuhl 15 ist - wie aus Fig.l ersichtlich - etwa in Höhe einer die Kolbenbolzenlängsachse beinhaltenden Kolbenquerebene mit der Außenwand 21 des Kolbenunterteils 1 verbunden.
  • Durch die erfindungsgemäßen Merkmale und insbesondere deren kombinatorische Vereinigung in einem Tauchkolben ist sichergestellt, daß auch bei höchsten Zünddrücken in der Größenordnung von beispielsweise 180 bar eine einwandfreie Funktion des Tauchkolbens erzielbar ist. Insbesondere durch die Abstützung des Kolbenoberteils 2 in biegeneutraler Zone in Verbindung mit der domartigen Ausbildung des Kolbenbolzentrag-, stuhls 15 und der domartigen Begrenzung des inneren Kühlraumes 41 ist sichergestellt, daß die auf den Tauchkolben im Maschinenbetrieb einwirkenden Zünddrücke in bestmöglicher Weise über den Tragbund 14 und den Kolbenbolzen 76 in die Pleuelstange 33 eingeleitet werden können und zwar so, daß die Zylindrizität und Koaxialität der Außenwand 4 des Kolbenoberteils 2 sowie der Außenwand 21 des Kolbenunterteils 1 weitestgehend erhalten bleiben. Durch die erfindungsgemäße Art der Kühlölführung, insbesondere im Kolbenoberteil 2, wird außerdem eine intensive Kühlung desselben sichergestellt. Negative Einflüsse durch die Maschinenbetrieb herrschenden Temperaturen auf die Form des Kolbenoberteils 2 sind deshalb auch durch die Art der Kühlmittelführung im Kolbenoberteil weitestgehend vermeidbar.

Claims (10)

1. Ölgekühlter Tauchkolben, der aus einem Kolbenunterteil und einem Kolbenoberteil, das aus einem Kolbenboden und einer Außenwand mit in Ringnuten eingesetzten Kolbenringen besteht, zusammengesetzt ist und über einen Kolbenbolzen, der in einer den Kolbenbolzentragstuhl im Kolbenunterteil quer durchdringenden Lagerbohrung verankert ist, an eine mit der Kurbelwelle einer Hubkolben-Brennkraftmaschine verbundene Pleuelstange angelenkt ist, wobei das Kolbenoberteil mit einer vom Kolbenboden abgesetzten Anlagefläche auf der Stirnfläche eines oben am Kolbenbolzentragstuhl angeformten, ringförmigen Tragbundes abgestützt und über eine kreiszylindrische Zentrierfläche in bezug auf das Kolbenunterteil durch eine dort vorhandene Zentrierfläche zentriert sowie mittels mehrerer Spannschrauben mit letzterem verbunden ist, wobei ferner an der Oberseite des Kolbenbolzentragstuhles ein ebenso wie letzterer von einem zentralen, zur Kolbenlängsachse koaxialen Kühlöldurchtrittsloch durchsetzter Vorsprung angeordnet ist, der in den Bereich des Kolbenoberteils hineinragt und mit seiner Oberkante den Kühlölfüllstand eines inneren Kühlraumes begrenzt, der in seinem unteren Bereich von der Innenfläche des Tragbundes, der Oberseite des Kolbenbolzentragstuhles und der Außenfläche des Vorsprunges sowie in seinem oberen Bereich durch eine Vertiefung im Kolbenoberteil begrenzt ist und außerdem über schräge Uberleitbohrungen im Kolbenoberteil mit einem äußeren Kühlraum in Verbindung steht, der sich sowohl im Kolbenoberteil als auch im Kolbenunterteil, dort um den Tragbund herum erstreckt, dadurch gekennzeichnet,
-daß das Kolbenoberteil (2) einstückig aus Sphäroguß bzw. Stahlmaterial, das Kolbenunterteil (1) einstückig aus Grauguß bzw. Sphäroguß hergestellt ist,
daß der Tauchkolben für eine Shaker-Kühlung ausgebildet ist, mit einer Kühlölzuführung von der Pleuelstange (33) aus durch das Kühlöldurchtrittsloch (39) in den inneren Kühlraum (41) hinein, einer Kühl- ölweiterleitung durch die Überleitbohrungen (44) in den äußeren Kühlraum (45) und von dort über Austrittsöffnungen (49) in den Triebwerksraum zurück, daß der innere Kühlraum (41) durch einen domartigen Hohlraum gegeben ist, der radial außen durch entsprechend gekrümmte Formgebung der Innenwand (42) des Tragbundes (14), daran anschließend durch entsprechend weitergeführte gekrümmte Formgebung einer Innenfläche (50, 51) des Kolbenoberteils (2) und daran anschließend durch eine entsprechend weitergeführte Wölbung der Innenfläche (52) des Kolbenbodens (3) gebildet ist,
daß der Kolbenbolzentragstuhl (15) am Kolbenunterteil (1) ebenfalls domartig etwa nach Art einer hohlkugelabschnittsförmigen Kuppel ausgebildet ist und den innerhalb des Kolbenunterteils (1) eine im wesentlichen runde Außenkontur (62) aufweisenden Pleuelstangenkopf (34) mit geringem Abstand umgibt sowie beiderseits des letzteren Lageraugen (63, 64) für die Aufnahmne der vorstehenden Kolbenbolzenenden aufweist,
daß der oben am domartigen Kolbenbolzentragstuhl (15) angeordnete ringförmige Tragbund (14) das an dessen Stirnfläche (13) mit seiner ringförmigen Anlagefläche (12, 18) aufliegende Kolbenoberteil (2) in dessen biegeneutraler Zone unterstützt,
daß jene Umfangsbereiche der Unterkante (68) des Kolbenunterteils (1), die im Bereich axial unterhalb von die Montage des Kolbenbolzens (26) ermöglichenden Durchbrüchen (65, 66) der Außenwand (21) liegen, scharfkantig als Ölabstreifkanten (69) ausgebildet sind, während die restlichen, im Bereich der Druck- und Gegendruckseite des Tauchkolbens liegenden Umfangsbereiche der Unterkante (68) des Kolbenunterteils (1) abgeschrägt bzw. gerundet als Ölförderflächen (70) ausgebildet sind.
2. Ölgekühlter Tauchkolben nach Anspruch 1, dadurch gekennzeichnet, daß der Radius der äußeren, der Außenkontur (62) des Pleuelstangenkopfes (34) benachbarten Außenfläche (72) des domartigen Kolbenbolzentrag - stuhles (15) etwas größer als der Radius der Außenkontur (62) des Pleuelstangenkopfes (34) ist.
3. Ölgekühlter Tauchkolben nach Anspruch 1, dadurch gekennzeichnet, daß der domartige Kolbenbolzentragstuhl (15) etwa in Höhe einer die Kolbenbolzenlängsachse beinhaltenden Kolbenquerebene mit der Außenwand (21) des Kolbenunterteils (1) verbunden ist.
4. Ölgekühlter Tauchkolben nach Anspruch 1, dadurch gekennzeichnet, daß der domartige Kolbenbolzentragstuhl (15) eine im wesentlichen überall gleiche Wandstärke aufweist.
5. Ölgekühlter Tauchkolben nach Anspruch 1, dadurch gekennzeichnet, daß sich zwischen der Außenfläche (43) des zentralen Vorsprunges (36) und der Innenfläche (42) des Tragbundes (14) und der Oberseite (37) des domartigen Kolbenbolzentragstuhles (15) mehrere Versteifungswülste (67) erstrecken.
6. Ölgekühlter Tauchkolben nach Anspruch 1, dadurch gekennzeichnet, daß der zentrale Vorsprung (36) und der ringförmige Tragbund (14), die beide an der Oberseite des domartigen Kolbenbolzentragstuhles (15) angeformt sind, jeweils eine etwa dem Durchmesser des Kolbenbolzens (26) entsprechende Höhe aufweisen.
7. Ölgekühlter Tauchkolben nach Anspruch 1, dadurch gekennzeichnet, daß der Eintrittsbereich des den zentralen Vorsprung (36) und die Wand des domartigen Kolbenbolzentragstuhles (15) durchsetzenden Kühlöldurchtrittsloches (39) keglig zum Pleuelstangenkopf (26) hin erweitert ausgebildet ist.
8. Ölgekühlter Tauchkolben nach Anspruch 1, dadurch gekennzeichnet, daß der äußere Kühlraum (45) im Bereich des Kolbenoberteils (2) einerseits durch mehrere am Umfang verteilte, bezüglich der Kolbenlängsachse leicht schräg stehend von unten her in ein querschnittsstarkes Wandteil (7) der Außenwand (4) des Kolbenoberteils (2) eingeformte Sacklöcher (54), in welch jedes derselben eine der Überleitbohrungen (44) einmündet, und andererseits durch einen ringförmigen Raum (55) gebildet ist, in den die Sacklöcher (54) ausmünden und der außen von der Innenfläche (56) eines querschnittsschwächeren unteren Wandteils (9) der Außenwand (4) sowie innen von der Außenwand (57) des Tragbundes (14) und oben durch die Unterkante (8) des querschnittsstarken Wandteils (7) begrenzt ist.
9. Ölgekühlter Tauchkolben nach den Ansprüchen 1 und 8, dadurch gekennzeichnet, daß nach Verbindung von Kolbenoberteil (2) und Kolbenunterteil (1) zwischen der ebenen Unterkante (73) der Außenwand (4) des Kolbenoberteils (2) und der ebenen Oberkante (74) der Außenwand (21) des Kolbenunterteils (1) ein Ringspalt (75) frei bleibt, durch den vom untersten der am Kolbenoberteil (2) angeordneten Kolbenringe (6) von der Zylinderwand abgestreiftes 01 in den äußeren Kühlraum (45) eintreten kann.
10. Olgekühlter Tauchkolben nach Anspruch 1, dadurch gekennzeichnet, daß der äußere Kühlraum (45) im Bereich des Kolbenoberteils (2) durch ein ringförmiges oberes Kühlraumteil (59) gebildet ist, das außen von der Innenfläche (24) der Außenwand (4) des Kolbenoberteils (2), innen von der Außenfläche (60) eines unten die Anlagefläche (18) aufweisenden ringförmigen Abstützbundes (17) begrenzt und nach unten zu einem im Kolbenunterteil (1) vorhandenen unteren Kühlraumteil (61) hin offen ist, wobei in diesem Fall das Kolbenoberteil (2) nicht nur über die unten am Abstützbund (17) vorhandene Anlagefläche (13) auf dem Tragbund (14), sondern auch noch über die Unterkante (19) der Außenwand (4) des Kolbenoberteils (2) auf der Oberkante (20) der Außenwand (21) des Kolbenunterteils (1) abgestützt und in diesem Bereich durch eine dort vorhandene kreiszylindrische Zentrierfläche (22) in bezug auf letzteres zentriert ist.
EP86100309A 1985-01-26 1986-01-11 Ölgekühlter, mehrteiliger Tauchkolben für Hubkolbenbrennkraftmaschinen Expired EP0189767B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853502644 DE3502644A1 (de) 1985-01-26 1985-01-26 Oelgekuehlter, mehrteiliger tauchkolben fuer hubkolbenbrennkraftmaschinen
DE3502644 1985-01-26

Publications (3)

Publication Number Publication Date
EP0189767A2 true EP0189767A2 (de) 1986-08-06
EP0189767A3 EP0189767A3 (en) 1987-04-01
EP0189767B1 EP0189767B1 (de) 1988-08-10

Family

ID=6260869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86100309A Expired EP0189767B1 (de) 1985-01-26 1986-01-11 Ölgekühlter, mehrteiliger Tauchkolben für Hubkolbenbrennkraftmaschinen

Country Status (5)

Country Link
EP (1) EP0189767B1 (de)
JP (1) JP2540493B2 (de)
DE (2) DE3502644A1 (de)
FI (1) FI79888B (de)
NO (1) NO163153C (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464626A1 (de) * 1990-06-29 1992-01-08 KOLBENSCHMIDT Aktiengesellschaft Gebauter, ölgekühlter Kolben für Dieselmotoren
EP0520536B1 (de) * 1991-06-25 1997-04-09 KOLBENSCHMIDT Aktiengesellschaft Gebauter, ölgekühlter Kolben für Dieselmotoren
EP0787898A1 (de) * 1996-02-01 1997-08-06 KOLBENSCHMIDT Aktiengesellschaft Pendelschaftkolben
US9127618B2 (en) 2012-09-27 2015-09-08 Federal-Mogul Corporation Reduced compression height piston and piston assembly therewith and methods of construction thereof
EP3208453A1 (de) * 2016-02-18 2017-08-23 MAN Truck & Bus AG Kolben für eine hubkolben-verbrennungskraftmaschine
US10184422B2 (en) 2014-12-30 2019-01-22 Tenneco Inc. Reduced compression height dual gallery piston, piston assembly therewith and methods of construction thereof
US10294887B2 (en) 2015-11-18 2019-05-21 Tenneco Inc. Piston providing for reduced heat loss using cooling media
US20200080587A1 (en) * 2018-09-12 2020-03-12 Pai Industries, Inc. Forged Steel Cross-Head Piston

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511835A1 (de) * 1985-03-30 1986-10-09 M.A.N.- B & W Diesel GmbH, 8900 Augsburg Oelgekuehlter tauchkolben einer brennkraftmaschine
DE3518721C3 (de) * 1985-05-24 1997-09-04 Man B & W Diesel Ag Ölgekühlter, mehrteiliger Tauchkolben einer Brennkraftmaschine
DE3707462A1 (de) * 1987-03-07 1988-09-15 Man B & W Diesel Gmbh Oelgekuehlter, mehrteiliger tauchkolben fuer brennkraftmaschinen
DE3723046A1 (de) * 1987-07-11 1989-01-19 Man B & W Diesel Gmbh Tauchkolben einer hubkolbenbrennkraftmaschine
DE3832022C1 (de) * 1988-09-21 1989-09-21 Mahle Gmbh, 7000 Stuttgart, De
DE4040611A1 (de) * 1990-12-19 1992-07-02 Man B & W Diesel Ag Jet-kolbenkuehlung
EP1222364B2 (de) 1999-10-08 2018-03-28 Federal-Mogul Corporation Kolben mit zwei kühlmittelkanälen
DE102005048981B4 (de) 2005-10-13 2010-04-29 Man B & W Diesel A/S Kolben für einen Kreuzkopfmotor
DE102012207951B4 (de) * 2012-05-11 2022-09-22 Man Energy Solutions Se Kolben einer Brennkraftmaschine
DE102012017217A1 (de) 2012-08-31 2014-05-15 Mahle International Gmbh Kolben für einen Verbrennungsmotor
DE102013002232B4 (de) * 2013-02-11 2022-11-17 Man Energy Solutions Se Kolben einer Brennkraftmaschine
DE102017201137A1 (de) 2017-01-25 2018-07-26 Volkswagen Aktiengesellschaft Kolben für einen Verbrennungsmotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH75489A (de) * 1917-01-09 1917-08-01 A Riedler Ölsparvorrichtung an Kolbenmaschinen
CH196752A (de) * 1937-03-23 1938-03-31 Sulzer Ag Gekühlter Kolben für Brennkraftmaschinen.
DE1526598A1 (de) * 1966-10-07 1970-02-12 Maschf Augsburg Nuernberg Ag Einrichtung zur Verringerung des Zylinderbuechsenverschleisses bei Tauchkolbenmotoren insbesondere fuer Schweroelbetrieb
DE2307347A1 (de) * 1973-02-15 1974-08-22 Maschf Augsburg Nuernberg Ag Mehrteiliger tauchkolben fuer viertaktbrennkraftmaschinen, insbesondere grossdieselmotoren
DE2919638A1 (de) * 1979-05-16 1980-11-20 Schmidt Gmbh Karl Kolben fuer brennkraftmaschinen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7203513U (de) * 1972-05-10 Alcan Alu-Werke Gmbh Mehrteiliger Kolben mit Kühlraum im Kolbenkopf
AT141390B (de) * 1932-10-25 1935-04-10 Ernst Dipl Ing Mahle Leichtmetallkolben für Brennkraftmaschinen.
DE961847C (de) * 1944-05-24 1957-04-11 Schmidt Gmbh Karl Kolben fuer Brennkraftmaschinen
DE1006669B (de) * 1953-06-16 1957-04-18 Maybach Motorenbau Gmbh Mehrteiliger, oelgekuehlter Kolben fuer eine Brennkraftmaschine
JPS4212887Y1 (de) * 1964-10-12 1967-07-21
GB1232990A (de) * 1967-09-28 1971-05-26
FR2079873A5 (de) * 1970-02-16 1971-11-12 Semt
DE2140824C2 (de) * 1971-08-14 1983-06-01 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Ölgekühlter Kolben für Brennkraftmaschinen
JPS5179239U (de) * 1975-11-26 1976-06-23
JPS52141538U (de) * 1976-04-23 1977-10-26
JPS52130011A (en) * 1976-04-24 1977-11-01 Sanwa Seiki Mfg Co Ltd Positive displacement engines
JPS5416975U (de) * 1977-07-08 1979-02-03
JPS5633575A (en) * 1979-08-25 1981-04-04 Nissan Motor Co Ltd Ground speed detecting rader for vehicle
JPS5831464A (ja) * 1981-08-19 1983-02-24 Fujitsu Ltd ジョブ出力情報の伝送方式
JPS58186122U (ja) * 1982-06-04 1983-12-10 株式会社小松製作所 ピストンク−リングノズル
JPS5924853U (ja) * 1982-08-09 1984-02-16 旭化成株式会社 収納ボツクス
DE3303984C1 (de) * 1983-02-05 1984-05-24 Mahle Gmbh, 7000 Stuttgart Mehrteiliger,fluessigkeitsgekuehlter Kolben fuer Verbrennungsmotoren
JPS59181248U (ja) * 1983-05-20 1984-12-03 川崎重工業株式会社 内燃機関のピストン装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH75489A (de) * 1917-01-09 1917-08-01 A Riedler Ölsparvorrichtung an Kolbenmaschinen
CH196752A (de) * 1937-03-23 1938-03-31 Sulzer Ag Gekühlter Kolben für Brennkraftmaschinen.
DE1526598A1 (de) * 1966-10-07 1970-02-12 Maschf Augsburg Nuernberg Ag Einrichtung zur Verringerung des Zylinderbuechsenverschleisses bei Tauchkolbenmotoren insbesondere fuer Schweroelbetrieb
DE2307347A1 (de) * 1973-02-15 1974-08-22 Maschf Augsburg Nuernberg Ag Mehrteiliger tauchkolben fuer viertaktbrennkraftmaschinen, insbesondere grossdieselmotoren
DE2919638A1 (de) * 1979-05-16 1980-11-20 Schmidt Gmbh Karl Kolben fuer brennkraftmaschinen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464626A1 (de) * 1990-06-29 1992-01-08 KOLBENSCHMIDT Aktiengesellschaft Gebauter, ölgekühlter Kolben für Dieselmotoren
EP0520536B1 (de) * 1991-06-25 1997-04-09 KOLBENSCHMIDT Aktiengesellschaft Gebauter, ölgekühlter Kolben für Dieselmotoren
EP0787898A1 (de) * 1996-02-01 1997-08-06 KOLBENSCHMIDT Aktiengesellschaft Pendelschaftkolben
US9127618B2 (en) 2012-09-27 2015-09-08 Federal-Mogul Corporation Reduced compression height piston and piston assembly therewith and methods of construction thereof
US10184422B2 (en) 2014-12-30 2019-01-22 Tenneco Inc. Reduced compression height dual gallery piston, piston assembly therewith and methods of construction thereof
US10294887B2 (en) 2015-11-18 2019-05-21 Tenneco Inc. Piston providing for reduced heat loss using cooling media
EP3208453A1 (de) * 2016-02-18 2017-08-23 MAN Truck & Bus AG Kolben für eine hubkolben-verbrennungskraftmaschine
US10502158B2 (en) 2016-02-18 2019-12-10 Man Truck & Bus Ag Piston for a reciprocating-piston internal combustion engine
US20200080587A1 (en) * 2018-09-12 2020-03-12 Pai Industries, Inc. Forged Steel Cross-Head Piston

Also Published As

Publication number Publication date
JP2540493B2 (ja) 1996-10-02
NO860264L (no) 1986-07-28
FI79888B (fi) 1989-11-30
DE3660506D1 (en) 1988-09-15
NO163153C (no) 1990-04-11
DE3502644A1 (de) 1986-07-31
JPS61175256A (ja) 1986-08-06
NO163153B (no) 1990-01-02
EP0189767A3 (en) 1987-04-01
FI854870A0 (fi) 1985-12-10
FI854870A (fi) 1986-07-27
EP0189767B1 (de) 1988-08-10

Similar Documents

Publication Publication Date Title
EP0189767B1 (de) Ölgekühlter, mehrteiliger Tauchkolben für Hubkolbenbrennkraftmaschinen
DE3518721C2 (de)
DE4112889C2 (de) Verfahren zur Herstellung eines Kolbenkopfes mit Kühlung für einen mehrteiligen, gegliederten Kolben für Verbrennungsmotore, sowie danach hergestellter Kolbenkopf
DE2625191C2 (de) Einstückiger Kolben für Brennkraftmaschinen
DE19810464C1 (de) Kurbelgehäuse für eine Brennkraftmaschine
DE60301636T3 (de) Kolben
DE60220925T2 (de) Einstückiger kolben für dieselmotoren
DE60012871T2 (de) Abstreifkolbenring und dichtring zur verwendung mit einer zylinderlaufbuchse in einer brennkraftmaschine
DE4019968C2 (de) Kolben für eine Brennkraftmaschine
EP0779954B1 (de) Leichtmetallkolben für hochbelastete verbrennungsmotoren
EP1920151A1 (de) Leichtbaukolben
DE4314892A1 (de) Bolzenstopfen zur Verwendung in einer Kolbenanordnung
EP1922479A1 (de) Kolben für eine brennkraftmaschine
DD159190A5 (de) Kolben fuer eine maschine mit hin-und hergehenden kolben,insbesondere fuer eine brennkraftmaschine
DE102005041001A1 (de) Leichtbaukolben
DE19804848C2 (de) Zylinderstruktur eines Verbrennungsmotors
DE4323278C2 (de) Teilbares Lager
DE3609019C1 (en) Method for the production of the hub hole of a trunk piston, particularly for internal combustion engines
DE10130253B4 (de) Gleitlager, insbesondere einer Pleuelstange für Hubkolbenbrennkraftmaschinen
EP1920174B1 (de) Verlaufende bolzenbohrungsgeometrie für einen kolben einer brennkraftmaschine
DE3511852C1 (en) Oil-cooled monoblock trunk piston for internal combustion engines
EP0291867B1 (de) Hubkolbenmaschine
DE3733910C2 (de)
DE102005041002A1 (de) Leichtbaukolben
EP1034390B1 (de) Kolbeneinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR LI NL

17P Request for examination filed

Effective date: 19870227

17Q First examination report despatched

Effective date: 19870914

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI NL

REF Corresponds to:

Ref document number: 3660506

Country of ref document: DE

Date of ref document: 19880915

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050106

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050110

Year of fee payment: 20

Ref country code: CH

Payment date: 20050110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050111

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20060111