EP0394758B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0394758B1
EP0394758B1 EP90106969A EP90106969A EP0394758B1 EP 0394758 B1 EP0394758 B1 EP 0394758B1 EP 90106969 A EP90106969 A EP 90106969A EP 90106969 A EP90106969 A EP 90106969A EP 0394758 B1 EP0394758 B1 EP 0394758B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
sections
cylinder axis
flow chamber
baffle plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90106969A
Other languages
English (en)
French (fr)
Other versions
EP0394758A2 (de
EP0394758A3 (de
Inventor
Manfred Dipl.-Ing. Steinbauer
Helmut Kreis
Dieter Mihailowitsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0394758A2 publication Critical patent/EP0394758A2/de
Publication of EP0394758A3 publication Critical patent/EP0394758A3/de
Application granted granted Critical
Publication of EP0394758B1 publication Critical patent/EP0394758B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • F28D7/0091Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium the supplementary medium flowing in series through the units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/28Safety or protection arrangements; Arrangements for preventing malfunction for preventing noise

Definitions

  • the invention relates to a heat exchanger with a substantially cylindrical flow space, which is delimited by a jacket, with a number of tubes which run through the flow space in a direction essentially parallel to the cylinder axis, with at least one pair of connecting pieces, which are opposite one another on the cylinder surface of the jacket are arranged and lead into the flow space, and with support plates which are installed substantially perpendicular to the cylinder axis in the flow space.
  • Such heat exchangers are used for a large number of applications for cooling or heating liquids and / or gases by indirect heat exchange.
  • a fluid enters the flow space through one of the nozzles, rinses the pipes there with a flow direction that is essentially perpendicular to the cylinder axis, and flows out again through another nozzle.
  • the flow space is often divided into several sections, each with its own pair of filler and drain connections.
  • Such a design in which the fluid in the flow space flows in cross flow to a second fluid which is passed through the interior of the tubes, offers the advantage that the first fluid experiences only a very slight pressure loss when passing through the heat exchanger. This is achieved through a relatively direct passage through the flow space, which, however, presupposes a fairly open construction without flow-preventing fittings in the flow space.
  • the object of the invention is now to improve a heat exchanger of the type mentioned in such a way that its mechanical stability is also sufficient for use at higher flow rates.
  • the difficulties due to acoustic vibrations are to be overcome.
  • Favorable heat transfer performance and good distribution of the first fluid in the flow space should be ensured.
  • At least one anti-drumming plate which is arranged essentially parallel to the cylinder axis and essentially parallel to the connecting line of the pair of opposing connecting pieces in the flow space.
  • two parallel anti-drumming plates are used on both sides of the cylinder axis, which run the full length of the flow space.
  • an odd number and an asymmetrical one Arrangement of anti-drumming plates can be favorable.
  • obstacles are built into each cross-sectional area, which counteract the formation of standing acoustic waves.
  • the interaction with the support plates results in a much more stable and rigid mechanical structure and the rigidity of the cylindrical jacket around the flow space is increased.
  • the heat exchanger according to the invention can therefore withstand flow velocities of up to approximately 10% of the speed of sound in the flow space.
  • the anti-drumming plates and the support plates are integrally connected to one another, for example by welding the contact surfaces. This creates a particularly stable and rigid honeycomb structure within the flow space.
  • a further development of the invention has a baffle plate which is arranged essentially perpendicular to the connecting line between two pairs of opposing nozzles and continuously over the entire length of the flow space parallel to the cylinder axis. It is advantageous if there is a space between the long sides of the baffle plate and the casing.
  • baffle plate Compared to commonly used baffle plates, which are only attached to a small area below the inlet nozzle and therefore only one represent a rough measure for the distribution of the fluid flowing through the inlet connection, the baffle plate specifically effects a better supply of fluid into the edge regions of the flow space.
  • the baffle plate is divided into sections in the direction of the cylinder axis, which have different relative hole cross-sectional areas. In this way, a targeted distribution of the fluid guided through the flow space can also be achieved in the direction of the cylinder axis.
  • the baffle plate is divided into sections, each of which has a whole number n of sections and is delimited on each side either by one end of the flow space or by a plane lying exactly between two pairs of nozzles perpendicular to the cylinder axis.
  • the nozzles are preferably arranged so that the sections are the same size.
  • a heat exchanger can have several sections or just one. In the latter case there is only one pair of nozzles.
  • section or sections are thus symmetrical with respect to their division into sections to the connecting line of the associated pair of nozzles.
  • N is preferably between 4 and 8.
  • the factor f is on the order of 1, approximately between 0.8 and 1.3.
  • the ratio l v / r is usually in the range of 3; L1 / L n / 2 is generally about 1.5 to 2.0, preferably about 1.7.
  • the tubes running through the flow space are combined into a plurality of bundles lined up along the connecting axis of a pair of connecting pieces, the tubes being connected to one another in such a way that the bundles are separated from those in the tubes flowing fluid are successively flowed through.
  • a cocurrent or countercurrent effect can additionally be achieved, depending on the operating mode.
  • heat exchangers As cracked gas coolers in ethylene plants which, like the type according to the invention, have a cylindrical flow space and cooling water pipes lying parallel to the cylinder axis, but in which the gas to be cooled passes several times over the cross section of the flow space. and is brought here.
  • the use of the heat exchanger according to the invention as a step cooler for cracked gas in an ethylene plant now combines the advantages of the two types of cracked gas coolers known in ethylene plants, namely, on the one hand, moderate outlay on equipment and thus relatively low capital costs and, on the other hand, very low pressure loss and thus low operating costs.
  • the cracked gas is preferably conducted as the first fluid through the flow space.
  • the jacket 1 of the heat exchanger is essentially cylindrical symmetry about the axis 8. It encloses the flow space 2 together with the partition walls 3A and 3C. This in turn is divided into two part spaces by a further partition wall 3B, between which no gas exchange is possible.
  • a first pair 4 of nozzles which is formed from inlet nozzle 4A and outlet nozzle 4B. Analogously, the nozzles 5A and 5B of the pair 5 can be seen on the right side.
  • Support plates 12 are installed in the flow space 2, the number of which in the exemplary embodiment is 10, ie 5 per subspace.
  • the support plates 12 are supported by a floor 15.
  • two anti-drumming plates 11 are shown in FIG. 2, which run over the full length of the flow space 2 from the partition wall 3A to the partition wall 3C (see FIG. 1).
  • Support plates 12, anti-drumming plates 11 and partitions 3A, 3B, 3C are welded to one another and form a rigid, honeycomb-like structure in which no lateral gas exchange between the honeycombs and no exchange to the volume between anti-drumming plates 11 and jacket 1 is possible.
  • a baffle plate 10 is provided, which is arranged below the inlet connections 4A, 5A in a horizontal plane over the full length of the flow space 2.
  • the width b of the baffle plate 10 shown in FIG. 10 is approximately equal to the inner diameter 2r of the filler neck 4A, 5A. However, b can also be slightly larger or smaller than 2r (see numerical example below).
  • the baffle plate 10 is delimited by the two anti-drumming plates 11 and is integrally connected to them.
  • the perforated baffle plate 10 makes the passage of the fluid introduced through the inlet connections 4A, 5A into the central part of the flow space 2 difficult and thus a better distribution through the spaces 14 (see FIG. 2) in the direction of the edge volume between the anti-drumming plates 11 and the jacket 1.
  • the baffle plate 10 is divided into two parts by the partition 3B.
  • Each of the two sections of the baffle plate 10 consists of sections P1 to P6 or P'1 to P'6, as shown in Figure 3.
  • the number n of sections per section is 6.
  • the baffle plate 10 has three different types of perforations, which are distinguished by different relative hole cross-sectional areas. By relative hole cross-sectional areas is meant the ratio between the opening area of the holes and the total area of the sheet.
  • the different types of perforations can be realized by different densities and / or sizes of holes.
  • L1, L2, L3 of relative hole cross-sectional areas are used in the embodiment, namely L1 for P1, P6, P′1, P′6, L2 for P2, P5, P′2, P′5 and L3 for P3, P4, P'3, P'4.
  • the perforations are chosen so that the relative hole cross-sectional area (L3) is the smallest directly below the inlet connection 4A, 5A and the most distant from the inlet connection 4A, 5A, the relative hole cross-sectional area (L1) is greatest, in order to ensure the most uniform fluid distribution possible to reach in the flow space along the cylinder axis.
  • the tubes which pass through the flow space 2 are not explicitly shown in the drawings. In the longitudinal section of FIG. 1, their straight sections lie between baffle plate 10 and support plate 15. At the ends of the heat exchanger, the tubes are either connected to one of the connections 6A, 6B or to one another, as will be explained in more detail below with reference to FIG. 2.
  • bundles A 1.2 to A 7.8 are shown, which are divided into two sub-groups A1, A2 to A7, A8.
  • the subgroups consist of 50 to 300, preferably 120 to 250 tubes and each fill a volume indicated by two crossed lines on both sides of an anti-drumming plate 11.
  • the tubes are connected to each other so that a fluid which is fed via the nozzle 6A, first flows parallel through the tubes of subgroup A1 and then successively through the tubes of the other subgroups and bundles in the order A2, A3, A4, A6, A7 , A8 and then to the outlet port 6B.

Description

  • Die Erfindung betrifft einen Wärmetauscher mit einem im wesentlichen zylinderförmigen Strömungsraum, der durch einen Mantel begrenzt ist, mit einer Anzahl von Rohren, die den Strömungsraum in im wesentlichen zur Zylinderachse paralleler Richtung durchziehen, mit mindestens einem Paar von Stutzen, die einander gegenüber an der Zylinderfläche des Mantels angeordnet sind und in den Strömungsraum führen, und mit Stützblechen, die im wesentlichen senkrecht zur Zylinderachse in den Strömungsraum eingebaut sind.
  • Derartige Wärmetauscher werden für eine Vielzahl von Anwendungen zum Abkühlen oder Anwärmen von Flüssigkeiten und/oder Gasen durch indirekten Wärmetausch eingesetzt. Dabei tritt ein Fluid durch einen der Stutzen in den Strömungraum ein, umspült dort die Rohre mit einer Strömungsrichtung, die im wesentlichen senkrecht zur Zylinderachse verläuft, und strömt durch einen weiteren Stutzen wieder hinaus. Oft ist der Strömungsraum in mehrere Abschnitte mit jeweils einem eigenen Paar von Einfüll- und Ablaßstutzen aufgeteilt. Eine solche Bauform, in der das Fluid im Strömungsraum im Kreuzstrom zu einem zweiten Fluid, das durch das Innere der Rohre geführt wird, strömt, bietet den Vorteil, daß das erste Fluid nur einen sehr geringen Druckverlust beim Durchgang durch den Wärmetauscher erfährt. Dies wird durch einen relativ direkten Durchgang durch den Strömungsraum bewirkt, der allerdings eine recht offene Bauweise ohne strömungshindernde Einbauten im Strömungsraum voraussetzt.
  • Dies wiederum verringert die mechanische Stabilität und Starrheit der Vorrichtung, so daß derartige Wärmetauscher bisher lediglich bei relativ niedrigen Strömungsgeschwindigkeiten im Strömungsraum eingesetzt werden können. Außerdem ist bei solchen Kreuzstromwärmetauschern auch das Problem der Verteilung des ersten Fluids im Strömungsraum senkrecht zur Strömungsrichtung bisher nicht zufriedenstellend gelöst.
    Neben der mechanischen Stabilität in Längsrichtung können bei dem Wärmetauscher auch Probleme durch akustische Schwingungen entstehen, welche durch stehende Wellen in Ebenen senkrecht zur Zylinderachse aufgebaut werden.
  • Aufgabe der Erfindung ist es nunmehr, einen Wärmetauscher der eingangs genannten Art dahingehend zu verbessern, daß seine mechanische Stabilität auch für die Anwendung bei höheren Strömungsgeschwindigkeiten ausreicht.
    Insbesondere sollen die Schwierigkeiten aufgrund akustischer Schwingungen überwunden werden. Dabei sollen eine günstige Wärmeübertragungsleistung und eine gute Verteilung des ersten Fluids im Strömungsraum gewährleistet sein.
  • Diese Aufgabe wird durch mindestens ein Antidröhnblech gelöst, das im wesentlichen parallel zur Zylinderachse und im wesentlichen parallel zur Verbindungslinie des Paares von einander gegenüberliegenden Stutzen in dem Strömungsraum angeordnet ist. Im allgemeinen werden zwei parallele Antidröhnbleche beiderseits der Zylinderachse verwendet, die über die volle Länge des Strömungsraumes verlaufen. Unter Umständen kann auch eine ungerade Anzahl und eine unsymmetrische Anordnung von Antidröhnblechen günstig sein. Auf diese Weise sind in jede Querschnittsfläche Hindernisse eingebaut, die einer Bildung von stehenden akustischen Wellen entgegenwirken.
    Im Zusammenwirken mit den Stützblechen ergibt sich ein wesentlich stabilerer und starrerer mechanischer Aufbau und die Starrheit des zylinderförmigen Mantels um den Strömungsraum wird verstärkt. Der erfindungsgemäße Wärmetauscher kann deshalb Strömungsgeschwindigkeiten bis zu etwa 10% der Schallgeschwindigkeit im Strömungsraum verkraften.
  • Zur weiteren Erhöhung der Stabilität des Wärmetauschers und zur Erleichterung der Herstellung desselben ist es günstig, wenn Antidröhnbleche und Stützbleche stoffschlüssig miteinander verbunden sind, beispielsweise durch Verschweißen der Berührungsflächen. Dadurch entsteht eine besonders stabile und starre Wabenstruktur innerhalb des Strömungsraumes.
  • Allerdings ist bei dieser Bauweise ein Queraustausch des Fluides im Strömungsraum zwischen verschiedenen Waben nicht mehr möglich, so daß eine gleichmäßige Fluidverteilung nicht ohne weiteres gewährleistet ist. Insbesondere der Austausch zwischen dem in Waben aufgeteilten Bereich und dem Randbereich des Strömungsraumes wird stark behindert, so daß die Wärmeübertragungsleistung vor allem in diesem Randbereich nicht optimal ist.
  • Eine Weiterbildung der Erfindung weist ein Prallblech auf, das im wesentlichen senkrecht zur Verbindungslinie zwischen zwei paarweise gegenüberliegenden Stutzen und durchgehend über die volle Länge des Strömungsraumes parallel zur Zylinderachse angeordnet ist. Dabei ist es günstig, wenn zwischen den Längsseiten des Prallblechs und dem Mantel ein Zwischenraum liegt.
  • Gegenüber üblicherweise verwandten Prallblechen, welche lediglich auf einer kleinen Fläche unterhalb des Eintrittsstutzens angebracht werden und daher nur eine sehr grobe Maßnahme zur Verteilung des durch den Eintrittsstutzen strömenden Fluids darstellen, bewirkt das Prallblech gezielt eine bessere Zufuhr von Fluid in die Randbereiche des Strömungsraumes.
  • Weiterhin ist es günstig, wenn das Prallblech in Richtung der Zylinderachse in Abschnitte unterteilt ist, die unterschiedliche relative Lochquerschnittsflächen aufweisen. Dadurch kann eine gezielte Verteilung des durch den Strömungsraum geführten Fluids auch in Richtung der Zylinderachse erreicht werden.
  • Dabei ist es vorteilhaft, wenn das Prallblech in Teilstücke unterteilt ist, die jeweils eine ganze Anzahl n von Abschnitten aufweisen und auf jeder Seite entweder durch ein Ende des Strömungsraumes oder durch eine genau zwischen zwei Paaren von Stutzen senkrecht zur Zylinderachse liegenden Ebene begrenzt werden. Die Stutzen sind vorzugsweise so angeordnet, daß die Teilstücke gleich groß sind. Ein Wärmetauscher kann mehrere Teilstücke oder auch nur eines aufweisen. Im letzteren Fall ist nur ein Paar von Stutzen vorhanden.
  • In günstiger Weiterbildung der Erfindung weist jeweils ein Teilstück des Prallbleches eine gerade Anzahl n von aufeinanderfolgenden Abschnitten Pi, i = 1,...,n auf, wobei jeweils die Abschnitte

    P i und P n-i+1 , i = 1,...,n/2
    Figure imgb0001


    hinsichtlich ihrer Abmessungen ai, bi und ihrer relativer Lochquerschnittsfläche Li identisch aufgebaut sind.
  • Das oder die Teilstücke sind also hinsichtlich ihrer Aufteilung in Abschnitte symmetrisch zur Verbindungslinie des zugehörigen Paares von Stutzen.
  • Es erweist sich als günstig, wenn die Anzahl n der Abschnitte Pi innerhalb eines Teilstückes zwischen 2 und 18 beträgt und wenn für die raltiven Lochquerschnittsflächen Li der Abschnitte Pi gilt:

    L i > L i+1 , i = 1,...,n/2-1.
    Figure imgb0002

  • Vorzugsweise liegt n zwischen 4 und 8 .
  • In einer günstigen Ausführungsform wird das Verhältnis zwischen größter und kleinster relativer Lochquerschnittsfläche L₁/Ln/2 in Abhängigkeit von der Verteillänge lv (= Abstand zwischen Mittelachse des Einfüllstutzens und Begrenzung des entsprechenden Teilstückes) und vom Innenradius r des Einfüllstutzens gewählt, und zwar vorzugsweise gemäß der Beziehung

    L₁ = f . √ l v /r ¯ . L n/2 .
    Figure imgb0003

  • Der Faktor f liegt in der Größenordung von 1, etwa zwischen 0,8 und 1,3 . Das Verhältnis lv/r liegt üblicherweise im Bereich von 3; L₁/Ln/2 beträgt im allgemeinen etwa 1,5 bis 2,0, vorzugsweise ca. 1,7.
  • Umfangreiche hydrodynamische Berechnungen haben gezeigt, daß mit Hilfe einer derartigen Gestaltung des Prallbleches eine günstige Verteilung von Gas, welches durch den Strömungsraum geführt wird und damit eine hohe Wärmeübertragungsleistung des Wärmetauschers erzielt werden kann. Als besonders günstig hat sich ein Wertebereich von Ln/2 zwischen 10 und 30% herausgestellt.
  • Gemäß einer weiteren Variante des Wärmetauschers sind die durch den Strömungsraum verlaufenden Rohre in mehrere entlang der Verbindungsachse eines Paares von Stutzen aufgereihte Bündel zusammengefaßt, wobei die Rohre so miteinander verbunden sind, daß die Bündel von dem in den Rohren fließenden Fluid nacheinander durchströmt werden. Auf diese Weise kann zusätzlich - je nach Betriebsart - ein Gleich- oder Gegenstromeffekt erzielt werden.
  • Bis vor etwa 15 Jahren war es üblich, als Spaltgaskühler in Ethylenanlagen Wärmetauscher zu verwenden, die zwar ähnlich wie der erfindungsgemäße Typ einen zylinderförmigen Strömungsraum und parallel zur Zylinderachse liegende Kühlwasserrohre aufweisen, bei dem jedoch das zu kühlende Gas mehrmals über den Querschnitt des Strömungsraumes hin- und hergeführt wird.
  • Dabei entsteht jedoch ein wesentlich höherer Druckverlust und das Verfahren wird insgesamt energetisch ungünstig.
  • Als Energie knapp und teuer wurde, sah man sich gezwungen, Direktkontaktkühler zu verwenden und das Spaltgas durch direkten Wärmeaustausch mit Wasser abzukühlen. Solche Anlagen weisen zwar einen niedrigen Druckverlust auf; dieser wird jedoch durch hohen apparativen Aufwand erkauft. Dies ist einerseits darin begründet, daß das Kühlwasser im Kreislauf geführt werden und deshalb in einem gesonderten Wärmetauscher wieder abgekühlt werden muß. Andererseits ist es notwendig, das aus dem Direktkontaktkühler entnommene Wasser und auskondensierte schwere Kohlenwasserstoffe in einem Abscheider zu trennen.
  • Die Verwendung des erfindungsgemäßen Wärmetauschers als Stufenkühler für Spaltgas in einer Ethylenanlage vereinen nun die Vorteile der beiden bei Ethylenanlagen bekannten Typen von Spaltgaskühlern, nämlich einerseits mäßigen apparativen Aufwand und damit relativ geringe Kapitalkosten und andererseits sehr geringen Druckverlust und somit niedrige Betriebskosten. Vorzugsweise wird dabei das Spaltgas als erstes Fluid durch den Strömungsraum geführt.
  • Die Erfindung wird im folgenden anhand eines in den Zeichnungen schematisch dargestellten Ausführungsbeispiels näher erläutert.
  • Hierbei zeigen:
  • Figur 1
    einen Längsschnitt in einer vertikalen Ebene,
    Figur 2
    einen Querschnitt und
    Figur 3
    einen weiteren Längsschnitt in einer horizontalen Ebene durch einen erfindungsgemäßen Wärmetauscher.
  • Der Mantel 1 des Wärmetauschers ist im wesentlichen zylindersymmetrisch um die Achse 8 gestaltet. Er umschließt zusammen mit den Trennwänden 3A und 3C den Strömungsraum 2. Dieser wiederum ist durch eine weitere Trennwand 3B in zwei Teilräume unterteilt, zwischen denen kein Gasaustausch möglich ist. Zu dem in Figur 1 links angeordneten Teilraum gehört ein erstes Paar 4 von Stutzen, welches aus Eintrittsstutzen 4A und Ausstrittsstutzen 4B gebildet wird. Analog sind auf der rechten Seite die Stutzen 5A und 5B des Paares 5 zu sehen.
  • In den Strömungsraum 2 sind Stützbleche 12 eingebaut, deren Anzahl in dem Ausführungsbeispiel ingesamt 10, also 5 pro Teilraum beträgt. Die Stützbleche 12 werden von einem Boden 15 getragen. Des weiteren sind in Figur 2 zwei Antidröhnbleche 11 dargestellt, die über die volle Länge des Strömungsraumes 2 von Trennwand 3A bis Trennwand 3C (siehe Figur 1) verlaufen. Stützbleche 12, Antidröhnbleche 11 und Trennwände 3A, 3B, 3C sind miteinander verschweißt und bilden eine starre, wabenartige Struktur, bei der kein seitlicher Gasaustausch zwischen den Waben und kein Austausch zu dem Volumen zwischen Antidröhnblechen 11 und Mantel 1 möglich ist.
  • Aus diesem Grund ist ein Prallblech 10 vorgesehen, welches unterhalb der Eintrittsstutzen 4A, 5A in einer horizontalen Ebene über die volle Länge des Strömungsraumes 2 angeordnet ist. Die Breite b des in Figur 10 eingezeichneten Prallbleches 10 ist etwa gleich dem inneren Durchmesser 2r der Einfüllstutzen 4A,5A. b kann jedoch auch geringfügig größer oder kleiner als 2r sein (siehe Zahlenbeispiel unten). In Querrichtung ist das Prallblech 10 durch die beiden Antidröhnbleche 11 begrenzt und mit diesen stoffschlüssig verbunden.
  • Durch diese Anordnung bewirkt das gelochte Prallblech 10 einen erschwerten Durchgang des durch die Eintrittsstutzen 4A,5A eingeführten Fluids in den zentralen Teil des Strömungsraumes 2 und damit eine bessere Verteilung durch die Zwischenräume 14 (siehe Figur 2) in Richtung des Randvolumens zwischen Antidröhnblechen 11 und Mantel 1.
  • Analog zu den Teilräumen des Strömungsraumes 2 ist das Prallblech 10 durch die Trennwand 3B in zwei Teilstücke unterteilt. Jedes der beiden Teilstücke des Prallblechs 10 besteht aus Abschnitten P₁ bis P₆ bzw. P′₁ bis P′₆, wie es in Figur 3 dargestellt ist. Die Anzahl n der Abschnitte pro Teilstück beträgt im Ausführungsbeispiel 6. Das Prallblech 10 weist in einer speziellen Version drei verschiedene Arten von Lochungen auf, welche sich durch verschiedene relative Lochquerschnittsfläche auszeichnen. Mit relativer Lochquerschnittsflächen ist das Verhältnis zwischen Öffnungsfläche der Löcher und Gesamtfläche des Bleches gemeint. Die verschiedenen Lochungsarten können durch unterschiedliche Dichten und/oder Größen von Löchern realisiert werden.
  • Vorzugsweise werden bei dem Ausführungsbeispiel drei verschiedene Werte L₁, L₂, L₃ von relativen Lochquerschnittsflächen verwendet, und zwar

    L₁ für P₁, P₆, P′₁, P′₆,
    Figure imgb0004

    L₂ für P₂, P₅, P′₂, P′₅ und
    Figure imgb0005

    L₃ für P₃, P₄, P′₃, P′₄.
    Figure imgb0006

  • Die Lochungen werden so gewählt, daß direkt unterhalb der Eintrittstutzen 4A, 5A die relative Lochquerschnittsfläche (L₃) am kleinsten und bei den am weitesten von den Eintrittsstutzen 4A, 5A entfernten Abschnitten die relative Lochquerschnittsfläche (L₁) am größten ist, um eine möglichst gleichmäßige Fluidverteilung im Strömungsraum entlang der Zylinderachse zu erreichen.
  • In einem zu Versuchszwecken gebauten Wärmetauscher wurden die folgenden Zahlenwerte gewählt:
    Durchmesser des Strömungsraumes ds = 1676 mm
    Radius der Öffnung der Einfüllstutzen r = 348 mm
    Verteillänge lv = 999 mm
    Länge jedes Abschnittes a = 333 mm
    Breite der Abschnitte b = 666 mm
    rel. Lochquerschnitte: L₁ = 40%
    L₂ = 30%
    L₃ = 23%
    Verhältnis max. zu min. rel. Lochquerschn.: L₁/L₃ = 1,74
    Lochdurchmesser: d₁ = 8 mm
    d₂ = 8 mm
    d₃ = 10 mm
    Lochteilung: t₁ = 12 mm
    t₂ = 14 mm
    t₃ = 20 mm
  • Es ist herstellungstechnisch günstig, die Länge a der Abschnitte P₁ bis P₆ bzw. P₁′ bis P₆′ gleich dem Abstand zwischen zwei Stützblechen 12 zu wählen. Verteilungstechnisch gesehen ist natürlich eine höhere Anzahl von Abschnitten mit verschiedenen relativen Lochquerschnittsflächen günstiger; als praktikabler Kompromiß zwischen Verteilgüte und apparativem Aufwand hat sich bei den hydrodynamischen Rechnungen ein Wertebereich für die Anzahl n von Abschnitten pro Teilstück von 2 bis 18, vorzugsweise 4 bis 8 erwiesen.
  • Die Rohre, welche den Strömungsraum 2 durchziehen, sind in den Zeichnungen nicht explizit dargestellt. Im Längsschnitt von Figur 1 liegen ihre geraden Teilstücke zwischen Prallblech 10 und Tragblech 15. An den Enden des Wärmetauschers sind die Rohre entweder mit einem der Stutzen 6A, 6B oder untereinander verbunden, wie im folgenden anhand der Figur 2 näher erläutert wird.
  • In der Querschnittsdarstellung sind 4 Bündel A1,2 bis A7,8 eingezeichnet, die in jeweils zwei Untergruppen A₁, A₂ bis A₇, A₈ aufgeteilt sind. Die Untergruppen bestehen aus 50 bis 300, vorzugsweise 120 bis 250 Rohren und füllen jeweils ein durch zwei gekreuzte Linien gekennzeichnetes Volumen beiderseits eines Antidröhnbleches 11 aus.
  • Die Rohre sind so miteinander verbunden, daß ein Fluid, welches über den Stutzen 6A eingespeist wird, zunächst parallel die Rohre der Untergruppe A₁ durchströmt und anschließend nacheinander durch die Rohre der übrigen Untergruppen und Bündel in der Reihenfolge A₂, A₃, A₄, A₆, A₇, A₈ und anschließend zum Austrittsstutzen 6B geleitet wird.

Claims (10)

  1. Wärmetauscher mit einem im wesentlichen zylinderförmigen Strömungsraum (2), der durch einen Mantel (1) begrenzt ist, mit einer Anzahl von Rohren, die den Strömungsraum (2) in im wesentlichen zur Zylinderachse (8) paralleler Richtung durchziehen, mit mindestens einem Paar (4,5) von Stutzen, die einander gegenüber an der Zylinderfläche des Mantels (1) angeordnet sind und in den Strömungsraum (2) führen, und mit Stützblechen (12), die im wesentlichen senkrecht zur Zylinderachse (8) in den Strömungsraum (2) eingebaut sind, gekennzeichnet durch mindestens ein Antidröhnblech (11), das im wesentlichen parallel zur Zylinderachse (8) und im wesentlichen parallel zur Verbindungslinie des Paares (4,5) von einander gegenüberliegenden Stutzen in dem Strömungsraum (2) angeordnet ist.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß Antidröhnblech(e) (11) und Stützblech(e) (12) stoffschlüssig miteinander verbunden sind.
  3. Wärmetauscher nach einem der Ansprüche 1 oder 2, gekennzeichnet durch ein Prallblech (10), das im wesentlichen senkrecht zur Verbindungslinie zwischen zwei paarweise gegenüberliegenden Stutzen (4A,4B; 5A,5B) und durchgehend über die volle Länge des Strömungsraumes (2) parallel zur Zylinderachse (8) angeordnet ist.
  4. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß zwischen den Längsseiten (13) des Prallblechs (10) und dem Mantel (1) ein Zwischenraum (14) liegt.
  5. Wärmetauscher nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, daß das Prallblech (10) in Richtung der Zylinderachse (8) in Abschnitte (P₁ bis P₆, P'₁ bis P'₆) unterteilt ist, die Lochungen mit unterschiedlichen relativen Lochquerschnittsflächen L₁ bis L₆, L'₁ bis L'₆ aufweisen.
  6. Wärmetauscher nach Anspruch 5, dadurch gekennzeichnet, daß das Prallblech (10) in Teilstücke unterteilt ist, die jeweils eine ganze Zahl n von Abschnitten (P₁ bis P₆; P'₁ bis P'₆) aufweisen und auf jeder Seite entweder durch ein Ende (3A,3C) des Strömungsraumes (2) oder durch eine genau zwischen zwei Paaren (4,5) von Stutzen (4A,4B; 5A,5B) senkrecht zur Zylinderachse (8) liegenden Ebene (3B) begrenzt werden.
  7. Wärmetauscher nach Anspruch 6, dadurch gekennzeichnet, daß jeweils ein Teilstück des Prallbleches (10) eine gerade Anzahl n von aufeinanderfolgenden Abschnitten
    Pi, i = 1,...,n aufweist, wobei jeweils die Abschnitte

    P i und P n-i+1 , i = 1,...,n/2
    Figure imgb0007


    hinsichtlich ihrer Abmessungen ai, bi und ihrer relativen Lochquerschnittsfläche Li identisch aufgebaut sind.
  8. Wärmetauscher nach Anspruch 7, dadurch gekennzeichnet, daß die Anzahl n der Abschnitte Pi (P₁ bis P₆; P'₁ bis P'₆) innerhalb eines Teilstückes zwischen 2 und 18 beträgt und daß für die relativen Lochquerschnittsflächen Li der Abschnitte Pi gilt:

    L i > L i+1 , i = 1,...,n/2-1
    Figure imgb0008
  9. Wärmetauscher nach Anspruch 8, dadurch gekennzeichnet, daß für die maximale relative Lochquerschnittsfläche L₁ gilt:

    L₁ = f · (l v /r) 1/2 · L n/2 ,
    Figure imgb0009


    mit
    f:   Faktor, 0,8 <= f <= 1,3
    lv:   Verteillänge (= Abstand zwischen Verbindungsachse eines Paares (4,5) von Stutzen und Begrenzung des entsprechenden Teilstückes)
    r:   Radius der Öffnung des Einfüllstutzens (4A,5A)
  10. Wärmetauscher nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Rohre in mehrere entlang der Verbindungsachse eines Paares (4,5) von Stutzen (4A,4B; 5A,5B) aufgereihte Bündel (A1,2 bis A7,8) zusammengefaßt sind, wobei die Rohre so miteinander verbunden sind, daß die Bündel (A1,2 bis A7,8) von dem in den Rohren fließenden Fluid nacheinander durchströmt werden.
EP90106969A 1989-04-25 1990-04-11 Wärmetauscher Expired - Lifetime EP0394758B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3913579 1989-04-25
DE3913579A DE3913579A1 (de) 1989-04-25 1989-04-25 Waermetauscher

Publications (3)

Publication Number Publication Date
EP0394758A2 EP0394758A2 (de) 1990-10-31
EP0394758A3 EP0394758A3 (de) 1991-11-13
EP0394758B1 true EP0394758B1 (de) 1994-03-09

Family

ID=6379407

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106969A Expired - Lifetime EP0394758B1 (de) 1989-04-25 1990-04-11 Wärmetauscher

Country Status (7)

Country Link
EP (1) EP0394758B1 (de)
AU (1) AU631418B2 (de)
CZ (1) CZ204590A3 (de)
DD (1) DD300656A5 (de)
DE (2) DE3913579A1 (de)
NO (1) NO173352C (de)
ZA (1) ZA903091B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2232952C1 (ru) * 2003-06-03 2004-07-20 Алиева Елена Антоновна Способ нагрева или охлаждения текучей среды
CN100562703C (zh) * 2004-04-01 2009-11-25 奥尔堡工业有限公司 热交换器以及包含该热交换器的锅炉
DE102007049184A1 (de) * 2007-10-13 2009-04-16 Modine Manufacturing Co., Racine Wärmetauscher, insbesondere Abgaswärmetauscher
DE102011013340A1 (de) 2010-12-30 2012-07-05 Linde Aktiengesellschaft Verteileinrichtung und Wärmetauschervorrichtung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252186A (en) * 1979-09-19 1981-02-24 Borg-Warner Corporation Condenser with improved heat transfer
DE3315250A1 (de) * 1983-04-27 1984-10-31 Halberg Maschinenbau GmbH, 6700 Ludwigshafen Einrichtung zur stroemungsverteilung in waermeaustauschern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Handbook for Heat Exchanger Design", G. W. Hewitt, Hemisphere Publishing Corporation, 1983, Seiten 4.2.3-3 und 4.2.2-2 *

Also Published As

Publication number Publication date
AU5383790A (en) 1990-11-01
NO901810L (no) 1990-10-26
AU631418B2 (en) 1992-11-26
NO901810D0 (no) 1990-04-24
EP0394758A2 (de) 1990-10-31
NO173352C (no) 1993-12-01
NO173352B (no) 1993-08-23
EP0394758A3 (de) 1991-11-13
DE59004850D1 (de) 1994-04-14
DD300656A5 (de) 1992-06-25
ZA903091B (en) 1991-04-24
CZ204590A3 (cs) 1999-01-13
DE3913579A1 (de) 1990-10-31

Similar Documents

Publication Publication Date Title
DE60005602T2 (de) Flüssigkeitsführendes Rohr und seine Verwendung in einem Kraftfahrzeugkühler
DE2808854A1 (de) Ein mit einbauten versehener stroemungskanal fuer ein an einem indirekten austausch, insbesondere waermeaustausch beteiligtes medium
EP0290813B1 (de) Wärmetauscher, insbesondere zum Kühlen von Spaltgasen
DE2417350A1 (de) Vorrichtung zum anbringen von rohrbuendeln in waermeaustauschern
DE60023394T2 (de) Wärmetauscher
DE2843423B1 (de) OElkuehler mit scheibenaehnlichen OElkammern fuer eine Brennkraftmaschine
DE1809822A1 (de) Fraktioniervorrichtung
DE60315906T2 (de) Verdampfer mit Verminderung der Temperaturschwankungen an der Luftseite
AT401431B (de) Wärmetauscher
DE2613747A1 (de) Roehrenwaermetauscher
DE2536657B2 (de) Wärmeaustauscher zum Vorwärmen von Verbrennungsluft für insbesondere ölbeheizte Industrieöfen
WO2016131787A1 (de) Rohrbündelwärmeübertrager mit sequentiell angeordneten rohrbündelkomponenten
EP0394758B1 (de) Wärmetauscher
DE2127303A1 (de) Warmeaustauschkessel
DE2524080C3 (de) Wärmeübertrager, in dem ein dampfförmiges Medium unter Wärmeabgabe an ein anderes Medium kondensiert
DD144601A5 (de) Waermeaustauscher
AT411397B (de) Turbulenzerzeuger für einen wärmetauscher
DE10333463C5 (de) Rohrbündelwärmetauscher
DE3339932A1 (de) Spaltwaermetauscher mit stegen
DE102016113137A1 (de) Gas-Fluid-Gegenstromwärmetauscher
DE2414295C2 (de) Wärmeaustauscher zur Kondensation von Dampf
DE60309210T2 (de) Polygonale rohrwand mit einer verjüngenden zone
EP1139055A2 (de) Mehrfachrohrbündel-Wärmeaustauscher
DE2028729A1 (de) Wärmetauscher
DE3407104A1 (de) Desublimator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19920411

17Q First examination report despatched

Effective date: 19921127

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940309

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940309

Ref country code: BE

Effective date: 19940309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940405

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940411

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940314

REF Corresponds to:

Ref document number: 59004850

Country of ref document: DE

Date of ref document: 19940414

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950411

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970429

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050411