EP0188672B1 - Matrixdruckkopf - Google Patents

Matrixdruckkopf Download PDF

Info

Publication number
EP0188672B1
EP0188672B1 EP85113395A EP85113395A EP0188672B1 EP 0188672 B1 EP0188672 B1 EP 0188672B1 EP 85113395 A EP85113395 A EP 85113395A EP 85113395 A EP85113395 A EP 85113395A EP 0188672 B1 EP0188672 B1 EP 0188672B1
Authority
EP
European Patent Office
Prior art keywords
magnetic drive
passage opening
printing
drive element
needles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85113395A
Other languages
English (en)
French (fr)
Other versions
EP0188672A1 (de
Inventor
Bernd Dipl.-Ing. Gugel
Horst Heisele
Herbert Kitzberger
Karl Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Priority to AT85113395T priority Critical patent/ATE47091T1/de
Publication of EP0188672A1 publication Critical patent/EP0188672A1/de
Application granted granted Critical
Publication of EP0188672B1 publication Critical patent/EP0188672B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/235Print head assemblies
    • B41J2/25Print wires
    • B41J2/26Connection of print wire and actuator

Definitions

  • the invention relates to a matrix printhead with a plurality of printing needles, each of which can be moved forwards and backwards in the printing position by means of a separate magnetic drive, and which are fastened to an element of the magnetic drive that transmits the movements, the magnetic drive element each having a width within the fastening region, which arrangement is arranged centrally in the Fastening area of the magnetic drive element located passage opening, the basic cross-sectional shape of which corresponds at least to a part of the circumference of the inserted and soft or brazed pressure needles, taking into account a corresponding manufacturing tolerance.
  • Such matrix print heads are manufactured in serial and line printer type. The operation is aimed at the highest possible number of prints of individual dot printing elements.
  • Serial matrix printers already achieve a writing performance of approx. 400 characters / sec and line printers of up to 900 characters / sec. In accordance with these writing capacities, matrix character printers are subject to thermal and wear-related stress. The service life and any downtime of the matrix printer are, however, decisive features for the user to select a matrix printer.
  • a first type of construction also uses the principle of the motion-transmitting magnetic drive element, but preferably only a kinematic coupling by frictional connection between the magnetic drive element (e.g. a hinged armature) and a separate pressure needle to which a head is attached. During the transmission of force, the head of the printing needle lies against a flat surface of the magnetic drive element.
  • this first type follows the frequency of the magnetic drive only with difficulty because of the mass inequality of the pressure needle with the pressure pin head on the one hand and the mass of the hinged armature on the other hand. Vibration problems and control problems are therefore associated with the first type (such an example is the subject of US Pat. No. 4,478,528).
  • a second type avoids the problems of the first type in that the pressure needles are each attached directly and rigidly to the front end of the magnetic drive element.
  • the print needle thus necessarily follows the control of the matrix printer electronics.
  • This second type (an example can be seen from DE-OS 26 30 931) is difficult to master in terms of production technology.
  • the attachment of the printing needle requires special auxiliary devices, but there is still the risk that the alignment and arrangement of the printing needles is inadequate due to the tolerance of the auxiliary devices being too great.
  • Another disadvantage of the known fastening is the extremely important connection of the pressure needles to the magnetic drive element, which occurs under the influence of heat during soft or hard soldering. In extreme cases, the heating of the printing needles during inductive soldering can lead to the printing needle breaking after a relatively short operating time of the matrix printer. The reason for this is a structural change in the material of the pressure needles either during the heating or during the subsequent cooling.
  • Another known proposal (DE-A 25 58 380) provides for a fastening of a printing needle, as described in the introduction.
  • the axis of the passage opening is guided vertically through either the straight or angled magnetic drive element, so that the pressure needle is subjected to an adverse curvature, which must be fixed in guides, so-called support planes, not shown.
  • the known printing needle attachment is disadvantageous due to an external welding at an outwardly projecting end of the printing needle. Such an attachment is therefore at risk of breakage.
  • the invention is therefore based on the object of improving the attachment of a printing needle, and to reinforce it.
  • the object is achieved according to the invention in that the straight axis of the passage opening runs obliquely to the surface plane of the magnetic drive element, that the manufacturing tolerance of the passage opening allows easy insertion of the printing needles and their fixing in the direction, and that the printing needle is soldered within the resulting gap of the passage opening are.
  • the minimum width of the magnetic drive element ensures the arrangement of a passage opening.
  • the passage opening itself ensures the least possible effort to position the pressure needle during assembly.
  • the accuracy of the position is particularly advantageous here.
  • the pressure needle is also not excessively weakened in its material strength when it is necessary to heat it, since the surrounding material of the magnetic drive element for slow heat dissipation ensures. This creates a significant reinforcement of the attachment.
  • the passage opening consists of a circular hole made by means of laser beams with a minimum diameter of 0.2 mm to a maximum of 0.4 mm.
  • the position of the individual printing needles is fixed with high accuracy solely through this bore.
  • the passage opening is formed in the form of a slot running from the front or to the side with a width which corresponds to the thickness of the printing needles which can be inserted from the front or from the side, taking into account a corresponding manufacturing tolerance for the slot and / or the printing needle dimension.
  • the pressure needle can be easily inserted laterally.
  • the printing pins are fixed by filling the slot with soft or hard solder.
  • FIGS. 1 and 2 serve to explain the functions of a (serial) matrix printhead as an example in order to precede the interaction of an armature assembly with other function groups within the overall matrix printhead of the description of the manufacturing process of the armature components.
  • the serial matrix print head shown in the drawing has an electromagnetic coil assembly 1, which consists of a magnetic flux guide plate 2, magnetic pole cores 3 fastened thereon with electromagnetic coils 4 and a permanent magnet plate 5.
  • the electromagnetic coil assembly 1 is opposite an armature assembly 6, which consists of an armature ring 7, (in the drawing) to the left and to the right according to FIG. 1 armature arms 8, the armature arms 8 each by means of relatively short spring arms 9 with the Anchor ring 7 are connected.
  • the number of magnetic pole cores 3 of the electromagnetic coils 4, the armature arms 8 and the spring arms 9 corresponds, as usual, to the number of pressure elements 10, which in the exemplary embodiment are designed as relatively long pressure needles and are stored in a mouthpiece 11.
  • there are 2 x 12 24 pressure elements within the electrically or magnetically non-conductive housing 12, which is composed of the two housing parts 12a and 12b and is held together by means of screws 13 distributed over the housing circumference.
  • the pressure elements 10 are guided around the pressure path (approx. 0.3 to 0.6 mm) essentially axially movable in a guide housing 14 in bearings 15. Supplements 17 are located between the housing 12 and the guide housing 14 in order to determine the exit length of the pressure elements 10 from the guide housing 14 and also to be able to change them later.
  • the guide housing 14 also serves to fasten the matrix print head on a carriage (not shown) or the like, which is moved back and forth in front of a pressure abutment.
  • a flange 14a and at least two dowel pins 14b are provided for fastening.
  • An uncritical, parasitic air gap 20 is provided, the size of which, with the slightest deviations, can have a negative influence on the magnetic flux density and thus on the energy transmission and the buildup and breakdown of the electromagnetic fields or the permanent magnetic fields.
  • the air gap 20 is not critical if the air in the gap 20 is optimally magnetized. Such an optimal magnetization of the air gap 20 is present when the air gap is dimensioned so large that on the one hand no tight tolerances for the manufacture of the anchor ring 7 or the anchor arms 8 have to be required and on the other hand the field line density is indeed large enough to accommodate the pretensioning force the spring arms 9 to keep the balance, but on the other hand is not too high to hinder a rapid breakdown of the permanent magnetic field when switching on the electromagnetic coils 4.
  • An intermediate plate 24 arranged between the magnetic flux guide plate 2 and the armature ring 7 forms with its end face 24a a uniform plane 25 (FIG. 2), the armature ring 7 resting against the intermediate plate 24 in this plane 25 when housing parts 12a and 12b are connected.
  • the armature arms 8 lie in the retracted position (as shown in FIG. 1) at a slight angle to the plane 25 and rest on the associated magnetic pole cores 3.
  • the thickness of the anchor ring 7 corresponds approximately to the thickness of the anchor arms 8 including the relatively small thickness the spring arms 9, which are connected to the anchor arms 8 and the anchor ring 7.
  • the very short spring arm 9 receives a shortened clamping length through a gradation 7a, so that the remaining anchor ring surface 7b is available for the connection.
  • the gradation 7a additionally causes freedom of bending for the armature arm 8.
  • the gradation 7a provides u. U. is a continuation of the air gap 20.
  • the short spring arms 9 made of antimagnetic material, e.g. B. chromium-nickel steel, so that no magnetic field lines can run over the spring arms 9 or over the space of the gradation 7a.
  • antimagnetic material e.g. B. chromium-nickel steel
  • a further limitation of stray fluxes or a concentration of the magnetic field lines is carried out by the magnetic flux guide plate 2, which ends opposite the side of the pressure elements 10 approximately at the level of the magnetic pole cores 3.
  • the printing needles 10 (FIGS. 3 and 4) are attached directly and rigidly to the magnetic drive element 26 (these correspond to the armature arms 8) with their circumference 10a by means of soft or hard soldering 27. This attachment has proven to be disadvantageous as described.
  • a magnetic drive element 26 which has a fastening region 27 with a width 28 which corresponds at least to the simple thickness 29 (diameter) of the printing needle 10.
  • a passage opening 30 is provided with a cross-sectional shape adapted to the respective basic cross-sectional shape 31 (circle, rectangle, square) of the printing needle 10 while observing a corresponding manufacturing tolerance.
  • the cross-sectional shape 31 is present on at least part of the circumference 32, so that the pressure needle 10 is fixed.
  • the embodiment shows a passage opening 30 from a circular bore from a minimum of 0.2 mm to a maximum of 0.4 mm, z. B. can be easily inserted with a circular cross section of printing needle 10 of 0.36 mm in diameter and a gap that is formed can be filled with hard or soft solder.
  • the axis 33 of the pressure needle 10 or the pressure opening 30 extends at an angle 34 to the surface plane 35 of the magnetic drive element 26.
  • FIG. 5 An alternative embodiment of the attachment can now consist (FIG. 5) that the passage opening 30 is formed in the form of a slot 36 which is worked in from the side (or from the front) and has a width which corresponds to the thickness (diameter) 29 of the printing needle 10, so that the printing needle 10 can be inserted laterally (or from the front).
  • the slot 36 is closed with soft or hard solder after the insertion of the pressure needle 10.
  • the alternative fastening also ensures a precise position by the pressure needle 10 resting with its part of the circumference 32 on the wall of the passage opening 30.

Landscapes

  • Impact Printers (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Facsimile Heads (AREA)

Description

  • Die Erfindung betrifft einen Matrixdruckkopf mit mehreren, jeweils mittels eines separaten Magnetantriebs in Druckstellung nach vorwärts und zurückbewegbaren Drucknadeln, die an einem die Bewegungen übertragenden Element des Magnetantriebs befestigt sind, wobei das Magnetantriebselement innerhalb des Befestigungsbereiches jeweils eine Breite aufweist, die die Anordnung einer mittig im Befestigungsbereich des Magnetantriebs-Elementes befindlichen Durchtrittsöffnung zuläßt, deren Querschnittsgrundform zumindest mit einem Teil des Umfangs der eingesetzten und weich- oder hartgelöteten Drucknadeln unter Berücksichtigung einer entsprechenden Herstelltoleranz übereinstimmt.
  • Derartige Matrixdruckköpfe werden in serieller Bauart und in Zeilendruckerbauart hergestellt. Die Betätigung zielt hierbei auf eine möglichst hohe Anzahl von Abdrucken einzelner Punktdruckelemente ab. Serielle Matrixdrucker erreichen heute schon eine Schreibleistung von ca. 400 Zeichen/sec und Zeilendrucker von bis zu 900 Zeichen/sec. Entsprechend diesen Schreibleistungen sind Matrixzeichendrucker thermisch und verschleißtechnisch beansprucht. Die Standzeit sowie etwaige Ausfallzeiten der Matrixdrucker sind jedoch für den Benutzer ausschlaggebende Merkmale, einen Matrixdrucker auszuwählen.
  • Neben den Problemen des elektrischen bzw. elektronischen Teils eines Matrixdruckers sind auch mechanische Probleme zu beachten. So ist z. B. die Befestigung des Druckelements, d. h. einer Drucknadel immer noch nicht zufriedenstellend gelöst.
  • Man unterscheidet bei der Befestigung der Drucknadeln zwei grundverschiedene bekannte Bauarten.
  • Eine erste Bauart benutzt zwar ebenfalls das Prinzip des Bewegungen übertragenden Magnetantriebselements, bevorzugt jedoch lediglich eine kinematische Kopplung durch Kraftschluß zwischen dem Magnetantriebselement (z. B. einem Klappanker) und einer getrennten Drucknadel, an der ein Kopf befestigt ist. Während der Kraftübertragung liegt der Kopf der Drucknadel an einer ebenen Fläche des Magnetantriebselementes an. Diese erste Bauart folgt jedoch wegen der Massenungleichheit von Drucknadel mit Drucknadelkopf einerseits und der Masse des Klappankers andererseits nur schwer der Frequenz des Magnetantriebs. Mit der ersten Bauart sind daher Schwingungsprobleme und Steuerungsprobleme verbunden (ein solches Beispiel bildet der Gegenstand der US-PS 4 478 528).
  • Eine zweite Bauart vermeidet die Probleme der ersten Bauart, indem die Drucknadeln jeweils unmittelbar und starr am vorderen Ende des Magnetantriebselementes befestigt sind. Damit folgt die Drucknadel zwangsweise der Steuerung der Matrixdrucker-Elektronik. Diese zweite Bauart (ein Beispiel ist aus der DE-OS 26 30 931 ersichtlich) ist jedoch fertigungstechnisch schwierig zu beherrschen. Die Befestigung der Drucknadel bedarf besonderer Hilfsvorrichtungen, wobei immer noch die Gefahr besteht, daß durch eine zu große Toleranzvorgabe der Hilfsmittel die Ausrichtung und Anordnung der Drucknadeln unzureichend ist. Ein weiterer Nachteil der bekannten Befestigung stellt das extrem wichtige Verbinden der Drucknadeln mit dem Magnetantriebselement dar, das unter Wärmeeinwirkung beim Weich-oder Hartlöten entsteht. Die Erwärmung der Drucknadeln beim induktiven Löten kann in Extremfällen zum Bruch der Drucknadel nach einer relativ kurzen Betriebszeit des Matrixdruckers führen. Die Ursache hierfür ist eine Gefügeänderung im Werkstoff der Drucknadeln entweder während des Erwärmens oder während des nachfolgenden Abkühlens.
  • Diesem Stand der Technik gegenüber ist es außerdem bekannt (DE-A 24 49 235), eine besondere Buchse für die Drucknadeln vorzusehen, die in dem Magnetantriebselement verschweißt wird. Diese Buchse kann auch noch mit elastomerem Material in dem Magnetantriebselement gelagert sein. Eine solche Buchse gewährleistet jedoch wegen der Toleranzungenauigkeit weder eine größere Lagegenauigkeit noch eine Verstärkung der Drucknadelbefestigung.
  • Ein weiterer bekannter Vorschlag (DE-A 25 58 380) sieht eine eingangs bezeichnete Befestigung einer Drucknadel vor. Die Achse der Durchtrittsöffnung ist jedoch jeweils senkrecht durch das entweder gerade oder abgewinkelte Magnetantriebselement geführt, so daß die Drucknadel einer nachteiligen Krümmung unterworfen wird, die in nicht näher dargestellten Führungen, sog. Stützebenen fixiert werden muß. Ferner ist die bekannte Drucknadelbefestigung nachteilig aufgrund einer äußeren Verschweißung an einem nach außen ragenden Ende der Drucknadel. Eine solche Befestigung ist daher bruchgefährdet.
  • Der Erfindung liegt daher die Aufgabe zugrunde, die Befestigung einer Drucknadel, zu verbessern, und zwar zu verstärken.
  • Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, daß die gerade Achse der Durchtrittsöffnung schräg zur Oberflächenebene des Magnetantriebselementes verläuft, daß ferner die Herstelltoleranz der Durchtrittsöffnung ein leichtes Einführen der Drucknadeln und ihre Festlegung in der Richtung ermöglicht und daß die Drucknadein innerhalb des entstehenden Spalts der Durchtrittsöffnung gelötet sind.
  • Die Mindestbreite des Magnetantriebs-Elements sichert die Anordnung einer Durchtrittsöffnung. Die Durchtrittsöffnung selbst gewährleistet den geringstmöglichen Aufwand, um die Drucknadel bei der Montage zu positionieren. Hierbei ist die Genauigkeit der Position von besonderem Vorteil. Die Drucknadel wird außerdem bei einer notwendigen Erwärmung nicht übermäßig in ihrer Werkstoffestigkeit geschwächt, da der umliegende Werkstoff des Magnetantriebselementes für eine langsame Wärmeableitung sorgt. Dadurch entsteht eine wesentliche Verstärkung der Befestigung.
  • In Weiterbildung der Erfindung ist vorgesehen, daß die Durchtrittsöffnung aus einer mittels Laser-Strahlen hergestellten kreisrunden Bohrung von minimal 0,2 mm bis maximal 0,4 mm Durchmesser besteht. Alleine durch diese Bohrung wird die Lage der einzelnen Drucknadel mit hoher Genauigkeit fixiert.
  • Eine andere Verbesserung besteht darin, daß die Durchtrittsöffnung in Form eines von vorne oder seitlich verlaufenden Schlitzes mit einer Breite gebildet ist, die der Dicke der von vorne oder seitlich einführbaren Drucknadeln entspricht unter Berücksichtigung einer entsprechenden Herstelltoleranz für den Schlitz und/oder der Drucknadelabmessung. Die Drucknadel kann hier leicht seitlich eingeführt werden im Gegensatz zum axialen Einführen bei einer geschlossenen kreisrunden Bohrung. Ein Fixieren der Drucknadein erfolgt bei dieser Ausführungsform durch Auffüllen des Schlitzes mittels Weich- oder Hartlot.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen :
    • Fig. 1 einen Matrixdruckkopf der vorgespannten Bauart halb Schnitt, halb Ansicht,
    • Fig. 2 den Matrixdruckkopf gemäß Fig. 1 in Ansicht auf die Druckelemente mit mehreren Teilschnitten in aufeinanderfolgenden Ebenen des Querschnittes gemäß Fig. 1 :
      • Schnitt in der Schnittebene gemäß Fig. 1,
      • Schnitt II in der Schnittebene gemäß Fig. 1,
      • Schnitt 111 in der Schnittebene gemäß Fig. 1,
      • Schnitt IV in der Schnittebene gemäß Fig. 1.
    • Fig. 3 eine Vorderansicht einer Drucknadel-Befestigung nach dem Stand der Technik,
    • Fig. 4 ein Mittenschnitt gemäß dem Schnittverlauf V-V in Fig. 3,
    • Fig. 5 eine Vorderansicht der erfindungsgemäßen Befestigung einer Drucknadel an einem Magnetantriebs-Element und
    • Fig. 6 einen Schnitt VI-VI gemäß Fig. 5.
  • Die Figuren 1 und 2 dienen zu Erläuterungen der Funktionen eines (seriellen) Matrixdruckkopfes als Beispiel, um das Zusammenwirken einer Ankerbaugruppe mit anderen Funktionsgruppen innerhalb des Gesamt-Matrixdruckkopfes der Beschreibung des Herstellverfahrens der Ankerbauteile voranzustellen.
  • Der in der Zeichnung dargestellte serielle Matrixdruckkopf weist eine Elektromagnetspulen-Baugruppe 1 auf, die aus einer Magnetflußleitplatte 2, an dieser befestigten Magnetpolkernen 3 mit Elektromagnetspulen 4 und aus einer Dauermagnetplatte 5 besteht. Der Elektromagnetspulen-Baugruppe 1 liegt jeweils eine Ankerbaugruppe 6 gegenüber, die aus einem Ankerring 7, aus (auf der Zeichnung) nach links und nach rechts gemäß Fig. 1 auslenkbaren Ankerarmen 8 besteht, wobei die Ankerarme 8 jeweils mittels relativ kurzer Federarme 9 mit dem Ankerring 7 verbunden sind. Die Anzahl der Magnetpolkerne 3 der Elektromagnetspulen 4, der Ankerarme 8 und der Federarme 9 entspricht, wie üblich, der Anzahl der Druckelemente 10, die im Ausführungsbeispiel als relativ lange Drucknadeln ausgeführt und in einem Mundstück 11 gelagert sind. Im vorliegenden Ausführungsbeispiel befinden sich 2 x 12 = 24 Druckelemente innerhalb des elektrisch bzw. magnetisch nicht leitfähigen Gehäuses 12, welches aus den beiden Gehäuseteilen 12a und 12b zusammengesetzt ist und mittels über den Gehäuseumfang verteilter Schrauben 13 zusammengehalten wird.
  • Die Druckelemente 10 sind um den Druckweg (ca. 0,3 bis 0,6 mm) im wesentlichen axial beweglich in einem Führungsgehäuse 14 in Lagern 15 geführt. Zwischen dem Gehäuse 12 und dem Führungsgehäuse 14 befinden sich Beilagen 17, um die Austrittslänge der Druckelemente 10 aus dem Führungsgehäuse 14 bestimmen und auch nachträglich noch ändern zu können. Das Führungsgehäuse 14 dient gleichzeitig zur Befestigung des Matrixdruckkopfes auf einem (nicht dargestellten) Schlitten o. ä., der vor einem Druckwiderlager hin- und herbewegt wird. Für die Befestigung sind ein Flansch 14a und zumindest zwei Paßstifte 14b vorgesehen.
  • Die Strombeaufschlagung der Elektromagnetspulen 4 erfolgt durch Anschluß an einen (weiter nicht dargestellten) Zeichengenerator, der sich auf einer Leiterplattenschaltung befindet, mittels Steckanschlüssen 18 und 19.
  • Ein unkritischer, parasitärer Luftspalt 20 ist vorgesehen, dessen Größe bei geringsten Abweichungen die Magnetflußdichte und damit die Energieübertragung sowie den Auf- und Abbau der Elektromagnetfelder bzw. der Dauermagnetfelder negativ beeinflussen kann. Der Luftspalt 20 ist dann unkritisch, wenn eine optimale Magnetisierung der Luft im Spalt 20 stattfindet. Eine solche optimale Magnetisierung des Luftspaltes 20 liegt dann vor, wenn der Luftspalt so groß bemessen ist, daß einerseits keine engen Toleranzen für die Herstellung des Ankerrings 7 bzw. der Ankerarme 8 gefordert werden müssen und andererseits die Feldliniendichte zwar groß genug ist, um der Vorspannkraft der Federarme 9 das Gleichgewicht zu halten, jedoch andererseits auch nicht zu hoch ist, um einen schnellen Abbau des Dauermagnetfeldes beim Einschalten der Elektromagnetspulen 4 zu behindern. Dieser praktisch ideale Fall kann durch die erfindungsgemäße Befestigung wie nachfolgend beschrieben ist, verwirklicht werden. Eine zwischen der Magnetflußleitplatte 2 und dem Ankerring 7 angeordnete Zwischenplatte 24 bildet mit ihrer Stirnseite 24a eine einheitliche Ebene 25 (Fig. 2), wobei der Ankerring 7 bei verbundenen Gehäuseteilen 12a und 12b in dieser Ebene 25 gegen die Zwischenplatte 24 anliegt.
  • Die Ankerarme 8 liegen in zurückgezogener Position (wie in Fig. 1 dargestellt ist) leicht schräg zur Ebene 25 und liegen auf den zugehörigen Magnetpolkernen 3 auf. Hierbei entspricht die Dicke des Ankerrings 7 etwa der Dicke der Ankerarme 8 einschließlich der relativ geringen Dicke der Federarme 9, die mit den Ankerarmen 8 und dem Ankerring 7 verbunden sind. Der sehr kurze Federarm 9 erhält eine verkürzte Einspannlänge durch eine Abstufung 7a, so daß die verbleibende Ankerringfläche 7b für die Verbindung zur Verfügung steht. Die Abstufung 7a bewirk zusätzlich eine Biegefreiheit für den Ankerarm 8. Die Abstufung 7a stellt u. U. eine Fortsetzung des Luftspaltes 20 dar.
  • Es ist jedoch möglich, die kurzen Federarme 9 aus antimagnetischem Werkstoff, z. B. Chromnickelstahl, herzustellen, so daß keine magnetischen Feldlinien über die Federarme 9 oder über den Raum der Abstufung 7a verlaufen können.
  • Eine weitere Begrenzung von Streuflüssen bzw. eine Konzentration der magnetischen Feldlinien erfolgt durch die Magnetflußleitplatte 2, die gegenüberliegend zur Seite der Druckelemente 10 etwa in Höhe der Magnetpolkerne 3 endet.
  • Nach dem Stand der Technik sind die Drucknadeln 10 (Fig. 3 und 4) an dem Magnetantriebs- Element 26 (diese entsprechen den Ankerarmen 8) unmittelbar und starr mit ihrem Umfang 10a durch eine Weich- oder Hartlötung 27 befestigt. Diese Befestigung hat sich wie beschrieben als nachteilig erwiesen.
  • Gemäß der Erfindung (Fig. 5 und 6) wird ein Magnetantriebs-Element 26 angewendet, das einen Befestigungsbereich 27 mit einer Breite 28 aufweist, die zumindest dem Einfachen der Dicke 29 (Durchmesser) der Drucknadel 10 entspricht. In der Mitte des Befestigungsbereiches 27 ist eine Durchtrittsöffnung 30 vorgesehen mit einer der jeweiligen Querschnittsgrundform 31 (Kreis, Rechteck, Quadrat) der Drucknadel 10 angepaßten Querschnittsform unter Einhaltung einer entsprechenden Herstelltoleranz. Die Querschnittsform 31 ist zumindest auf einem Teil des Umfanges 32 vorhanden, so daß die Drucknadel 10 festgelegt wird. Das Ausführungsbeispiel zeigt eine Durchtrittsöffnung 30 aus einer kreisrunden Bohrung von minimal 0,2 mm bis maximal 0,4 mm, wobei z. B. eine mit Kreisquerschnitt ausgeführte Drucknadel 10 von 0,36 mm Durchmesser leicht eingeführt werden kann und wobei ein entstehender Spalt durch Hart- oder Weichlot ausgefüllt werden kann.
  • Die Achse 33 der Drucknadel 10 bzw. der Drucktrittsöffnung 30 verläuft unter einem Winkel 34 zur Oberflächenebene 35 des Magnetantriebs- Elementes 26.
  • Eine alternative Ausführungsform der Befestigung kann nunmehr darin bestehen (Fig. 5), daß die Durchtrittsöffnung 30 in Form eines seitlich (oder von vorne) eingearbeiteten Schlitzes 36 mit einer Breite gebildet ist, die der Dicke (Durchmesser) 29 der Drucknadel 10 entspricht, so daß die Drucknadel 10 seitlich (oder von vorne) eingeführt kann. Der Schlitz 36 wird nach dem Einführen der Drucknadel 10 mit Weich- oder Hartlot verschlossen. Die alternative Befestigung sichert ebenfalls - eine genaue Position durch die Anlage der Drucknadel 10 mit ihrem Teil des Umfangs 32 an der Wandung der Durchtrittsöffnung 30.

Claims (3)

1. Matrixdruckkopf mit mehreren, jeweils mittels eines separaten Magnetantriebs in Druckstellung nach vorwärts und zurück bewegbaren Drucknadeln (10), die an einem die Bewegungen übertragenden Element (26) des Magnetantriebs befestigt sind, wobei das Magnetantriebs-Element (26) innerhalb des Befestigungsbereiches (27) jeweils eine Breite (28) aufweist, die die Anordnung einer mittig im Befestigungsbereich (27) des Magnetantriebs-Elementes (26) befindlichen Durchtrittsöffnung (30) zuläßt, deren Querschnittsgrundform (31) zumindest mit einem Teil des Umfangs (32) der eingesetzten und weich-oder hartgelöteten Drucknadeln (10) unter Berücksichtigung einer entsprechenden Herstelltoleranz übereinstimmt, dadurch gekennzeichnet, daß die gerade Achse (33) der Durchtrittsöffnung (30) schräg zur Oberflächenebene (35) des Magnetantriebselementes (26) verläuft, daß ferner die Herstelltoleranz der Durchtrittsöffnung (30) ein leichtes Einführen der Drucknadeln (10) und ihre Festlegung in der Richtung ermöglicht und daß die Drucknadeln (10) innerhalb des entstehenden Spalts in der Durchtrittsöffnung (30) gelötet sind.
2. Matrixdruckkopf nach Anspruch 1, dadurch gekennzeichnet, daß die Durchtrittsöffnung (30) aus einer mittels Laser-Strahlen hergestellten kreisrunden Bohrung von minimal 0,2 mm bis maximal 0,4 mm Durchmesser besteht.
3. Matrixdruckkopf nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Durchtrittsöffnung (30) in Form eines von vorne oder seitlich verlaufenden Schlitzes (36) mit einer Breite gebildet ist, die der Dicke (29) der von vorne oder seitlich einführbaren Drucknadeln (10) entspricht unter Berücksichtigung einer entsprechenden Herstelltoleranz für den Schlitz (36) und/oder der Drucknadelabmessung.
EP85113395A 1985-01-25 1985-10-22 Matrixdruckkopf Expired EP0188672B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113395T ATE47091T1 (de) 1985-01-25 1985-10-22 Matrixdruckkopf.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3502471 1985-01-25
DE19853502471 DE3502471A1 (de) 1985-01-25 1985-01-25 Matrixdruckkopf

Publications (2)

Publication Number Publication Date
EP0188672A1 EP0188672A1 (de) 1986-07-30
EP0188672B1 true EP0188672B1 (de) 1989-10-11

Family

ID=6260760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113395A Expired EP0188672B1 (de) 1985-01-25 1985-10-22 Matrixdruckkopf

Country Status (4)

Country Link
EP (1) EP0188672B1 (de)
JP (1) JPS61172752A (de)
AT (1) ATE47091T1 (de)
DE (2) DE3502471A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174664A (en) * 1985-01-25 1992-12-29 Mannesmann Ac. Armature with angled bore for print needle fastening
JPH0616756Y2 (ja) * 1988-09-01 1994-05-02 沖電気工業株式会社 ワイヤドット印字ヘッドのアーマチュア

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2056364B2 (de) * 1970-11-17 1976-05-13 Offermann, Karl Heinz, 4322 Sprockhövel Elektromagnetsystem fuer mosaik- druckwerke
DE2317345A1 (de) * 1973-04-06 1974-10-24 Philips Patentverwaltung Elektromagnetischer nadeldrucker
DE2449235A1 (de) * 1973-12-11 1975-06-12 Gen Electric Druckvorrichtung mit drahtmatrixdruckerkopf
DE2558380A1 (de) * 1975-12-23 1977-07-07 Ncr Co Vorrichtung zum punktweisen einwirken auf einen informationstraeger
US4206266A (en) * 1977-12-27 1980-06-03 Florida Data Corporation Printer arm blank
DE2943440C2 (de) * 1979-10-26 1984-09-06 Nixdorf Computer Ag, 4790 Paderborn Klappankermagnet

Also Published As

Publication number Publication date
ATE47091T1 (de) 1989-10-15
DE3502471A1 (de) 1986-07-31
JPS61172752A (ja) 1986-08-04
DE3573561D1 (en) 1989-11-16
EP0188672A1 (de) 1986-07-30

Similar Documents

Publication Publication Date Title
DE2456816C3 (de) Druckkopf für Drahtdrucker
DE3017903C2 (de) Druckkopf
DE3031855C2 (de) Druckkopf
DE2636985A1 (de) Tauchankermagnet
DE2119415B2 (de) Elektromagnetischer Antrieb für die Nadel eines Nadeldruckers
DE3018516A1 (de) Druckkopf
DE2846215C3 (de) Tauchankermagnet für Drahtdrucker
EP0188672B1 (de) Matrixdruckkopf
DE3110798C2 (de) Druckkopf
EP0217969A1 (de) Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und Höher
EP0112273B1 (de) Nadeldruckkopf für Matrixdrucker
EP0157727B1 (de) Matrixdruckkopf
EP0188671B1 (de) Verfahren zum Herstellen einer Ankerbaugruppe für einen Matrixdruckkopf
DE3400888A1 (de) Druckstiftbetaetigungsvorrichtung fuer punktmatrixdrucker und verfahren zu ihrer herstellung
DE2445438A1 (de) Elektromagnetisches antriebselement fuer den schreibkopf eines punktmatrixschreibers sowie fuer eine verwendung des antriebselementes geeigneter schreibkopf
DE3502469C2 (de)
DE2725352C2 (de) Aus Druckstempeln und Ankern bestehende, gemeinsam auswechselbare Einheit für ein Mosaikdruckwerk
EP0040883B1 (de) Matrixdrucker mit magnetischer Druckkopfeinstellung
DE3402621C2 (de)
DE8501935U1 (de) Matrixdruckkopf
EP0112275B1 (de) Nadeldruckkopf für Matrixdrucker
DE68911624T2 (de) Anker für den Druckkopf eines Drahtdruckers.
DE3403795A1 (de) Matrixdruckkopf mit verstellbarer drucknadelfuehrung
EP0371182B1 (de) Matrixnadeldruckkopf der Klappankerbauart
DE69023137T2 (de) Nadelpunktdruckkopf.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19861023

17Q First examination report despatched

Effective date: 19880204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 47091

Country of ref document: AT

Date of ref document: 19891015

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 5

REF Corresponds to:

Ref document number: 3573561

Country of ref document: DE

Date of ref document: 19891116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891120

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891121

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19891122

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19901031

Ref country code: CH

Effective date: 19901031

Ref country code: BE

Effective date: 19901031

BERE Be: lapsed

Owner name: MANNESMANN A.G.

Effective date: 19901031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940915

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940919

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951022

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961118

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701