EP0182930B1 - Magnetwalze für Kopiergeräte und Verfahren zur Herstellung derselben - Google Patents

Magnetwalze für Kopiergeräte und Verfahren zur Herstellung derselben Download PDF

Info

Publication number
EP0182930B1
EP0182930B1 EP84114262A EP84114262A EP0182930B1 EP 0182930 B1 EP0182930 B1 EP 0182930B1 EP 84114262 A EP84114262 A EP 84114262A EP 84114262 A EP84114262 A EP 84114262A EP 0182930 B1 EP0182930 B1 EP 0182930B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
permanent
fact
roll according
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84114262A
Other languages
English (en)
French (fr)
Other versions
EP0182930A1 (de
Inventor
Horst Baermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Baermann GmbH
Original Assignee
Max Baermann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8192311&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0182930(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Max Baermann GmbH filed Critical Max Baermann GmbH
Priority to DE8484114262T priority Critical patent/DE3472475D1/de
Priority to EP84114262A priority patent/EP0182930B1/de
Priority to AT84114262T priority patent/ATE35466T1/de
Priority to US06/718,637 priority patent/US4638281A/en
Priority to CA000489995A priority patent/CA1240731A/en
Priority to JP60263964A priority patent/JPS61148474A/ja
Publication of EP0182930A1 publication Critical patent/EP0182930A1/de
Application granted granted Critical
Publication of EP0182930B1 publication Critical patent/EP0182930B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0921Details concerning the magnetic brush roller structure, e.g. magnet configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core

Definitions

  • the invention relates to magnetic rollers for copying machines and a method for producing the same.
  • Such magnetic rollers are used for electrophotographic copiers.
  • the magnetic roller is concentrically surrounded by a toner tube, usually made of diamagnetic material, at a short distance.
  • the toner tube serves to supply a magnetically attractable toner powder from a powder container onto a carrier material on which the electrostatic image is formed. It is particularly important here that the toner tube has a uniform powder layer in the region of the development zone. However, this can only be achieved if the required induction is exactly present over the respective pole in the working area of the magnetic roller.
  • the magnetic rollers consist of a carrier body on which strip-shaped, plastic-bonded permanent magnets extending in the axial direction are provided (DE-B-1 218287, DE-A-3 314 885, DE-A-3 402 864). Due to the manufacturing process and the magnetization of the plastic-bonded, preferably extruded, permanent magnet body in the form of a strip and its mounting on the carrier body of the magnetic roller, both mechanical tolerance fluctuations and magnetic fluctuations can be seen, which result in an uneven course of the induction over the circumference and the length of the magnetic roller or make the toner tube noticeable, do not avoid. These fluctuations are particularly disadvantageous because they lead to banding on the copies made.
  • the invention succeeds in creating magnetic rollers which always have the same required induction values over the predetermined radius and / or arc or angular dimension, even if the individual permanent magnet elements have deviations in their magnetic and mechanical values.
  • the invention succeeds in creating magnetic rollers which are suitable both for copiers and which have a homogeneous field distribution on the circumference or the predetermined radius of the magnetic roller. i.e. an equal induction between adjacent poles, as well as for copiers that require magnetic rollers, in which the induction between one or more neighboring poles is different.
  • the particular advantage is therefore that the magnetic roller according to the invention is universal for most types of copiers can be used.
  • Another advantage is the fact that the extensive inventory of permanent magnets with different pole thicknesses that was previously required is no longer required.
  • the method proposed according to the invention enables the permanent magnet elements to be precisely adjusted to the required induction value with simple means and in a simple manner. Another advantage is that the magnetic roller manufactured according to the invention has a low weight.
  • a magnetic roller 1 is shown according to the invention, which is made of a non-magnetic carrier material 2, such as. B. aluminum.
  • the magnetic roller is with an intermediate air gap 3 from a toner tube 4 made of diamagnetic material, such as. As aluminum or non-magnetic steel, surrounded concentrically.
  • the magnetic roller moves relative to the toner tube around an unillustrated, e.g. B. one- or two-sided ball-bearing shaft.
  • the carrier material 2 of the magnetic roller 1 is provided on its circumference with recesses 5 running in the axial direction.
  • Strip-shaped permanent magnet elements 6 are adjustably arranged in these recesses.
  • the cross section of the recesses is made larger than the cross section of the permanent magnet elements.
  • induction measuring probes for the purpose of adjusting the permanent magnet elements to the required induction value with a predetermined radius r and / or radian b between adjacent permanent magnet elements, induction measuring probes, in the present case Hall probes 7, are arranged in the region of the permanent magnet elements on the predetermined radius.
  • the given radius is to be understood as the radius from the center Z of the magnetic roller to a certain distance above the magnetic roller, which in most cases corresponds to the outer circumference of the toner tube.
  • the toner tube is usually not yet installed with the magnetic roller. It is sufficient if the Hall probes are arranged and held at the predetermined distance r over the circumference of the magnetic roller.
  • the permanent magnet elements 6 are adjusted by radial and / or tangential displacement and / or rotation in the recesses of the carrier material until the Hall probes indicate the required value of the induction. In this adjusted state, the permanent magnet elements are then fixed in the recesses by an injection-molded plastic 8.
  • the permanent magnet elements can also be fixed by gluing and / or pouring out with a casting resin or by foaming with a plastic foam. You can also fix the permanent magnet elements by clamping elements 16 before spraying or foaming.
  • the carrier material 2 consists of a hub body 9, from which a number of ribs 10 extend outwards in the radial direction.
  • the recesses 5 formed between the ribs accommodate the permanent magnet elements 6, which have a segment-shaped cross section.
  • the cutouts are larger in cross section than the cross section of the permanent magnet elements, so that the permanent magnet elements can be adjusted within the cutouts.
  • Hall probes 7 are in turn provided above the toner tube 4, which indicate the required induction during the adjustment.
  • the permanent magnet elements are in turn fixed with an injectable plastic 8, extruded or extrusion-coated.
  • the adjusted permanent magnet elements 6 lie within the recesses 5 such that the injected plastic is present on the right of the permanent magnet element or on the left of the permanent magnet element. There is also the possibility that one or more permanent magnet elements are completely encased in plastic.
  • the carrier material 2 consists of two disk-shaped end bodies 11.
  • the end bodies are in turn provided with recesses 5, into which the permanent magnet elements 6 are adjustably fitted and with the aid of Hall probes, not shown, in the manner described above can be adjusted to the required induction at the specified radius.
  • the permanent magnet elements are then fixed with a sprayable plastic 8 or adhesive.
  • This configuration creates a cylindrical hollow rung body 12 in which the permanent magnet elements represent the so-called rungs.
  • the cylindrical hollow sprout body is then filled with a sprayable plastic foam 15.
  • the hollow sprout body 12 is correspondingly trained injection mold 13 brought The injection mold is shown schematically in Fig. 3.
  • the end bodies 11 can be cut off at the points shown in dashed lines in the drawing in order to obtain a particularly light and stable magnetic roller against deformation.
  • the roller part remaining after cutting must have the required length of the magnetic roller.
  • the end body 11 can also be omitted if the multi-part injection mold 13 is provided with laterally removable cover plates, into which corresponding recesses for receiving and adjusting the permanent magnet elements are incorporated.
  • the magnetic roller produced according to FIG. 3 is shown in FIG. 4 in a vertical half-section.
  • the carrier material 2 consists entirely of plastic foam 15, in which the permanent magnet elements 6 are held in the aligned position. You can see in this figure the aligned position, for. B. the permanent magnet elements 6a is slightly rotated in the axial direction.
  • a bearing bush 14 is also injected.
  • the temperature of the injectable plastic 8 or plastic foam 15 must be in such a temperature range during its processing that when plastic-bonded permanent magnet elements are used they do not suffer any deformation during extrusion or extrusion coating, but the sprayed-out plastic does not, however, in the cooled state due to the heating of the copying machine is deformable.
  • Polyurethane and its derivatives are particularly suitable as foamable plastics. However, it is also possible to use a phenolic resin.
  • the permanent magnet elements can consist of sintered, highly coercive permanent magnet material such as barium or strontium ferrite, cobalt rare earth alloys or neodymium iron.
  • the permanent magnet elements 6 consist of a mixture of a thermoplastic binder and a powdery, highly coercive permanent magnet material such as barium ferrite or strontium ferrite. A mixture of the two magnetic materials is also possible.
  • the permanent magnet elements are molded by extrusion or injection molding. You can either produce permanent magnetic strips directly or plates from which the individual strips are then cut. You can also press permanent magnet elements from this mixture, especially if a thermosetting plastic, such as. B. phenolic resin, is used.
  • the cross section of the permanent magnet elements can have any shape.
  • the permanent magnet elements preferably have a rectangular, square or segment-shaped cross section. But they can also have a ring section or circular cross section.
  • the permanent magnet elements can be magnetized in a radial and / or tangential and / or arcuate direction, depending on the type of copying roller required.
  • the magnetization in the radial direction is shown, for example, in the case of the right permanent magnet element 6 in FIG. 1.
  • the north pole, identified by an N is located on the surface facing the toner tube 4 and the opposite pole, identified by an S, on the surface of the permanent magnet element facing away from the toner tube.
  • the tangential magnetization of the permanent magnet elements is shown in FIG. 4, for example. There this magnetization is identified by the poles N and S in the right permanent magnet element 6.
  • the arcuate magnetization is also shown in FIG. 2 for a permanent magnet element 6 by the letters N and S shown.
  • the permanent magnet elements are preferably arranged in the carrier material such that the poles, which are directed towards the toner tube, have opposite polarity to the pole of the adjacent permanent magnet element.
  • the permanent magnet elements 6 can be connected on the side facing away from the roller surface to a strip-shaped carrier body 17, preferably by gluing, in order to give the permanent magnet element greater stability, in particular to avoid deformations caused by heat.
  • the permanent magnet elements can have a smaller thickness and, in a sense, can even be flexible.
  • This embodiment with the stiffening carrier body is also particularly suitable for the embodiment of the magnetic roller shown in FIGS. 3 and 4 as a hollow hollow body.
  • the carrier body can be made of a magnetically non-conductive material, such as. B. aluminum.
  • the strip-shaped carrier body can also be made of magnetically highly conductive material, such as. B. soft iron exist.
  • the induction on the surface of the permanent magnet element directed towards the toner tube increases. It is known that the induction of permanent magnets increases when they are provided with an iron yoke; in the present case this can known effect can be used to advantage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

  • Die Erfindung bezieht sich auf Magnetwalzen für Kopiergeräte und ein Verfahren zur Herstellung derselben. Derartige Magnetwalzen finden für elektrofotografische Kopiergeräte Verwendung.
  • Bei Geräten dieser Art ist die Magnetwalze konzentrisch von einem Tonerrohr, üblicherweise aus diamagnetischem Material, mit geringem Abstand umgeben. Bei diesen Anordnungen bewegt sich das Tonerrohr relativ zur Magnetwalze. Das Tonerrohr dient zusammen mit der Magnetwalze der Zufuhr eines magnetisch anziehbaren Tonerpulvers von einem Pulverbehälter auf ein Trägermaterial, auf dem das elektrostatische Bild erzeugt wird. Hierbei ist es von besonderer Bedeutung, daß das Tonerrohr im Bereich der Entwicklungszone eine gleichmäßige Pulverschicht aufweist. Dies kann aber nur erreicht werden, wenn über dem jeweiligen Pol im Arbeitsbereich der Magnetwalze die geforderte Induktion exakt vorhanden ist.
  • Bei den neueren bekannten Kopiergeräten bestehen die Magnetwalzen aus einem Trägerkörper, auf dem in Achsrichtung verlaufende streifenförmige, kunststoffgebundene Dauermagnete vorgesehen sind (DE-B-1 218287, DE-A-3 314 885, DE-A-3 402 864). Bedingt durch das Herstellungsverfahren und die Magnetisierung der kunststoffgebundenen, vorzugsweise extrudierten Dauermagnetkörper streifenförmiger Gestalt und durch ihre Montage auf dem Trägerkörper der Magnetwalze lassen sich sowohl mechanische Toleranzschwankungen als auch magnetische Schwankungen, die sich in einem ungleichmäßigen Verlauf der Induktion über dem Umfang und der Länge der Magnetwalze bzw. Tonerrohr bemerkbar machen, nicht vermeiden. Diese Schwankungen sind von besonderem Nachteil, da sie zur Streifenbildung auf den hergestellten Kopien führen.
  • Für die Herstellung von Magnetwalzen ist es von Bedeutung, daß, je nach Bauart und Wirkungsweise, bei einer bestimmten Gruppe von Kopiergeräten am Umfang bzw. dem vorgegebenen Radius der Magnetwalze eine homogene Feldverteilung für alle Magnetstreifen vorhanden sein muß. Bei einer anderen Gruppe von Kopiergeräten werden Magnetwalzen benötigt, bei denen die Induktion zwischen einem oder mehreren benachbarten Polen unterschiedlich hoch ist.
  • Es bereitet Schwierigkeiten, bei der Herstellung von Magnetwalzen die jeweils verlangte Kraftliniendichte bzw. Induktion der Dauermagnete bei dem vorgegebenen Radius zu erreichen, weil bedingt durch das Herstellungsverfahren der Dauermagnete - ob gesintert oder kunststoffgebunden - mechanische Toleranzabweichungen, z. B. durch Schrumpfen, und/oder magnetische Toleranzabweichungen durch unterschiedliche Qualitäten des Magnetmaterials der Mischung von kunststoffgebundenen Dauermagneten und bei der Magnetisierung auftreten.
  • Es ist bisher noch nicht gelungen, die einzelnen Magnetwalzen mit genau den gleichen mechanischen und magnetischen Werten herzustellen.
  • Darüber hinaus sind bei der Herstellung von Magnetwalzen für Kopiergeräte mit unterschiedlichen Induktionen der Dauermagnete hohe Montagekosten und eine umfangreiche Lagerhaltung an Dauermagneten mit verschiedenen Polstärken erforderlich. Man könnte zwar bei der Herstellung von Magnetwalzen, bei denen verschieden hohe Induktion verlangt werden, die Dauermagnete mit niedrigerer Induktion nicht bis zur Sättigung aufmagnetisieren. Bei einer unvollständigen Aufmagnetisierung treten jedoch im Laufe der Zeit Feldveränderungen, insbesondere eine teilweise bleibende Entmagnetisierung ein, die dann zu schlechten Kopien führen.
  • Unter Vermeidung dieser Nachteile ist es Aufgabe der Erfindung, eine Magnetwalze für Kopiergeräte der eingangs genannten Art zu schaffen bei der die jeweils geforderte magnetische Induktion der einzelnen Dauermagnetelemente auf dem vorgegebenen Radius genauestens eingehalten werden kann und bei der mechanische und magnetische Toleranzschwankungen über dem Umfang der gesamten Magnetwalze vermieden werden, obwohl die einzelnen Dauermagnetelemente vor ihrer Montage mechanische und magnetische Toleranzabweichungen aufweisen können.
  • Diese Aufgabe wird gemäß der Erfindung bei einer Magnetwalze der eingangs genannten Art durch die Merkmale im kennzeichneden Teil des Anspruches 1 sowie bei einem Verfahren zur Herstellung dieser Magnetwalze durch die Merkmale im kennzeichnenden Teil des Anspruches 25 gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Durch die Erfindung gelingt es, Magnetwalzen zu schaffen, die über dem vorgegebenen Radius und/oder Bogen- bzw. Winkelmaß stets die gleichen verlangten Induktionswerte besitzen, selbst wenn die einzelnen Dauermagnetelemente Abweichungen in ihren magnetischen und mechanischen Werten aufweisen.
  • Ferner gelingt es durch die Erfindung, Magnetwalzen zu schaffen, die sowohl für Kopiergeräte geeignet sind, die am Umfang bzw. dem vorgegebenen Radius der Magnetwalze eine homogene Feldverteilung. d.h. eine gleich hohe Induktion, zwischen benachbarten Polen verlangen, als auch für Kopiergeräte, die Magnetwalzen erfordern, bei denen die Induktion zwischen einem oder mehreren benachbarten Polen unterschiedlich hoch ist.
  • Der besondere Vorteil besteht somit darin, daß die Magnetwalze gemäß der Erfindung für die meisten Typen von Kopiergeräten universell einsetzbar ist.
  • Ein weiterer Vorteil ist darin zu sehen, daß die bisher erforderliche umfangreiche Lagerhaltung an Dauermagneten mit verschiedenen Polstärken entfällt.
  • Ferner gelingt es durch das erfindungsgemäß vorgeschlagene Verfahren, eine genaue Einregulierung der Dauermagnetelemente auf den verlangten Induktionswert mit einfachen Mitteln und in einfacher Weise vorzunehmen. Ein weiterer Vorteil besteht darin, daß die erfindungsgemäß hergestellte Magnetwalze ein geringes Gewicht aufweist.
  • Nachfolgend sind mehrere Ausführungsbeispiele der Erfindung anhand der Zeichnungen erläutert.
  • Es zeigen:
    • Fig. 1 einen senkrechten Halbschnitt der Magnetwalze nach der Erfindung,
    • Fig. 2 ein anderes Ausführungsbeispiel der Magnetwalze im senkrechten Halbschnitt,
    • Fig. 3 ein weiteres Ausführungsbeispiel der Magnetwalze in perspektivischer Darstellung, die sich in einer schematisch dargestellten Spritzform befindet,
    • Fig. 4 die Magnetwalze gemäß Fig. 3 im senkrechten Halbschnitt.
  • In Fig. 1 ist eine Magnetwalze 1 nach der Erfindung dargestellt, die aus einem unmagnetischen Trägermaterial 2, wie z. B. Aluminium, besteht. Die Magnetwalze ist mit dazwischen liegendem Luftspalt 3 von einem Tonerrohr 4 aus diamagnetischem Material, wie z. B. Aluminium oder unmagnetischem Stahl, konzentrisch umgeben. Die Magnetwalze bewegt sich relativ zum Tonerrohr um eine nicht dargestellte, z. B. ein- oder beidseitig kugelgelagerte Welle.
  • Das Trägermaterial 2 der Magnetwalze 1 ist an seinem Umfang mit in Achsrichtung verlaufenden Aussparungen 5 versehen. In diesen Aussparungen sind streifenförmige Dauermagnetelemente 6 justierbar angeordnet. Zu diesem Zweck ist der Querschnitt der Aussparungen größer ausgebildet als der Querschnitt der Dauermagnetelemente.
  • Zum Zwecke der Justierung der Dauermagnetelemente auf den geforderten Induktionswert bei vorgegebenem Radius r und/oder Bogenmaß b zwischen benachbarten Dauermagnetelementen sind im Bereich der Dauermagnetelemente auf dem vorgegebenen Radius Induktionsmessonden, im vorliegenden Fall Hall-Sonden 7, angeordnet. Unter dem vorgegebenen Radius ist der Radius vom Zentrum Z der Magnetwalze bis zu einem bestimmten Abstand über der Magnetwalze, der in den meisten Fällen dem äußeren Umfang des Tonerrohres entspricht, zu verstehen. Bei der Einjustierung der Dauermagnetelemente auf den vorgegebenen Induktionswert ist das Tonerrohr meist noch nicht mit der Magnetwalze montiert. Es genügt, wenn die Hall-Sonden im vorgegebenen Abstand r über dem Umfang der Magnetwalze angeordnet und gehalten sind.
  • Die Dauermagnetelemente 6 werden durch radiale und/oder tangentiale Verschiebung und/oder Verdrehung in den Aussparungen des Trägermaterials so lange justiert, bis die Hall-Sonden den verlangen Wert der Induktion anzeigen. In diesem justierten Zustand werden dann die Dauermagnetelemente durch einen spritzfähigen Kunststoff 8 in den Aussparungen fixiert. Die Fixierung der Dauermagnetelemente kann auch durch Kleben und/oder Ausgießen mit einem Gießharz oder durch Ausschäumen mit einem Kunststoffschaum vorgenommen werden. Man kann die Dauermagnetelemente auch durch Klemmelemente 16 vor dem Ausspritzen oder Ausschäumen fixieren.
  • In einem anderen Ausführungsbeispiel gemäß Fig. 2 besteht das Trägermaterial 2 aus einem Nabenkörper 9, von dem sich in radialer Richtung eine Anzahl von Rippen 10 nach außen erstreckt. Die zwischen den Rippen gebildeten Aussparungen 5 nehmen die Dauermagnetelemente 6 auf, die einen segmentförmigen Querschnitt aufweisen. Die Aussparungen sind, wie aus der Zeichnung hervorgeht, im Querschnitt größer ausgebildet als der Querschnitt der Dauermagnetelemente, so daß innerhalb der Aussparungen eine Justierung der Dauermagnetelemente vorgenommen werden kann. Über dem Tonerrohr 4 sind wiederum Hall-Sonden 7 vorgesehen, die während der Einjustierung die geforderte Induktion anzeigen. Sobald die Justierung, wie in Fig. 1 erläutert, erfolgt ist, werden die Dauermagnetelemente wiederum mit einem spritzfähigen Kunststoff 8 fixiert, aus- bzw. umspritzt.
  • Wie aus den Fig. 1 und 2 ersichtlich ist, liegen die justierten Dauermagnetelemente 6 derart innerhalb der Aussparungen 5, daß einmal rechts vom Dauermagnetelemente oder links vom Dauermagnetelement der ausgespritzte Kunststoff vorhanden ist. Es besteht auch die Möglichkeit, daß eines oder mehrere Dauermagnetelemente vollständig von Kunststoff umhüllt sind.
  • In dem perspektivisch dargestellten weiteren Ausführungsbeispiel gemäß Fig. 3 besteht das Trägermaterial 2 aus zwei scheibenförmigen Endkörpern 11. Die Endkörper sind wiederum mit Aussparungen 5 versehen, in die die Dauermagnetelemente 6 justierbar eingepaßt sind und mit Hilfe von nicht dargestellten Hall-Sonden in der vorbeschriebenen Weise auf die geforderte Induktion bei dem vorgegebenen Radius einreguliert werden. In der einregulierten Stellung sind die Dauermagnetelemente sodann mit einem spritzfähigen Kunststoff 8 oder Kleber fixiert. Durch diese Ausbildung entsteht ein walzenförmiger Sprossenhohlkörper 12, bei dem die Dauermagnetelemente die sogenannten Sprossen darstellen. Der walzenförmige Sprossenhohlkörper wird sodann mit einem spritzfähigen Kunststoffschaum 15 ausgefullt, Zum Zwecke des Ausschäumens wird der Sprossenhohlkörper 12 in eine entsprechend ausgebildete Spritzform 13 gebracht Die Spritzform ist in Fig. 3 schematisch dargestellt. In einer weiteren vorteilhaften Ausgestaltung können nach dem Ausspritzen und Entformen die Endkörper 11 an den in der Zeichnung gestrichelt dargestellten Stellen abgeschnitten werden, um eine besonders leichte und gegen Verformung stabile Magnetwalze zu erhalten. In diesem Falle muß selbstverständlich der nach dem Abschneiden verbleibende Walzenteil die geforderte Länge der Magnetwalze aufweisen. Die Endkörper 11 können auch entfallen, wenn die mehrteilig ausgebildete Spritzform 13 mit seitlich abnehmbaren Deckplatten versehen ist, in die entsprechende Aussparungen zur Aufnahme und Justierung der Dauermagnetelemente eingearbeitet sind.
  • Die gemäß Fig. 3 hergestellte Magnetwalze ist in Fig. 4 im senkrechten Halbschnitt dargestellt. Das Trägermaterial 2 besteht vollständig aus Kunststoffschaum 15, in dem die Dauermagnetelemente 6 in der ausgerichten Stellung gehalten sind. Man erkennt in dieser Figur die ausgerichtete Stellung, z. B. ist das Dauermagnetelemente 6a in Achsrichtung geringfügig verdreht. Bei der Ausführung gemäß Fig. 4 ist eine Lagerbuchse 14 mit eingespritzt.
  • Die Temperatur des spritzfähigen Kunststoffs 8 oder Kunststoffschaums 15 muß während seiner Verarbeitung in einem solchen Temperaturbereich liegen, daß bei Verwendung von kunststoffgebundenen Dauermagnetelementen dieselben während des Aus- bzw. Umspritzens keine Verformung erleiden, der ausgespritzte Kunststoff jedoch im erkalteten Zustand durch die Erwärmung des Kopiergerätes nicht verformbar ist. Als ausschäumbare Kunststoffe eignen sich besonders Polyurethan und dessen Derivate. Es ist jedoch auch möglich, ein Phenolharz zu verwenden.
  • Die Dauermagnetelemente können aus gesintertem, hochkoerzitivem Dauermagnetwerkstoff wie Barium- oder Strontiumferrit, Kobalt-Seltenerdlegierungen oder Neodymeisen bestehen. In einer bevorzugten Ausführung bestehen die Dauermagnetelemente 6 aus einer Mischung eines thermoplastischen Bindemittels und eines pulverförmigen, hochkoerzitiven Dauermagnetmaterials wie Bariumferrit oder Strontiumferrit. Es ist auch eine Mischung aus den beiden Magnetmaterialien möglich. Die Dauermagnetelemente werden durch Extrudieren oder Spritzen geformt. Man kann entweder direkt Dauermagnetstreifen herstellen oder Platten, aus denen dann die einzelnen Streifen geschnitten werden. Man kann aus dieser Mischung auch Dauermagnetelemente pressen, insbesondere dann, wenn ein duroplastischer Kunststoff, wie z. B. Phenolharz, Verwendung findet.
  • Der Querschnitt der Dauermagnetelemente kann jede beliebige Gestalt aufweisen. Vorzugsweise besitzen die Dauermagnetelemente einen rechteckigen, quadratischen oder segmentförmigen Querschnitt. Sie können aber auch einen ringabschnitt- oder kreisförmigen Querschnitt aufweisen.
  • Die Magnetisierung der Dauermagnetelemente kann je nach dem verlangten Kopierwalzentyp in radialer und/oder tangentialer und/oder bogenförmiger Richtung vorgenommen werden. Die Magnetisierung in radialer Richtung ist beispielsweise bei dem rechten Dauermagnetelement 6 in Fig. 1 dargestellt. Wie hieraus erkennbar ist, befindet sich der Nordpol, durch ein N gekennzeichnet, auf der dem Tonerrohr 4 zugewandten Oberfläche und der Gegenpol, durch ein S gekennzeichnet, auf der dem Tonerrohr abgewandten Fläche des Dauermagnetelementes. Die tangentiale Magnetisierung der Dauermagnetelemente ist beispielsweise in Fig. 4 dargestellt. Dort ist in dem rechten Dauermagnetelement 6 diese Magnetisierung durch die Pole N und S gekennzeichnet. Die bogenförmige Magnetisierung ist in Fig. 2 bei einem Dauermagnetelement 6 ebenfalls durch die eingezeichneten Buchstaben N und S dargestellt.
  • Die Dauermagnetelemente sind in dem Trägermaterial bevorzugt so angeordnet, daß die Pole, die zum Tonerrohr hin gerichtet sind, entgegengesetzte Polarität zum Pol des benachbarten Dauermagnetelementes aufweisen.
  • Die Dauermagnetelemente 6 können auf der der Walzenoberfläche abgewandten Seite mit einem streifenförmigen Trägerkörper 17 vorzugsweise durch Kleben verbunden sein, um dem Dauermagnetelement eine größere Stabilität, insbesondere zur Vermeidung wärmebedingter Verformungen, zu verleihen. In diesem Falle können die Dauermagnetelemente eine geringere Dicke aufweisen und in gewissem Sinne sogar flexibel sein. Auch eignet sich diese Ausführung mit dem versteifenden Trägerkörper besonders für die in Fig. 3 und 4 dargestellte Ausführung der Magnetwalze als Sprossenhohlkörper.
  • In Fig. 4 ist beispielsweise ein Dauermagnetelement 6 mit dem streifenförmigen Trägerkörper 17 dargestellt. Der Trägerkörper kann aus einem magnetisch nicht leitenden Material, wie z. B. Aluminium, bestehen. Der streifenförmige Trägerkörper kann aber auch aus magnetisch gut leitendem Material, wie z. B. Weicheisen, bestehen. In diesem Falle ist es besonders vorteilhaft, die Dauermagnetelemente in radialer Richtung zu magnetisieren, derart, daß sich der eine Pol auf der dem Tonerrohr 4 zugewandten Oberfläche und der Gegenpol auf dem ferromagnetischen Trägerkörper 17 befindet, wie dies in Fig. 1 dargestellt ist. Hierbei steigt die Induktion an der zum Tonerrohr hin gerichteten Oberfläche des Dauermagnetelementes an. Es ist zwar bekannt, daß die Induktion von Dauermagneten ansteigt, wenn diese mit einem Eisenrückschluß versehen werden; im vorliegenden Fall kann dieser bekannte Effekt jedoch vorteilhaft ausgenutzt werden.

Claims (29)

1. Magnetwalze für Kopiergeräte, bei der auf einem Trägermaterial in Achsrichtung verlaufende, streifenförmige Dauermagnetelemente befestigt sind, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) durch radiale und/oder tangentiale Verschiebung und/oder axiale Verdrehung auf dem Trägermaterial (2) derart justierbar angeordnet sind, daß bei vorgegebenem Radius (r) und/ oder Bogen (b)- bzw. Winkelmaß zwischen benachbarten Polen die magnetische Induktion für jeden Pol den geforderten Wert aufweist und die Dauermagnetelemente in der mit einer Induktions-Meßsonde (7) justierten Stellung auf dem Trägermaterial fixiert sind.
2. Magnetwalze nach Anspruch 1, dadurch gekennzeichnet, daß die Fixierung der Dauermagnetelemente (6) auf dem Trägermaterial mit Hilfe von Klemmelementen (16) erfolgt.
3. Magnetwalze nach Anspruch 1, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) auf dem Trägermaterial mit Hilfe eines Klebers fixiert sind.
4. Magnetwalze nach Anspruch 1, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) mit einem spritz- oder gießfähigen Kunststoff (8) fixiert sind.
5. Magnetwalze nach den Ansprüchen 1-4, dadurch gekennzeichnet, daß das Trägermaterial (2) an seinem Umfang mit Aussparungen (5) versehen ist, deren Querschnitt zwecks Justierung größer ausgebildet ist als der Querschnitt der Dauermagnetelemente (6).
6. Magnetwalze nach Anspruch 5, dadurch gekennzeichnet, daß die Aussparungen (5) auf dem Trägermaterial (2) durch Ausfräsen aus einem walzenförmigen Vollkörper gebildet sind.
7. Magnetwalze nach Anspruch 5, dadurch gekennzeichnet, daß die Aussparungen (5) auf dem Trägermaterial (2) durch eine Anzahl von Rippen (10), die sich von einem zentrisch angeordneten Nabenkörper (9) radial nach außen erstrecken, gebildet sind.
8. Magnetwalze nach den Ansprüchen 1-5, dadurch gekennzeichnet, daß das Trägermaterial (2) aus zwei scheibenförmigen Endkörpern (11) und ggf. einem gleich großen, scheibenförmigen Mittelkörper besteht, die mit Aussparungen (5) versehen sind, in die die Dauermagnetelemente (6) justierbar eingepaßt sind derart, daß ein walzenförmiger Sprossenhohlkörper (12) entsteht, der mit einem spritzfähigen Kunststoff (8), vorzugsweise Kunststoffschaum (15), ausgefüllt ist.
9. Magnetwalze nach Anspruch 8, dadurch gekennzeichnet, daß die Endkörper (11) nach dem Ausspritzen des walzenförmigen Sprossenhohlkörpers (12) abgetrennt sind.
10. Magnetwalze nach den Ansprüchen 1-9, dadurch gekennzeichnet, daß das Trägermaterial (2) aus einem spritzfähigen Kunststoff (8), vorzugsweise Kunststoffschaum (15), besteht, in dem die justierten Dauermagnetelemente (6) fest angeordnet sind.
11. Magnetwalze nach Anspruch 10, dadurch gekennzeichnet, daß der spritzfähige Kunststoff (8), vorzugsweise Kunststoffschaum (15), während seiner Verarbeitung in einem solchen Temperaturbereich liegt, daß die kunststoffgebundenen Dauermagnetelemente (6) während des Aus- bzw. Umspritzens keine Verformung erleiden, der ausgespritzte Kunststoff jedoch im erkalteten Zustand durch die Erwärmung des Kopiergerätes nicht verformbar ist.
12. Magnetwalze nach den Ansprüchen 10 oder 11, dadurch gekennzeichnet, daß der ausschäumbare Kunststoff (15) aus Polyurethan und/oder dessen Derivaten besteht.
13. Magnetwalze nach den Ansprüchen 10 oder 11, dadurch gekennzeichnet, daß der spritzfähige Kunststoff (8) aus einem geschäumten Phenolharz besteht.
14. Magnetwalze nach den Ansprüchen 1-13, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) aus hochkoerzitivem Dauermagnetmaterial wie Bariumferrit, Strontiumferrit, Kobalt-Seltenerdlegierung oder Neodymeisen bestehen.
15. Magnetwalze nach Anspruch 14, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) gesintert sind.
16. Magnetwalze nach Anspruch 14, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) aus der Mischung eines thermoplastischen Bindemittels, wie z. B. sulfochloriertes Polyäthylen, und eines pulverförmigen, hochkoerzitiven Dauermagnetmaterials bestehen und durch Extrudieren, Spritzen oder Pressen hergestellt sind.
17. Magnetwalze nach Anspruch 14, dadurch gekennzeichnet, daß das Bindemittel für das Dauermagnetpulver aus einem aushärtbaren, duroplastischen Kunststoff, wie z. B. Phenolharz, besteht.
18. Magnetwalze nach den Ansprüchen 1-17, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) einen ring-, kreisförmigen, rechteckigen, ovalen, quadratischen oder segmentförmigen Querschnitt aufweisen.
19. Magnetwalze nach den Ansprüchen 1 bis 18, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) in radialer Richtung magnetisiert sind, derart, daß sich der eine Pol auf der einem um die Magnetwalze herum angeordneten Tonerroh (4) zugewanaten -Oberfläche und der Gegenpol auf der dem Tonerrohr abgewandten Fläche des Dauermagnetelementes befindet.
20. Magnetwalze nach den Ansprüchen 1 bis 18, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) in tangentialer Richtung magnetisiert sind, derart, daß sich die Pole unterschiedlicher Polarität gegenüber der radialen Magnetisierung um 90° versetzt auf der Oberfläche des Dauermagnetelementes befinden.
21. Magnetwalze nach den Ansprüchen 1 bis 18, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) bogenförmig magnetisiert sind, derart, daß auf der einem um die Magnetwalze herum angeordneten Tonerrohr (4) zugekehrten Oberfläche des Dauermagnetelementes zwei Pole unterschiedlicher Polarität vorhanden sind.
22. Magnetwalze nach den Ansprüchen 1 bis 21, dadurch gekennzeichnet, daß die Dauermagnetelemente (6) auf der der Walzenoberfläche abgewandten Seite mit einem streifenförmigen Trägerkörper (17) vorzugsweise durch Kleben verbunden sind.
23. Magnetwalze nach Anspruch 22, dadurch gekennzeichnet, daß der streifenförmige Trägerkörper (17) aus einem magnetisch nicht leitenden Material, vorzugsweise Aluminium, besteht.
24. Magnetwalze nach Anspruch 22, dadurch gekennzeichnet, daß der streifenförmige Trägerkörper (17) aus einem magnetisch gut leitenden Material, wie z. B. Weicheisen, besteht.
25. Verfahren zur Herstellung von Magnetwalzen, dadurch gekennzeichnete, daß ein ein- oder mehrteiliges Trägermaterial (2) vorgesehen wird, auf dem radial und/oder tangential verschiebbare und/oder axial verdrehbare vorzugsweise streifenförmige Dauermagnetelemente (6) angeordnet werden und/oder auf einem vorgegebenen Radius (r) und/ oder Bogen (b)- bzw. Winkelmaß Induktions-Meßsonden (7), z. B. Hall-Sonden, im Bereich der Dauermagnetelemente (6) angeordnet werden und die Dauermagnetelemente zum Zwecke der Justierung derart auf dem Trägermaterial in radialer bzw. tangentialer Richtung verschoben und/oder verdreht werden, bis die Induktions-Meßsonden auf dem vorgegebenen Radius bzw. Winkelmaß zwischen benachbarten Polen die geforderte Induktion anzeigen und sodann die justierten Dauermagnetelemente, vorzungsweise eines spritzfähigen Kunststoffes (8), fixiert werden.
26. Verfahren zur Herstellung von Magnetwalzen nach Anspruch 25, dadurch gekennzeichnet, daß das Trägermaterial (2) mit Ausparungen (5) versehen wird, in denen die Dauermagnetelemente (6) mit Hilfe der Induktions-Meßsonden (7) ausgerichtet und sodann fixiert werden.
27. Verfahren zur Herstellung von Magnetwalzen nach den Ansprüchen 25 und 26, dadurch gekennzeichnett, daß die Dauermagnetelemente (6) mittels vorzugsweise scheibenförmiger Endkörper (11) gehalten und mittels Induktions-Meßsonden (7) auf den geforderten Induktionswert justiert und fixiert werden und sodann das so erhaltene Magnetwalzengebilde (12) in einer Spritzform (13) mit einem Kunststoffschaum (15) ausgespritzt wird.
28. Verfahren zur Herstellung von Magnetwalzen nach Anspruch 27, dadurch gekennzeichnet, daß das Magnetwalzengebilde (12) nach dem Ausspritzen auf die geforderte Länge zugeschnitten wird, wobei die an den Enden befindlichen, vorzugsweise scheibenförmigen Endkörper (11) abgetrennt werden.
EP84114262A 1984-11-26 1984-11-26 Magnetwalze für Kopiergeräte und Verfahren zur Herstellung derselben Expired EP0182930B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE8484114262T DE3472475D1 (en) 1984-11-26 1984-11-26 Magnetic rolls for copier machines and method of making the same
EP84114262A EP0182930B1 (de) 1984-11-26 1984-11-26 Magnetwalze für Kopiergeräte und Verfahren zur Herstellung derselben
AT84114262T ATE35466T1 (de) 1984-11-26 1984-11-26 Magnetwalze fuer kopiergeraete und verfahren zur herstellung derselben.
US06/718,637 US4638281A (en) 1984-11-26 1985-04-01 Magnetic roll for copy machines and method for manufacturing same
CA000489995A CA1240731A (en) 1984-11-26 1985-09-04 Magnetic roll for copy machines and method for manufacturing same
JP60263964A JPS61148474A (ja) 1984-11-26 1985-11-26 複写機用の磁気ロ−ラ及びその製法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP84114262A EP0182930B1 (de) 1984-11-26 1984-11-26 Magnetwalze für Kopiergeräte und Verfahren zur Herstellung derselben

Publications (2)

Publication Number Publication Date
EP0182930A1 EP0182930A1 (de) 1986-06-04
EP0182930B1 true EP0182930B1 (de) 1988-06-29

Family

ID=8192311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84114262A Expired EP0182930B1 (de) 1984-11-26 1984-11-26 Magnetwalze für Kopiergeräte und Verfahren zur Herstellung derselben

Country Status (6)

Country Link
US (1) US4638281A (de)
EP (1) EP0182930B1 (de)
JP (1) JPS61148474A (de)
AT (1) ATE35466T1 (de)
CA (1) CA1240731A (de)
DE (1) DE3472475D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235335A (zh) * 2017-06-29 2017-10-10 江西电力职业技术学院 电磁铁质零件捡拾装置以及零件捡拾车

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954800A (en) * 1986-05-20 1990-09-04 Canon Kabushiki Kaisha Magnet and method of manufacturing the same
US4823102A (en) * 1987-10-05 1989-04-18 Xerox Corporation Magnetic roll for a copier
JPH0192777A (ja) * 1987-10-05 1989-04-12 Fujitsu Ltd マグネットローラの位置調整方法
JPH0195277U (de) * 1987-12-17 1989-06-23
US5030937A (en) * 1989-08-02 1991-07-09 Xolox Corporation Magnet roll
US5019796A (en) * 1989-12-22 1991-05-28 Eastman Kodak Company Bar magnet for construction of a magnetic roller core
US5581422A (en) * 1993-02-09 1996-12-03 Hitachi Metals, Ltd. Actuator with moveable coil and recording apparatus
DE4311398C2 (de) * 1993-04-07 2000-12-28 Kobold Klaus Flügelrad für Durchflußmesser
FR2710113B1 (fr) * 1993-09-16 1995-12-22 Aerospatiale Barreau magnétique courbe ou rectiligne, formé d'aimants disjoints.
US5558091A (en) * 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
EP0773484B1 (de) * 1995-11-07 2003-02-26 Océ-Technologies B.V. Magnetsystem für ein bilderzeugendes Gerät
DE19543316A1 (de) * 1995-11-21 1997-05-22 Bielomatik Leuze & Co Bearbeitungs-Werkzeug zur Bearbeitung von Lagen-Material o. dgl.
US6061541A (en) * 1996-09-04 2000-05-09 Clarity Imaging Technologies, Inc. Supplemental magnet strip for toner cartridge developer roll magnet and method for employing the same
US6125255A (en) * 1996-09-23 2000-09-26 Xerox Corporation Magnet assembly with inserts and method of manufacturing
US6452380B1 (en) 2000-03-23 2002-09-17 Lexmark International, Inc. Rod and apparatus for calibrating magnetic roll testing apparatus
JP2002287502A (ja) * 2001-03-23 2002-10-03 Ricoh Co Ltd 現像ローラ
US6862415B2 (en) 2001-06-27 2005-03-01 Eastman Kodak Company Device for treating the surface of an article in connection with printing
US6897752B2 (en) * 2001-07-25 2005-05-24 Lexmark International, Inc. Magnetic roller and methods of producing the same
US6850140B1 (en) 2003-09-10 2005-02-01 Magnetic Technologies Corporation Layered magnets and methods for producing same
US7373716B2 (en) * 2003-10-22 2008-05-20 Dexter Magnetic Technologies, Inc. Method for constructing permanent magnet assemblies
AU2003292519A1 (en) * 2003-11-07 2005-05-26 Sgm Gantry S.P.A. Magnetic separator with ferrite and rare earth permanent magnets
US7135792B2 (en) * 2004-05-12 2006-11-14 Dexter Magnetic Technologies, Inc. High field voice coil motor
JP2008233368A (ja) * 2007-03-19 2008-10-02 Ricoh Co Ltd マグネットローラ、現像剤担持体、現像装置、プロセスカートリッジ及び画像形成装置
US20100123779A1 (en) * 2008-11-18 2010-05-20 Dennis Michael Snyder Video recording system for a vehicle
DE102017104895B4 (de) * 2017-03-08 2021-08-19 Preh Gmbh Formgebendes Verfahren zur Herstellung eines einen Permanentmagneten aufweisenden Verbundteils
CN111111908B (zh) * 2019-12-02 2022-04-01 宁波西磁磁业发展股份有限公司 一种磁板补偿式皮带除铁机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1079237B (de) * 1956-09-22 1960-04-07 Marius Cominoli Magnetische Befestigungsvorrichtung fuer einen an ferromagnetischen Metallflaechen magnetisch haftend festzulegenden Gebrauchsgegenstand
DE1176440B (de) * 1962-04-26 1964-08-20 Max Baermann Riementrieb mit magnetischer Verstaerkung des Kraftschlusses
DE1218287B (de) * 1962-12-21 1966-06-02 Zindler Lumoprint Kg Vorrichtung zum Entwickeln elektrostatischer Bilder
FR1475501A (fr) * 1966-04-13 1967-03-31 Deutsche Edelstahlwerke Ag Pôles d'aimants permanents pour systèmes d'aimants permanents
CH501892A (de) * 1968-09-06 1971-01-15 Siemens Ag Vorrichtung mit einer magnetischen Teilung zur Erzeugung von elektrischen Signalen in Halbleiterbauelementen
US3641969A (en) * 1969-12-18 1972-02-15 Plastic Coating Corp Toner unit for photoelectrostatic reproduction
US3663850A (en) * 1970-08-03 1972-05-16 Phelon Co Inc Field means for a dynamoelectric machine, magnet preassembly for use therein
GB2052319A (en) * 1979-05-15 1981-01-28 Lucas Industries Ltd A method of assembling permanent magnet rotors for electrical machines
CA1198766A (en) * 1981-04-20 1985-12-31 Atsuo Tanaka Magnetic rolls and a method of making the same
JPS59139067A (ja) * 1983-01-29 1984-08-09 Ricoh Co Ltd マグネツトロ−ル及びその製造方法
US4558294A (en) * 1983-03-31 1985-12-10 Hitachi Metals, Ltd. Magnet roll and method of producing the same
DE3314885A1 (de) * 1983-04-25 1984-10-25 Max Baermann GmbH, 5060 Bergisch Gladbach Magnetwalze fuer kopiergeraet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235335A (zh) * 2017-06-29 2017-10-10 江西电力职业技术学院 电磁铁质零件捡拾装置以及零件捡拾车

Also Published As

Publication number Publication date
CA1240731A (en) 1988-08-16
ATE35466T1 (de) 1988-07-15
DE3472475D1 (en) 1988-08-04
US4638281A (en) 1987-01-20
EP0182930A1 (de) 1986-06-04
JPS61148474A (ja) 1986-07-07

Similar Documents

Publication Publication Date Title
EP0182930B1 (de) Magnetwalze für Kopiergeräte und Verfahren zur Herstellung derselben
DE2053262A1 (de) Wechselspannungsgenerator zur Drehzahlmessung, insbesondere für eine Blockierschutzeinrichtung einer Fahrzeugbremsanlage
DE2424131A1 (de) Drossel und verfahren zur herstellung derselben
DE2833517C2 (de) Walzenförmiger Dauermagnetkörper
US4327346A (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
DE69733551T2 (de) Verfahren zum magnetisieren eines zylindrischen körpers
DE3501431A1 (de) Verfahren zur herstellung eines motorgehaeuses
DE1538731A1 (de) Elektrische Kleinmaschine
DE2302947A1 (de) Dynamomaschine
DE3215376C2 (de) Selbstanlaufender zweipoliger Einphasensynchronmotor
DE3402864A1 (de) Magnetrolle und verfahren zum herstellen einer magnetrolle
DE2447155A1 (de) Elektromotor und verfahren zu seiner herstellung
DE3524984A1 (de) Elektromotor
DE3537873A1 (de) Gleichstrommotor
DE102006020808B4 (de) Induktiver Drehübertrager mit Polymermaterial und Verfahren zur Herstellung eines solchen
DE1177894B (de) Wickelkern mit zylindrischer Oberflaeche und Vorrichtung zum Herstellen desselben
DE2716792A1 (de) Solenoid mit umkehrbarer richtung
AT311484B (de) Wechselspannungsgenerator zur Drehzahlmessung, insbesondere für eine Blockierschutzeinrichtung einer Fahrzeugbremsanlage
DE2952917C2 (de) Verfahren zur Herstellung eines walzenförmigen Dauermagneten
DE19622093A1 (de) Magnetrolle und Verfahren zur ihrer Herstellung, sowie Entwicklungsrolle, Entwicklungsvorrichtung und Reinigungsvorrichtung
DE3943328A1 (de) Verfahren zur herstellung eines ringroehrenfoermigen dauermagneten und herstellungsform fuer diesen
JPH01115109A (ja) マグネットロールの製造方法
EP0801458B1 (de) Elektromotor
JP2558749B2 (ja) マグネットロールの製造方法
DE102004010899A1 (de) Permanentmagnetläufer und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19870916

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 35466

Country of ref document: AT

Date of ref document: 19880715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3472475

Country of ref document: DE

Date of ref document: 19880804

ITF It: translation for a ep patent filed

Owner name: STUDIO MASSARI S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890217

Year of fee payment: 5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MAGNETIC SYSTEMS

Effective date: 19890329

NLR1 Nl: opposition has been filed with the epo

Opponent name: MAGNETIC SYSTEMS

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19890923

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR2 Nl: decision of opposition
EUG Se: european patent has lapsed

Ref document number: 84114262.3

Effective date: 19900705

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO