EP0177751B1 - Gas/Flüssigkeit- oder Gas/Gas-Wärmeaustauscher - Google Patents

Gas/Flüssigkeit- oder Gas/Gas-Wärmeaustauscher Download PDF

Info

Publication number
EP0177751B1
EP0177751B1 EP85111134A EP85111134A EP0177751B1 EP 0177751 B1 EP0177751 B1 EP 0177751B1 EP 85111134 A EP85111134 A EP 85111134A EP 85111134 A EP85111134 A EP 85111134A EP 0177751 B1 EP0177751 B1 EP 0177751B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
gas
layers
heat
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85111134A
Other languages
English (en)
French (fr)
Other versions
EP0177751A2 (de
EP0177751A3 (en
Inventor
Heinz Schilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heinz Schilling KG
Original Assignee
Heinz Schilling KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heinz Schilling KG filed Critical Heinz Schilling KG
Priority to AT85111134T priority Critical patent/ATE46032T1/de
Publication of EP0177751A2 publication Critical patent/EP0177751A2/de
Publication of EP0177751A3 publication Critical patent/EP0177751A3/de
Application granted granted Critical
Publication of EP0177751B1 publication Critical patent/EP0177751B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • Air / water and air / air heat exchangers of various types are known. These have plates or lamellae and / or pipes, the two streams of air and / or water being conducted through lines or channels and, in the meantime, one of the two media giving off its heat to the other medium. The highest degree of temperature exchange is achieved with countercurrent heat exchangers.
  • a block heat exchanger based on the cross flow principle which consists of assemblies for efficient production. Each assembly has a pipe coil on which fins are attached. The total air flow flows through all the assemblies one after the other. Furthermore, a counterflow heat exchanger is known from FR-A 1311571, which has fin blocks with insertable coils. There are air separation layers at the level of the pipe coil, so that a pipe coil influences the air flows of two lamella blocks.
  • the object of the invention is to provide a heat exchanger which has a very high degree of temperature exchange, is easy to repair and can be assembled and disassembled without great effort.
  • Such a heat exchanger is divided into individual, in the countercurrent principle heat exchanging and functional layer modules.
  • the required heat exchanger size can be selected for any heat exchange task, efficiently manufactured in modules and assembled on site at the application site. Transport and assembly are extremely simple and maintenance is not labor intensive. In the event of a defect, only the relevant heat exchanger layer needs to be repaired or replaced.
  • the exchanger surface required for the heat exchange or for the desired degree of temperature exchange can be arranged in front of one another - that is, in countercurrent. It is particularly advantageous if the height of each slat is a multiple of the distance between the slats. This means that the heat transfer takes place essentially over the fins and not over the walls separating the medium channels.
  • the lamella thickness is dimensioned in relation to the lamella material in such a way that low-energy loss heat conduction occurs.
  • a separating surface can be attached between the individual layers of the heat exchanger, which separates the medium flow of one layer from the medium flow of the adjacent layer. This means that cross turbulence is prevented and pressure losses are particularly low. Furthermore, the condensate that forms in one layer cannot run into other layers and can increasingly generate pressure losses there.
  • the fins extend into both media paths of different warmth, since it is ensured, in particular when the fins are narrow, that the heat transfer occurs essentially only via the fins and thus exergy losses are particularly low.
  • the heat flow from one medium to another is essentially only via the fins.
  • the gas / liquid, in particular air / water, heat exchanger shown in FIG. 1 is flowed through from right to left by gas or air and in countercurrent by liquid or water. It is divided into five layers 2, which form functional modules that each form a complete heat exchanger. Each layer 2 is at the inlet 3 and outlet 4 of the gas as well as at the inlet 5 and outlet 6 of the Liquid is connected separately, so that the entire gas stream and the entire liquid stream are divided into individual streams, a stream of both media being provided for each layer and these streams being combined again into a total stream behind the heat exchanger. While the gas streams 7 flow straight through the individual layers, the liquid flows back and forth in a pipe coil 8 in each layer 2, whereby the liquid stream crosses and flows against the air stream.
  • each layer 2 numerous fins 9 are fastened to the tubes 8 parallel to the gas flow, the fins 9 being perpendicular to the regions of the tubes 8 which run through the family of fins.
  • the lamella thickness is dimensioned in relation to the lamella material in such a way that low-energy loss heat conduction occurs.
  • a separating surface 10, which separates the gas paths of each layer, is fastened between each layer 2 parallel to the tubes 8 and to each layer.
  • each layer is connected at the beginning and end of the layer via a valve 11 to the inlet 5 and outlet line 6, respectively, so that the layers can be vented when they are put into operation for the first time and after closing two valves 11 each layer is easily taken out of operation, checked , can be cleaned or dismantled on the liquid side without disassembly.
  • the gas / gas, in particular air / air, heat exchanger shown in FIGS. 3 and 4 can be flowed through from left to right by exhaust air (exhaust gas) or outside air 12 and from right to left by a second gas stream 13:
  • the heat exchanger is divided into five individual, functional layer modules 2, each module having ribbed heat-conducting surfaces in order to extract and transfer heat from the gas flows flowing in countercurrent.
  • Each layer 2 has a separating plane 14 in the center, on which the slats 9 are fastened at right angles and parallel to one another.
  • the two gas flows are separated from one another by these levels 14, so that, except for the outer regions, i. H. 4 the upper and lower region, the gas flows each flow through two adjacent layers 2.
  • Each layer 2 is connected separately from the other layers to the inlet and outlet of both gas streams, so that, as in the first exemplary embodiment, both media streams are divided and flow through each layer with partial streams and are then led to the two outlets without leading to one to get to the next layer.
  • the lamellae 9 thus each extend into the paths of two different media, and the lamellae 9 are so close together that a heat flow occurs essentially only via the lamellae.
  • the height of the slats H is a multiple of the distance A from each other.
  • the lamella thickness is dimensioned in relation to the lamella material in such a way that low-energy loss heat conduction occurs.
  • Parallel separating surfaces 10 are arranged between the individual module layers 2 of the heat exchanger, and the same medium flow flows around them on both sides.
  • each layer 2 is releasably attached to the adjacent layer or layers, so that they can be easily replaced and assembled and removed.
  • Both heat exchangers can be used not only in the horizontal position shown in the figures, but also in other positions, in particular in a vertical position.
  • the degree of temperature exchange is 75 to 90%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Gas Separation By Absorption (AREA)

Description

  • . Es sind Luft/Wasser- und Luft/Luft-Wärmeaustauscher verschiedenster Bauarten bekannt. Diese weisen Platten bzw. Lamellen und/oder Rohre auf, wobei die beiden Ströme von Luft und/oder Wasser durch Leitungen bzw. Kanäle geführt werden und währenddessen eines der beiden Medien seine Wärme an das andere Medium abgibt. Der höchste Temperaturaustauschgrad wird bei Gegenstromwärmeaustauschem erzielt.
  • All diesen Wärmeaustauschern ist gemeinsam, daß ein hoher Temperaturaustauschgrad nur dann erzielbar ist, wenn der Wärmeaustauscher sehr groß gebaut wird. Solche auf geringste Exergieverluste ausgelegte Wärmeaustauscher führen zu Wärmeaustauscherlängen, welche für die meisten Anwendungsfälle aufgrund der Abmessungen und des Gewichts unpraktikabel sind. Ferner können diese Wärmeaustauscher nur mit erheblichem Aufwand gereinigt werden, und schon bei einem geringen Defekt am Wärmeaustauscher kann eine komplette Erneuerung erforderlich werden.
  • Aus der GB-A 20 14 484 ist ein Blockwärmetauscher im Kreuzstromprinzip bekannt, der für eine rationelle Herstellung aus Baugruppen besteht. Jede Baugruppe besitzt eine Rohrschlange, auf der Lamellen befestigt sind. Der Gesamtluftstrom durchströmt hierbei in Reihe nacheinander alle Baugruppen. Ferner ist aus der FR-A 1311571 ein Gegenstromwärmetauscher bekannt, der Lamellenblöcke mit einlegbaren Rohrschlangen aufweist. In Höhe der Ebene der Rohrschlange befinden sich Lufttrennschichten, so daß eine Rohrschlange die Luftströme zweier Lamellenblöcke beeinflußt.
  • Aufgabe der Erfindung ist es, einen Wärmeaustauscher zu schaffen, der einen sehr hohen Temperaturaustauschgrad besitzt, einfach zu reparieren ist und ohne größeren Arbeitsaufwand montiert und demontiert werden kann.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Gas/Flüssigkeit- oder Gas/Gas-Wärmeaustauscher parallel angeordnete Wärmeaustauscherschichten aufweisen,
    • die mit einer Vielzahl zueinander paralleler, einstückiger Wärmeleitlamellen die Wärme von einem Medium zu einem zweiten übertragen,
    • von denen jede einen vollständigen Gegenstromwärmeaustauscher bildet, der beide Medien führt,
    • die parallel zu den anderen Schichten liegen und jeweils für jedes Medium mit je einem Ein-und Auslaß an den Haupteintritts- und Austrittsleitungen des gesamten Wärmeaustauschers separat angeschlossen sind, und
    • die mit benachbarten Schichten lösbar verbunden sind.
  • Ein solcher Wärmeaustauscher ist in einzelne, im Gegenstromprinzip Wärme austauschende und in sich funktionsfähige Schichtmodule unterteilt. Hierdurch kann für jede beliebige Wärmeaustauschaufgabe die erforderliche Wärmeaustauschergröße gewählt, rationell in Modulen gefertigt und vor Ort an der Anwendungsstelle zusammengebaut werden. Antransport und Montage sind extrem einfach und eine Wartung wenig arbeitsaufwendig. Bei einem Defekt braucht nur die betreffende Wärmeaustauscherschicht repariert oder erneuert zu werden.
  • Da der Wärmeaustauscher in viele Einzelschichten aufgeteilt ist, kann die für den Wärmeaustausch oder für den gewünschten Temperaturaustauschgrad erforderliche Austauscherfläche voreinander - also in Gegenstrom - angeordnet werden. Besonders vorteilhaft ist es, wenn die Höhe jeder Lamelle ein Vielfaches des Abstandes zwischen den Lamellen beträgt. Dies führt dazu, daß die Wärmeübertragung im wesentlichen über die Lamellen und nicht über die die Mediumkanäle trennenden Wände erfolgt. Die Lamellendicke ist in bezug auf das Lamellenmaterial so dimensioniert, daß eine exergieverlustarme Wärmeleitung entsteht.
  • Zwischen den einzelnen Schichten des Wärmeaustauschers kann jeweils eine Trennfläche befestigt sein, die den Mediumstrom einer Schicht von dem Mediumstrom der benachbarten Schicht trennt. Dies führt dazu, daß eine Querverwirbelung verhindert wird und Druckverluste besonders gering sind. Ferner kann das sich in einer Schicht bildende Kondensat nicht in andere Schichten laufen und dort verstärkt Druckverluste erzeugen.
  • Insbesondere bei Gas/Gas-Wärmeaustauschern ist es von Vorteil, wenn die Lamellen in beide unterschiedlich warmen Medienwege hineinreichen, da dann insbesondere bei einem engen Lamellenstand sichergestellt ist, daß die Wärmeübertragung im wesentlichen nur über die Lamellen geschieht und damit Exergieverluste besonders gering sind. Hierzu wird auch vorgeschlagen, daß der Wärmestrom von einem Medium zum anderen im wesentlichen nur über die Lamellen erfolgt.
  • Zwei Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen :
    • Fig. 1 eine schematische Darstellung eines Gas/Flüssigkeit-Wärmeaustauschers ;
    • Fig. 2 eine perspektivische Ansicht eines Gas/Flüssigkeit-Wärmeaustauschers nach Fig. 1, mit drei Schichten ;
    • Fig. 3 eine schematische Darstellung eines Gas/Gas-Wärmeaustauschers;
    • Fig. 4 eine perspektivische Darstellung eines Gas/Gas-Wärmeaustauschers nach Fig. 3.
  • Der in Fig. 1 dargestellte Gas/Flüssigkeit-, insbesondere Luft/Wasser-Wärmeaustauscher wird von rechts nach links von Gas bzw. Luft und im Gegenstrom von Flüssigkeit bzw. Wasser durchströmt. Er ist in fünf Schichten 2 aufgeteilt, die in sich funktionsfähige Module bilden, die jeweils damit einen kompletten Wärmeaustauscher bilden. Jede Schicht 2 ist am Eintritt 3 und Austritt 4 des Gases als auch am Einlaß 5 und Auslaß 6 der Flüssigkeit getrennt angeschlossen, so daß sich der gesamte Gasstrom als auch der gesamte Flüssigkeitsstrom in einzelne Ströme aufteilt, wobei für jede Schicht ein Strom beider Medien vorgesehen ist und hinter dem Wärmeaustauscher diese Ströme wieder jeweils in einen Gesamtstrom zusammengeführt sind. Während die Gasströme 7 die einzelnen Schichten geradlinig durchströmen, fließt die Flüssigkeit in jeder Schicht 2 in einer Rohrschlange 8 hin und her, wobei hierdurch der Flüssigkeitsstrom den Luftstrom kreuzt und ihm entgegenströmt.
  • In jeder Schicht 2 sind parallel zum Gasstrom zahlreiche Lamellen 9 an den Rohren 8 befestigt, wobei die Lamellen 9 senkrecht zu den Bereichen der Rohre 8 stehen, die durch die Lamellenschar laufen. Die Lamellendicke ist in bezug auf das Lamellenmaterial so dimensioniert, daß eine exergieverlustarme Wärmeleitung entsteht. Zwischen jeder Schicht 2 ist parallel zu den Rohren 8 und zu jeder Schicht eine Trennfläche 10 befestigt, die die Gaswege jeder Schicht voneinander trennt. Die Rohre jeder Schicht sind am Anfang und Ende der Schicht jeweils über ein Ventil 11 an der Einlaß- 5 bzw. Auslaßleitung 6 angeschlossen, so daß die Schichten bei Erstinbetriebnahme entlüftet werden können und nach Verschließen zweier Ventile 11 jede Schicht leicht außer Betrieb genommen, überprüft, ohne Demontage flüssigkeitsseitig gereinigt oder auch demontiert werden kann.
  • Der in den Figuren 3 und 4 dargestellte Gas/Gas-, insbesondere Luft/Luft-Wärmeaustauscher kann von links nach rechts von Abluft-(Abgas) bzw. Außenluft 12 und von rechts nach links von einem zweiten Gasstrom 13 durchströmt werden: Der Wärmeaustauscher ist in fünf einzelne, in sich funktionsfähige Schichtmodule 2 aufgeteilt, wobei jedes Modul berippte Wärmeleitflächen aufweist, um den im Gegenstrom strömenden Gasmengen Wärme zu entziehen und zu übertragen. Jede Schicht 2 weist mittig eine Trennebene 14 auf, an der Lamellen 9 rechtwinklig und zueinander parallel befestigt sind. Die beiden Gasströme werden durch diese Ebenen 14 voneinander getrennt, so daß bis auf die Außenbereiche, d. h. in Fig. 4 der obere und untere Bereich, die Gasströme jeweils durch zwei benachbarte Schichten 2 strömen.
  • Jede Schicht 2 ist getrennt von den anderen Schichten an den Einlaß und Auslaß beider Gasströme angeschlossen, so daß, wie schon im ersten Ausführungsbeispiel, beide Medienströme aufgeteilt werden und jeweils mit Teilströmen jede Schicht durchströmen und danach zu den beiden Auslässen geführt werden, ohne zu einer nächsten Schicht zu gelangen. Die Lamellen 9 reichen somit jeweils in die Wege zweier unterschiedlicher Medien hinein, und die Lamellen 9 stehen so nah beieinander, daß ein Wärmestrom im wesentlichen nur über die Lamellen erfolgt. Die Höhe der Lamellen H beträgt ein Vielfaches des Abstandes A voneinander. Die Lamellendicke ist in bezug auf das Lamellenmaterial so dimensioniert, daß eine exergieverlustarme Wärmeleitung entsteht.
  • Zwischen den einzelnen Modulschichten 2 des Wärmeaustauschers sind parallele Trennflächen 10 angeordnet, die jeweils beidseitig vom selben Mediumstrom umströmt werden.
  • Bei beiden Ausführungsbeispielen ist jede Schicht 2 lösbar an der oder den benachbarten Schichten befestigt, so daß sie leicht auswechselbar und montierbar als auch demontierbar sind. Beide Wärmeaustauscher lassen sich nicht nur in der in den Figuren dargestellten waagerechten Lage, sondern auch in anderen Lagen, insbesondere einer senkrechten, verwenden. Der Temperaturaustauschgrad beträgt 75 bis 90 %.

Claims (6)

1. Gas/Flüssigkeit- oder Gas/Gas-Wärmeaustauscher, mit parallel angeordneten Wärmeaustauscherschichten (2),
die mit einer Vielzahl zueinander paralleler, einstückiger Wärmeleitlamellen (9) die Wärme von einem Medium zu einem zweiten übertragen,
von denen jede einen vollständigen Gegenstromwärmeaustauscher bildet, der beide Medien führt,
die parallel zu den anderen Schichten (2) liegen und jeweils für jedes Medium mit je einem Ein- und Auslaß an den Haupteintritts- und Austrittsleitungen des gesamten Wärmeaustauschers (1) separat angeschlossen sind, und
die mit benachbarten Schichten (2) lösbar verbunden sind.
2. Wärmeaustauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Höhe (H) jeder Lamelle (9) ein Vielfaches des Abstandes (A) zwischen den Lamellen beträgt.
3. Wärmeaustauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwischen den Schichten (2) jeweils eine Trennfläche (10) angeordnet ist, die den Mediumstrom einer Schicht von dem Mediumstrom der benachbarten Schicht trennt.
4. Wärmeaustauscher für einen Luft/Luft-Austausch nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Lamellen (9) in beide unterschiedlich warmen Medienwege hineinreichen.
5. Wärmeaustauscher nach Anspruch 4, dadurch gekennzeichnet, daß der Wärmestrom von einem Medium zum anderen im wesentlichen nur über die Lamellen (9) erfolgt.
6. Wärmeaustauscher nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die zu jeder Schicht (2) führenden Leitungen getrennt von den anderen Schichten durch Ventile absperrbar sind.
EP85111134A 1984-09-13 1985-09-04 Gas/Flüssigkeit- oder Gas/Gas-Wärmeaustauscher Expired EP0177751B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85111134T ATE46032T1 (de) 1984-09-13 1985-09-04 Gas/fluessigkeit- oder gas/gas-waermeaustauscher.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843433598 DE3433598A1 (de) 1984-09-13 1984-09-13 Verfahren zur praktischen anwendung des gegenstromprinzips fuer waermeaustauscher, luft/wasser, luft/luft oder sinngemaess fuer andere medien
DE3433598 1984-09-13

Publications (3)

Publication Number Publication Date
EP0177751A2 EP0177751A2 (de) 1986-04-16
EP0177751A3 EP0177751A3 (en) 1986-10-22
EP0177751B1 true EP0177751B1 (de) 1989-08-30

Family

ID=6245290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85111134A Expired EP0177751B1 (de) 1984-09-13 1985-09-04 Gas/Flüssigkeit- oder Gas/Gas-Wärmeaustauscher

Country Status (5)

Country Link
US (1) US4738309A (de)
EP (1) EP0177751B1 (de)
AT (1) ATE46032T1 (de)
DD (1) DD239655A5 (de)
DE (2) DE3433598A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252502A1 (en) * 2007-11-12 2010-10-07 Agilent Technologies, Inc. Hplc-system with variable flow rate

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2202932B (en) * 1987-03-26 1991-05-15 Coppermill Limited Heat regenerators
DE3916779C2 (de) * 1988-09-30 1998-04-09 Valeo Sistemi Termici S P A Wärmetauscher, insbesondere für die Heizungsanlage eines Kraftfahrzeuges
DK171423B1 (da) * 1993-03-26 1996-10-21 Topsoe Haldor As Spildevarmekedel
DE4408087C2 (de) * 1994-03-10 1997-05-22 Schilling Heinz Kg Verfahren zum Betrieb einer Wärmeaustauscheranlage, für rekuperativen Wärmeaustausch
DE19546276A1 (de) * 1995-12-12 1997-06-19 Schilling Heinz Kg Verfahren und Vorrichtung zur betriebssicheren Funktion von Wärmeaustauschern mit mehreren parallelen flüssigkeitsdurchströmten Bauteilen zur Wärmeübertragung zwischen flüssigen und flüssig/gasförmigen Medien
DE19644674A1 (de) 1996-10-28 1998-04-30 Schilling Heinz Kg Lamellenrohr-Wärmeaustauscher in Blockbauweise zur Wärmeübertragung zwischen gas-, dampfförmigen oder flüssigen Medien mit horizontalen Trennflächen
FR2767380B1 (fr) * 1997-08-18 1999-09-24 Gec Alsthom Stein Ind Dispositif d'echange thermique pour une chaudiere a lit fluidise circulant
US6640543B1 (en) * 2001-09-21 2003-11-04 Western Washington University Internal combustion engine having variable displacement
DE10304077A1 (de) 2003-01-31 2004-08-12 Heinz Schilling Kg Luft-/Wasser-Wärmetauscher mit Teilwasserwegen
US7454956B1 (en) * 2005-09-22 2008-11-25 Lopresti William J Heat exchanger leak detection using mass gas flow metering
US8540012B2 (en) * 2008-06-13 2013-09-24 Lockheed Martin Corporation Heat exchanger
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
WO2011009080A2 (en) 2009-07-17 2011-01-20 Lockheed Martin Corporation Heat exchanger and method for making
US9777971B2 (en) * 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US20110127022A1 (en) * 2009-12-01 2011-06-02 Lockheed Martin Corporation Heat Exchanger Comprising Wave-shaped Fins
US20110277473A1 (en) * 2010-05-14 2011-11-17 Geoffrey Courtright Thermal Energy Transfer System
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
JP5163763B2 (ja) * 2011-02-23 2013-03-13 ダイキン工業株式会社 空気調和機用熱交換器
WO2013138492A1 (en) * 2012-03-13 2013-09-19 Blissfield Manufacturing Company Nested heat exchanger
US9631880B2 (en) * 2012-04-10 2017-04-25 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Process for optimizing a heat exchanger configuration
DE102012108109B4 (de) * 2012-08-31 2014-04-10 Rittal Gmbh & Co. Kg Wärmetauscher für die Schaltschrankkühlung und eine entsprechende Kühlanordnung
DE102013003905B4 (de) 2013-03-08 2020-01-23 Simon Benzler Modulwärmeübertrager in lüftungstechnischen Geräten
GB2521430A (en) * 2013-12-19 2015-06-24 Ibm Device and method for converting heat into mechanical energy
US10443945B2 (en) * 2014-03-12 2019-10-15 Lennox Industries Inc. Adjustable multi-pass heat exchanger
EP3120091B1 (de) 2014-03-21 2020-08-12 Veotec Americas LLC Verfahren zur herstellung eines luftabscheidersystems
US10203171B2 (en) * 2014-04-18 2019-02-12 Lennox Industries Inc. Adjustable multi-pass heat exchanger system
FR3028025B1 (fr) * 2014-10-30 2016-11-04 Nexter Systems Dispositif de camouflage thermique et vehicule comportant un tel dispositif
US20180094867A1 (en) * 2016-09-30 2018-04-05 Gilles Savard Air-liquid heat exchanger
US20180224218A1 (en) * 2017-02-07 2018-08-09 Johnson Controls Technology Company Heat exchanger coil array and method for assembling same
US10895405B2 (en) * 2018-09-25 2021-01-19 Rheem Manufacturing Company Tankless water heater apparatus, system, and methods
JP6741820B1 (ja) * 2019-04-12 2020-08-19 株式会社神戸製鋼所 気化装置の置き換え方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE43378C (de) * F. FEHR in München, Lindwurmstrafse 21 III. links Dampf-Wasserofen
US1123765A (en) * 1912-02-10 1915-01-05 James J Lawler Water-heater.
US1901090A (en) * 1929-11-30 1933-03-14 Siemens Ag Multiple heat exchange coil
US1926719A (en) * 1931-07-08 1933-09-12 American Eng Co Ltd Refrigerating apparatus
US1899629A (en) * 1931-10-26 1933-02-28 American Blower Corp Steel pipe and fin heater
US2237239A (en) * 1935-02-26 1941-04-01 Fedders Mfg Co Inc Refrigeration apparatus
US2044069A (en) * 1935-07-25 1936-06-16 Gen Refrigeration Corp Finned evaporator
US2217410A (en) * 1938-02-17 1940-10-08 Gen Electric Heat exchange apparatus
US2354131A (en) * 1938-03-19 1944-07-18 Lul Products Inc Refrigerating apparatus
US2532608A (en) * 1946-05-07 1950-12-05 Dalin David Method of heating
US2505790A (en) * 1946-07-24 1950-05-02 Perfex Corp Combination radiator and oil cooler
US2512560A (en) * 1946-08-07 1950-06-20 Young Radiator Co Radiator header construction
FR1311571A (fr) * 1960-12-29 1962-12-07 Cie Europ Des Materiels Thermi échangeur de chaleur à serpentins
FR1389311A (fr) * 1964-04-13 1965-02-12 Système de tubes à ailettes, notamment pour préchauffeurs d'eau d'alimentation de chaudières à vapeur
FR2008887B1 (de) * 1968-05-20 1973-12-07 Kobe Steel Ltd
DE1933688A1 (de) * 1969-07-03 1971-01-21 Schubert Maschf Geb Lamellenheizkoerper
AT313855B (de) * 1971-01-13 1974-03-11 Buss Ag Einrichtung zur Durchführung des Wärmeaustausches zwischen einem Wärmeträgermedium und einem Drehrohr
DE7625179U1 (de) * 1976-08-11 1978-02-02 Mollerus, Josef, Dipl.-Ing., 7758 Meersburg Lueftungskanal mit integrierter rekuperativer waerme- oder kaelterueckgewinnung
US4197625A (en) * 1978-02-15 1980-04-15 Carrier Corporation Plate fin coil assembly
SE7808367L (sv) * 1978-08-03 1980-02-04 Ostbo John D B Anordning vid vermevexlare
FR2441820A1 (fr) * 1978-11-20 1980-06-13 Chausson Usines Sa Echangeur refroidisseur industriel servant au refroidissement de l'air ou d'un autre gaz
DE2906837A1 (de) * 1979-02-22 1980-09-04 Fsl Fenster System Lueftung Kontinuierlicher waermeaustauscher fuer gasfoermiges fluidum
DE3011011C2 (de) * 1979-03-22 1983-06-01 Hitachi, Ltd., Tokyo Plattenwärmetauscher mit in einem Stapel angeordneten rechteckigen Platten
JPS5674592A (en) * 1979-11-21 1981-06-20 Toshimi Kuma Opposing current type heat exchanger
DE3044135C2 (de) * 1980-11-24 1983-01-27 Siemens AG, 1000 Berlin und 8000 München Luft-Luft-Wärmetauscher
DE8032917U1 (de) * 1980-12-11 1981-04-02 Klix, Uwe, 7210 Rottweil Waermetauscher
CH649625A5 (de) * 1982-02-08 1985-05-31 Paul Stuber Verwendung von stegdoppelplatten zum fuehren von frisch- und abluft in einem waermetauscher.
DE3328229C2 (de) * 1983-08-04 1985-10-10 Möbius & Ruppert, 8520 Erlangen Wärmetauscher
GR1000349B (el) * 1989-07-21 1992-06-25 Bat Cigarettenfab Gmbh Φίλτρο Σιγαρέττου.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252502A1 (en) * 2007-11-12 2010-10-07 Agilent Technologies, Inc. Hplc-system with variable flow rate

Also Published As

Publication number Publication date
ATE46032T1 (de) 1989-09-15
EP0177751A2 (de) 1986-04-16
DE3433598A1 (de) 1986-03-20
EP0177751A3 (en) 1986-10-22
DE3572723D1 (en) 1989-10-05
US4738309A (en) 1988-04-19
DD239655A5 (de) 1986-10-01

Similar Documents

Publication Publication Date Title
EP0177751B1 (de) Gas/Flüssigkeit- oder Gas/Gas-Wärmeaustauscher
DE60130274T2 (de) Wärmetauscher mit paralleler Fluidströmung
DE3280439T2 (de) Waermetauscher.
EP0819907B1 (de) Plattenwärmetauscher
EP0548604B1 (de) Plattenwärmetauscher
DE3734857C2 (de)
DE19709601A1 (de) Plattenwärmeübertrager
EP2389555B1 (de) Plattenwärmeübertrager
DE1451254A1 (de) Plattenfoermiger Waermetauscher
DE2706090A1 (de) Plattenaustauscher
DE3645307C2 (de) Wetterkühler zum Kühlen der Wetter in Untertagebetrieben
DE3328229C2 (de) Wärmetauscher
EP1139055B1 (de) Mehrfachrohrbündel-Wärmeaustauscher
DE102008038658A1 (de) Rohrbündelwärmetauscher
DE2549053A1 (de) Waermetauscher mit plattenfoermiger waermetauschermatrix fuer die waermeuebertragung zwischen drei medien
DE4222663C2 (de) Heizregister, insbesondere für Trockeneinrichtungen
DE102016113137A1 (de) Gas-Fluid-Gegenstromwärmetauscher
EP0394758B1 (de) Wärmetauscher
DE102010024613A1 (de) Plattenwärmetauscher
DE102015104959A1 (de) Gegenstromplattenwärmeübertrager
DE19706634B4 (de) Kreuzgegenstromplattenwärmetauscher
DE4340849C3 (de) Plattenwärmeaustauscher in Modulbauweise zum rekuperativen Wärmeaustausch im Gegenstromprinzip zwischen gasförmigen Medien
DE878357C (de) Waermeaustauscher
CH219262A (de) Lamellen-Wärmeaustauschvorrichtung.
DE1451254C (de) Plattenwärmetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860924

17Q First examination report despatched

Effective date: 19880309

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 46032

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REF Corresponds to:

Ref document number: 3572723

Country of ref document: DE

Date of ref document: 19891005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85111134.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040901

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040902

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040905

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040906

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040908

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040913

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040915

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041125

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050904

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

BE20 Be: patent expired

Owner name: *HEINZ SCHILLING K.G.

Effective date: 20050904

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20050904

BE20 Be: patent expired

Owner name: *HEINZ SCHILLING K.G.

Effective date: 20050904