EP0290813B1 - Wärmetauscher, insbesondere zum Kühlen von Spaltgasen - Google Patents

Wärmetauscher, insbesondere zum Kühlen von Spaltgasen Download PDF

Info

Publication number
EP0290813B1
EP0290813B1 EP88106024A EP88106024A EP0290813B1 EP 0290813 B1 EP0290813 B1 EP 0290813B1 EP 88106024 A EP88106024 A EP 88106024A EP 88106024 A EP88106024 A EP 88106024A EP 0290813 B1 EP0290813 B1 EP 0290813B1
Authority
EP
European Patent Office
Prior art keywords
tube
cooling
heat exchanger
gas
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88106024A
Other languages
English (en)
French (fr)
Other versions
EP0290813A1 (de
Inventor
Peter Brücher
Helmut Lachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Babcock Borsig AG
Original Assignee
Deutsche Babcock Borsig AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Babcock Borsig AG filed Critical Deutsche Babcock Borsig AG
Publication of EP0290813A1 publication Critical patent/EP0290813A1/de
Application granted granted Critical
Publication of EP0290813B1 publication Critical patent/EP0290813B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions

Definitions

  • the invention relates to a heat exchanger, in particular for cooling cracked gases according to the preamble of claims 1 and 2.
  • the fission gases formed by thermal cracking of hydrocarbons are cooled very quickly to stabilize their molecular composition. This is done by indirect heat transfer from the cracked gas to the heat-absorbing medium in cracked gas coolers.
  • the cracked gas is passed through pipes which are surrounded by evaporating water as a cooling medium.
  • the evaporating water provides intensive cooling of the pipes, which means that the wall temperature is relatively low and is only slightly above the temperature of the evaporating water.
  • the cracked gas is a mixture of hydrocarbons of different molecular weights and partial pressures.
  • the condensation temperature can be fallen below for some of the components. As a result, these components are precipitated on the pipe wall in the area of low temperatures and a so-called coke layer is built up.
  • This coke layer increases the flow resistance, which increases the gas pressure in the upstream cracking furnace. This results in poorer fission gas yield, a further increase in the coke layer, rising gas outlet temperature and lower steam generation. After a certain operating time, the cracked gas cooler must be taken out of operation to remove the coke layer.
  • a heat exchanger is known from US Pat. No. 3,547,188, the tubes of which are surrounded by a cladding tube over almost the entire length. The entire flow of the heat exchange medium is conducted through the annular spaces thus formed. It is ensured that a turbulent flow occurs in the annular spaces in order to achieve good heat transfer on the pipe surface.
  • the invention has for its object to design the generic heat exchanger such that the cooling effect at the outlet end of the gas-carrying pipes is reduced to the extent that the risk of the formation of a coke layer is largely avoided.
  • the wetting of the rear pipe end with cooling medium is reduced. This makes the cooling effect less intense, so that the temperature on the inner wall of the gas-carrying pipe is above the condensation temperature of the cracked gas components.
  • the heat exchanger shown is of a standing type and is used in particular for cooling cracked gas with the help of evaporating water under excess pressure. It consists of a tube bundle composed of individual tubes 1, through which the gas to be cooled flows and which are surrounded by a jacket 2. The tubes 1 are held in two tube plates 3, 4, to which a gas inlet chamber 5 and a gas outlet chamber 6 are connected.
  • the thin tube plate 3 on the gas inlet side is on the Supported gas inlet chamber 5 side supported by a support plate 7 which is arranged to form a space 8 at a distance from the thin tube plate 3. Between the thin tube plate 3 and the support plate 7, support fingers 9 are provided distributed over the cross section and are molded onto the support plate 7.
  • the tubes 1 each penetrate loosely through the support plate 7, forming an annular gap.
  • the thin tube plate 3 is connected to an outer ring jacket 10 and the support plate 7 is connected to an inner ring jacket 11.
  • the ring jackets 10, 11 are connected to one another and delimit an annular chamber 12 into which an inlet connection 13 for the supply of the water serving as a cooling medium.
  • the upper part of the jacket 2 is provided with an outlet connection 14 for the removal of the cooling medium.
  • the sleeve consists of a sleeve tube 15 which is open on both sides and which surrounds the tube 1 at a distance, forming an annular gap.
  • the sleeve tube 15 is supported on the tube 1 via cams 16.
  • the sleeve tubes 15 are held in locking washers 17, which are arranged within the jacket 2 perpendicular to the axis thereof and which are intended to prevent the tubes 1 from vibrating.
  • the length of the sleeve tube 15 is adapted to the operating requirements and ends shortly before the tube plate 4 lying on the gas outlet side.
  • the width of the annular gap between the tube 1 and the sleeve tube 15 is dimensioned so large that the boiling water present in the interior of the jacket 1 is prevented from flowing into the annular gap in an amount sufficient for complete wetting.
  • the resulting reduced or prevented wetting of the tube 1 with boiling water causes a reduced heat transfer from the heat-emitting to the heat-absorbing medium and thereby the desired less intensive cooling.
  • This less intensive cooling causes a higher pipe wall temperature, which means that no or fewer hydrocarbons condense. The result is that coke formation is prevented or at least reduced.
  • the reduction in the cooling effect can be influenced by changing the gap width. Furthermore, openings 18 can be provided in the wall of the sleeve tube 15, through which boiling water can penetrate into the annular gap and thus increase the cooling effect again.
  • the invention can be used both in shell-and-tube heat exchangers (FIGS. 1 and 2) and in double-tube heat exchangers.
  • a section of such a double tube heat exchanger is shown in FIG. 3.
  • each gas-carrying pipe 1 is surrounded by an outer pipe 19 to form an annular space.
  • the annular space is connected to an inlet and an outlet chamber 20, which is common to a number of double pipes.
  • a gas-carrying pipe 1 facing the outlet chamber 20 can, as described, be enclosed by a sleeve tube 15 which ends shortly before the outlet chamber 20 or protrudes a little into it.
  • 3 shows a different type of sheathing of the gas-carrying pipe 1, which can optionally also be used in the shell-and-tube heat exchanger according to FIGS. 1 and 2.
  • This sheath consists of a wire mesh 21, which is drawn like a sock over the tube 1.
  • the wire mesh 21 reduces wetting of the gas-carrying pipe 1 on the endangered pipe length in the same way as the sleeve pipe 15.

Description

  • Die Erfindung betrifft einen Wärmetauscher, insbesondere zum Kühlen von Spaltgasen nach dem Oberbegriff der Ansprüches 1 und 2.
  • Die durch eine thermische Spaltung von Kohlenwasserstoffen gebildeten Spaltgase werden zur Stabilisierung ihrer molekularen Zusammensetzung sehr schnell gekühlt. Dies erfolgt durch eine indirekte Wärmeübertragung von dem Spaltgas an das wärmeaufnehmende Medium in Spaltgaskühlern. Das Spaltgas wird durch Rohre geführt, die von verdampfendem Wasser als Kühlmedium umgeben sind. Durch das verdampfende Wasser wird eine intensive Kühlung der Rohre erzielt, wodurch die Wandtemperatur relativ niedrig ist und nur wenig über der Temperatur des verdampfenden Wassers liegt. Das Spaltgas ist ein Gemisch von Kohlenwasserstoffen unterschiedlichen Molekulargewichts und Partialdrucks. Während der Abkühlung im Spaltgaskühler kann für einige der Komponenten die Kondensationstemperatur unterschritten werden. Als Folge davon kommt es im Bereich der niedrigen Temperaturen zur Ausscheidung dieser Komponenten an der Rohrwandung und damit zum Aufbau einer sogenannten Koksschicht. Diese Koksschicht erhöht den Strömungswiderstand, wodurch sich der Gasdruck im vorgeschalteten Spaltofen erhöht. Schlechtere Spaltgasausbeute, weitere Erhöhung der Koksschicht, steigende Gasaustrittstemperatur und geringere Dampferzeugung sind die Folge. Nach einer gewissen Betriebszeit muß der Spaltgaskühler zur Beseitigung der Koksschicht außer Betrieb genommen werden.
  • Bei einem aus der US-A-38 02 497 bekannten Wärmetauscher zur Kühlung von Spaltgas und anderen Gasen ist zur Verminderung der Bildung der Koksschicht das austrittsseitige Ende der gasführenden Rohre von einem Außenrohr umgeben, das zur Atmosphäre hin offen ist. Auf diese Weise bildet sich eine Schicht ruhender Luft zwischen dem gasführenden Rohr und dem Außenrohr aus. Die Anordnung eines solchen Doppelrohres verhindert die Wärmeabgabe so stark, daß die Kühlung der Spaltgase unzureichend wird.
  • Aus der US-A-3 547 188 ist ein Wärmetauscher bekannt, dessen Rohre nahezu auf der gesamten Länge von einem Hüllrohr umgeben sind. Durch die so gebildeten Ringräume wird der gesamte Strom des Wärmeaustauschmediums geführt. Dabei ist dafür gesorgt, daß sich in den Ringräumen eine turbulente Strömung einstellt, um einen guten Wärmeübergang an der Rohroberfläche zu erzielen.
  • Der Erfindung liegt die Aufgabe zugrunde, den gattungsgemäßen Wärmetauscher derart zugestalten, daß die Kühlwirkung am austrittsseitigen Ende der gasführenden Rohre gerade soweit vermindert wird, daß die Gefahr der Bildung einer Koksschicht weitgehend vermieden wird.
  • Diese Aufgabe wird bei einem gattungsgemäßen Wärmetauscher durch die kennzeichnenden Merkmale der Ansprüche 1 oder 2 gelöst. Eine vor­teilhafte Ausgestaltung der Erfindung ist in den Anspruch 3 angege­ben.
  • Bei dem erfindungsgemäßen Wärmetauscher wird die Benetzung des hinteren Rohrendes mit Kühlmedium vermindert. Dadurch wird die Kühlwirkung weniger intensiv, so daß die Temperatur an der Innenwand des gasführenden Rohres oberhalb der Kondensationstemperatur der Spaltgaskomponenten liegt. Durch eine Veränderung der Spaltbreite zwischen dem gasführenden Rohr und dem umgebenden Hülsenrohr sowie durch eine Änderung der Dicke oder Dichte des Drahtgeflechtes kann der Grad der Kühlung verändert und so der Wärmetauscher den Betriebsanforderungen angepaßt werden.
  • Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:
    • Fig. 1 einen Längsschnitt durch einen Wärmetauscher gemäß der Erfindung,
    • Fig. 2 die Einzelheit Z nach Fig. 1 und
    • Fig. 3 die Einzelheit Z gemäß einer anderen Ausführungsform.
  • Der dargestellte Wärmetauscher ist von stehender Bauart und dient insbesondere zum Kühlen von Spaltgas mit Hilfe von verdampfendem, unter Überdruck stehendem Wasser. Er besteht aus einem Rohrbündel aus einzelnen Rohren 1, die von dem zu kühlenden Gas durchströmt und von einem Mantel 2 umgeben sind. Die Rohre 1 sind in zwei Rohrplatten 3, 4 gehalten, an die sich eine Gaseintrittskammer 5 und eine Gasaustrittskammer 6 anschließen.
  • Die dünne Rohrplatte 3 auf der Gaseintrittsseite ist auf der der Gaseintrittskammer 5 abgewandten Seite durch eine Tragplatte 7 abgestützt, die unter Bildung eines Zwischenraumes 8 mit Abstand von der dünnen Rohrplatte 3 angeordnet ist. Zwischen der dünnen Rohrplatte 3 und der Tragplatte 7 sind über den Querschnitt verteilt Tragfinger 9 vorgesehen, die an die Tragplatte 7 angeformt sind. Die Rohre 1 durchdringen jeweils unter Bildung eines Ringspaltes lose die Tragplatte 7. Die dünne Rohrplatte 3 ist mit einem äußeren Ringmantel 10 und die Tragplatte 7 mit einem inneren Ringmantel 11 verbunden. Die Ringmäntel 10, 11 sind miteinander verbunden und umgrenzen eine Ringkammer 12, in die ein Eintrittsstutzen 13 für die Zuführung des als Kühlmedium dienenden Wassers. Der obere Teil des Mantels 2 ist mit einem Austrittsstutzen 14 für die Abführung des Kühlmediums versehen.
  • Das der Gasaustrittskammer 6 zugewandte Ende der Rohre 1 ist von einer Hülse umschlossen. Die Hülse besteht nach den Fig. 1 und 2 aus einem beidseitig offenen Hülsenrohr 15, das das Rohr 1 unter Bildung eines Ringspaltes mit Abstand umgibt. Zur Einhaltung der Spaltbreite ist das Hülsenrohr 15 über Nocken 16 auf dem Rohr 1 abgestützt. Die Hülsenrohre 15 sind in Sicherungsscheiben 17 gehalten, die innerhalb des Mantels 2 senkrecht zu dessen Achse angeordnet sind und die ein Schwingen der Rohre 1 verhindern sollen. Die Länge des Hülsenrohres 15 ist den Betriebsanforderungen angepaßt und endet kurz vor der auf der Gasaustrittsseite liegenden Rohrplatte 4.
  • Die Breite des Ringspaltes zwischen dem Rohr 1 und dem Hülsenrohr 15 ist so groß bemessen, daß das in dem Innenraum des Mantels 1 vorhandene siedende Wasser gehindert wird, in einer für die vollständige Benetzung ausreichenden Menge in den Ringspalt zu strömen. Die dadurch reduzierte oder unterbundene Benetzung des Rohres 1 mit siedendem Wasser bewirkt einen verminderten Wärmeübergang von dem wärmeabgebenden zu dem wärmeaufnehmenden Medium und dadurch die gewünschte weniger intensive Kühlung. Diese weniger intensive Kühlung bewirkt eine höhere Rohrwandtemperatur, wodurch keine oder weniger Kohlenwasserstoffe kondensieren. Das Resultat ist, daß die Koksbildung verhindert oder zumindest vermindert wird.
  • Die Verminderung der Kühlwirkung kann durch eine Veränderung der Spaltbreite beeinflußt werden. Ferner können in der Wandung des Hülsenrohres 15 Durchbrechungen 18 vorgesehen werden, durch die siedendes Wasser in den Ringspalt eindringen und so die Kühlwirkung wieder verstärken kann.
  • Die Erfindung kann sowohl bei Bündelrohrwärmetauschern (Fig. 1 und 2) als auch bei Doppelrohrwärmetauschern eingesetzt werden. Ein Ausschnitt aus einem solchen Doppelrohrwärmetauscher ist in der Fig. 3 dargestellt. Bei diesem Wärmetauscher ist jedes gasführende Rohr 1 unter Bildung eines Ringraumes von einem Außenrohr 19 umgeben. Der Ringraum ist an eine Eintritts- und eine Austrittskammer 20 angeschlossen, die einer Anzahl von Doppelrohren gemeinsam ist.
  • Das der Austrittskammer 20 zugewandte Ende eines gasführenden Rohres 1 kann wie beschrieben, von einem Hülsenrohr 15 umschlossen sein, das kurz vor der Austrittskammer 20 endet oder ein Stück in diese hinein­ragt. In der Fig. 3 ist eine andere Art der Umhüllung des gasführenden Rohres 1 dargestellt, die wahlweise auch bei dem Bündelrohrwärmetauscher gemäß den Fig. 1 und 2 eingesetzt werden kann. Diese Umhüllung besteht aus einem Drahtgeflecht 21, das strumpfartig über das Rohr 1 gezogen ist. Das Drahtgeflecht 21 vermindert in der gleichen Weise wie das Hülsenrohr 15 eine Benetzung des gasführenden Rohres 1 auf der gefährdeten Rohrlänge.

Claims (3)

1. Wärmetauscher zum Kühlen von Spaltgasen mit Hilfe von siedendem Wasser als Kühlmedium, bestehend aus Rohren (1), die von dem zu kühlenden Gas durchströmt und die von einem von dem Kühlmedium durchströmten Kühlmantel (2) umgeben sind, wobei jedes Rohr (1) von einer von dem Kühlmedium durchströmten Hülse umschlossen ist, dadurch gekennzeichnet, daß die Hülse das Rohr (1) nur an dem dem Gasaustritt zugewandten Ende umgibt und aus einem beidseitig offenen Hülsenrohr (15) besteht, das mit Abstand von dem Rohr (1) unter Bildung eines Ringspaltes angeordnet ist und daß der Ringspalt so bemessen ist, daß das siedende Wasser gehindert wird, in einer für die vollständige Benetzung des Rohres (1) ausreichenden Menge in den Ringspalt zu strömen.
2. Wärmetauscher zum Kühlen von Spaltgasen mit Hilfe von siedendem Wasser als Kühlmedium, bestehend aus Rohren (1), die von dem zu kühlenden Gas durchströmt und die von einem von dem Kühlmedium durchströmten Kühlmantel (2) umgeben sind, wobei jedes Rohr (1) von einer von dem Kühlmedium durchström­ten Hülse umschlossen ist, dadurch gekennzeichnet, daß die Hülse das Rohr (1) nur an dem dem Gasaus­tritt zugewandten Ende umgibt und aus einem Drahtgeflecht (21) besteht, das auf dem Rohr (1) aufliegt und so bemessen ist, daß das siedende Wasser gehindert wird, in einer für die vollständige Benetzung des Rohres (1) ausreichenden Menge das Drahtgeflecht (21) zu durchströmen.
3. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Wandung des Hülsenrohres (15) mit Durchbrechungen (18) versehen ist.
EP88106024A 1987-05-12 1988-04-15 Wärmetauscher, insbesondere zum Kühlen von Spaltgasen Expired - Lifetime EP0290813B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3715713A DE3715713C1 (de) 1987-05-12 1987-05-12 Waermetauscher insbesondere zum Kuehlen von Spaltgasen
DE3715713 1987-05-12

Publications (2)

Publication Number Publication Date
EP0290813A1 EP0290813A1 (de) 1988-11-17
EP0290813B1 true EP0290813B1 (de) 1991-03-06

Family

ID=6327298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88106024A Expired - Lifetime EP0290813B1 (de) 1987-05-12 1988-04-15 Wärmetauscher, insbesondere zum Kühlen von Spaltgasen

Country Status (4)

Country Link
US (1) US4858684A (de)
EP (1) EP0290813B1 (de)
JP (1) JPS63297995A (de)
DE (2) DE3715713C1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822808C2 (de) * 1988-07-06 1993-12-23 Balcke Duerr Ag Wärmetauscher mit zwischen zwei Rohrplatten angeordneten Wärmetauscherrohren
DE3913731A1 (de) * 1989-04-26 1990-10-31 Borsig Gmbh Waermetauscher zum kuehlen von spaltgas
DE3930205A1 (de) * 1989-09-09 1991-03-14 Borsig Babcock Ag Rohrbuendel-waermetauscher
DE4404068C1 (de) * 1994-02-09 1995-08-17 Wolfgang Engelhardt Wärmetauscher
DE4407594A1 (de) * 1994-03-08 1995-09-14 Borsig Babcock Ag Wärmetauscher zum Kühlen von heißem Reaktionsgas
MY114772A (en) * 1994-07-05 2003-01-31 Shell Int Research Apparatus for cooling hot gas
DE4445687A1 (de) * 1994-12-21 1996-06-27 Borsig Babcock Ag Wärmetauscher zum Kühlen von Spaltgas
CA2191379A1 (en) * 1995-11-28 1997-05-29 Cuddalore Padmanaban Natarajan Heat exchanger for use in high temperature applications
GB2319333B (en) * 1996-11-11 2000-08-09 Usui Kokusai Sangyo Kk EGR Gas cooling apparatus
DE60324626D1 (de) * 2002-04-23 2008-12-24 Exxonmobil Res & Eng Co Wärmetauscher mit schwimmendem Endkasten
US20050135978A1 (en) * 2003-10-14 2005-06-23 Mourad Hamedi Method and apparatus for optimizing throughput in a trickle bed reactor
KR20080091233A (ko) * 2006-01-19 2008-10-09 도요 세이칸 가부시키가이샤 커플러 및 연료 전지용의 연료 카트리지
DE102006003317B4 (de) 2006-01-23 2008-10-02 Alstom Technology Ltd. Rohrbündel-Wärmetauscher
US9557119B2 (en) 2009-05-08 2017-01-31 Arvos Inc. Heat transfer sheet for rotary regenerative heat exchanger
US8672021B2 (en) 2010-02-12 2014-03-18 Alfred N. Montestruc, III Simplified flow shell and tube type heat exchanger for transfer line exchangers and like applications
RU2451888C2 (ru) * 2010-05-26 2012-05-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Вертикальный кожухотрубчатый испаритель с перегревателем
PL216290B1 (pl) * 2010-10-01 2014-03-31 Aic Społka Akcyjna Wymiennik ciepła
US8813688B2 (en) * 2010-12-01 2014-08-26 Aic S.A. Heat exchanger
US9200853B2 (en) 2012-08-23 2015-12-01 Arvos Technology Limited Heat transfer assembly for rotary regenerative preheater
US11149945B2 (en) * 2013-05-31 2021-10-19 Corrosion Monitoring Service, Inc. Corrosion resistant air preheater with lined tubes
JP5941878B2 (ja) * 2013-07-25 2016-06-29 株式会社ユタカ技研 熱交換器及び熱交換デバイス
US10175006B2 (en) 2013-11-25 2019-01-08 Arvos Ljungstrom Llc Heat transfer elements for a closed channel rotary regenerative air preheater
US10094626B2 (en) 2015-10-07 2018-10-09 Arvos Ljungstrom Llc Alternating notch configuration for spacing heat transfer sheets
EP3614053B1 (de) 2018-06-08 2021-05-26 BSH Hausgeräte GmbH Dunstabzugsvorrichtung und kombinationsgerät mit dunstabzugsvorrichtung und kochfeld

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1782435A (en) * 1926-11-09 1930-11-25 Gen Chemical Corp Apparatus for cooling fluids
US3071540A (en) * 1959-10-27 1963-01-01 Kellogg M W Co Oil feed system for fluid catalytic cracking unit
FR1275014A (fr) * 1960-09-21 1961-11-03 Fives Penhoet Procédé d'aménagement d'éléments d'échanges calorifiques entre deux fluides et dispositif échangeur de chaleur pour l'application dudit procédé
CH449678A (de) * 1967-06-20 1968-01-15 Bertrams Ag Hch Röhrenwärmeaustauscher mit flüssigem Wärmeträger
DE2008311C3 (de) * 1970-02-23 1974-03-07 Arbeitsgemeinschaft Lentjes-Rekuperator, 4000 Duesseldorf-Oberkassel Wärmetauscher
DE2218489A1 (de) * 1972-04-17 1973-10-31 Wmf Wuerttemberg Metallwaren Verdampferrohr
JPS52112607A (en) * 1976-03-09 1977-09-21 Agency Of Ind Science & Technol Reformers
DE2913748C2 (de) * 1979-04-03 1983-09-29 Borsig Gmbh, 1000 Berlin Rohrbündelwärmetauscher zum Kühlen schlackenhaltiger Heißgase der Kohlevergasung
GB2053444A (en) * 1979-06-11 1981-02-04 Westinghouse Electric Corp Heat transfer tubes with heat flux limiters
US4294312A (en) * 1979-11-09 1981-10-13 Borsig Gmbh Tube-bundle heat exchanger for cooling a medium having a high inlet temperature
US4537249A (en) * 1981-02-02 1985-08-27 The United States Of America As Represented By The United States Department Of Energy Heat flux limiting sleeves
DE3411795A1 (de) * 1984-03-30 1985-10-03 Borsig Gmbh, 1000 Berlin Verfahren zum betreiben von rohrbuendelwaermeaustauschern zum kuehlen von gasen
DE3429522C1 (de) * 1984-08-10 1985-11-14 Uhde Gmbh, 4600 Dortmund Reaktionsrohrsystem eines Roehrenspaltofens
DE3532413A1 (de) * 1985-09-11 1987-03-12 Uhde Gmbh Vorrichtung zur erzeugung von synthesegas
DE3533219C1 (de) * 1985-09-18 1986-11-13 Borsig Gmbh, 1000 Berlin Rohrbuendelwaermetauscher

Also Published As

Publication number Publication date
DE3715713C1 (de) 1988-07-21
US4858684A (en) 1989-08-22
DE3861898D1 (de) 1991-04-11
EP0290813A1 (de) 1988-11-17
JPS63297995A (ja) 1988-12-05

Similar Documents

Publication Publication Date Title
EP0290813B1 (de) Wärmetauscher, insbesondere zum Kühlen von Spaltgasen
EP0417428B1 (de) Rohrbündel-Wärmetauscher
DE69825408T2 (de) Wärmeaustauscher und dessen gebrauchsverfahren
DE2008311C3 (de) Wärmetauscher
EP0160161B1 (de) Wärmetauscher zum Kühlen von Gasen
DE2033128B2 (de) Wärmeaustauschaggregat mit Wärmetauschern, bei denen innerhalb eines AuBenmantels Rohrreihen durch einen Zwischenmantel umschlossen sind
DE2536657C3 (de) Wärmeaustauscher zum Vorwärmen von Verbrennungsluft für insbesondere ölbeheizte Industrieöfen
DE2602211C2 (de) Rohrartiger Wärmetauscher
DE2551195C3 (de) Wärmeaustauscher zum Kühlen von Spaltgasen
DE3714671C2 (de)
DE3039745A1 (de) Waermeaustauscher
DE3643801C2 (de)
DE3640970A1 (de) Rohrbuendelwaermetauscher
EP0994322B1 (de) Wärmetauscher mit einem Verbindungsstück
DE679600C (de) Rekuperator
DE2913748C2 (de) Rohrbündelwärmetauscher zum Kühlen schlackenhaltiger Heißgase der Kohlevergasung
EP0436828B1 (de) Wärmetauscher zum Kühlen von heissem Reaktionsgas
DE2518067A1 (de) Waermetauscher und dessen verwendung zum kuehlen heisser gase
EP0394758B1 (de) Wärmetauscher
DE1601167C3 (de) Mischwärmetauscher
CH641893A5 (en) Heat exchanger element, method for producing it, and a heat exchanger
DE3913495C2 (de)
DE4120800C2 (de) Wärmetauscher
EP0369556A2 (de) Verfahren zur indirekten Erwärmung eines Prozessgasstroms in einem Reaktionsraum für eine endotherme Reaktion und Vorrichtung zu dessen Durchführung
DE1551553C (de) Verfahren zur Temperaturbegrenzung der Heißgaskanalwände und weiterer Bauteile eines Trennwand-Wärmetauschers, Wärmetauscher zur Durchführung des Verfahrens und Anwendung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19881112

17Q First examination report despatched

Effective date: 19890929

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE BABCOCK- BORSIG AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3861898

Country of ref document: DE

Date of ref document: 19910411

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911231

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920129

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920224

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920430

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930415

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050415