EP0164664A2 - Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik - Google Patents

Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik Download PDF

Info

Publication number
EP0164664A2
EP0164664A2 EP85106748A EP85106748A EP0164664A2 EP 0164664 A2 EP0164664 A2 EP 0164664A2 EP 85106748 A EP85106748 A EP 85106748A EP 85106748 A EP85106748 A EP 85106748A EP 0164664 A2 EP0164664 A2 EP 0164664A2
Authority
EP
European Patent Office
Prior art keywords
sno
contact material
cuo
sintered contact
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85106748A
Other languages
English (en)
French (fr)
Other versions
EP0164664A3 (en
EP0164664B1 (de
Inventor
Bernhard Rothkegel
Wolfgang Haufe
Manfred Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to AT85106748T priority Critical patent/ATE84905T1/de
Publication of EP0164664A2 publication Critical patent/EP0164664A2/de
Publication of EP0164664A3 publication Critical patent/EP0164664A3/de
Application granted granted Critical
Publication of EP0164664B1 publication Critical patent/EP0164664B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • H01H1/02376Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component SnO2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a sintered contact material for low-voltage switchgear in power engineering from A g S n0 2 with Bi 2 0 3 and Cu0 as further metal oxide additives, the volume fraction of total metal oxide being between 10% and 25% with a SnO 2 volume fraction of 70% of the total oxide quantity .
  • Contact materials based on silver-metal oxides have proven to be particularly advantageous for low-voltage switchgear in energy technology, for example in contactors or circuit breakers.
  • cadmium oxide in particular was used as the active component, with these contact materials in particular fulfilling the desired electrical-technological properties and having proven themselves in the long-term use of switching devices.
  • cadmium is known to be one of the toxic heavy metals and when the contact pieces burn off, CdO is also released to the surrounding area, efforts have been underway for some time to replace the CdO as completely as possible with other metal oxides.
  • these materials should have an arc burn-up that is just as small, as well as low welding power and, in particular, low heating with continuous current flow, like the proven AgCdO materials for contact pieces.
  • a new sintered contact material for the above purpose based on AgSnO 2 has already been disclosed, in which Bi203 and CuO and optionally CdO are provided as further metal oxides and the volume fraction of total metal oxide is between 10% and 25% with a SnO 2 - Volume part is ⁇ 70% of the total amount of oxide.
  • the contact material is made by powder metallurgy from an internally oxidized alloy powder (so-called IOLP).
  • the material with the following composition is especially suitable for the cadmium-free alternative in mass fractions of 87.95% Ag, 9.97% SnO 2 , 0.98% Bi 2 0 3 and 1.10% CuO Tests have now shown that the specified material does not yet fully meet the needs of practice.
  • the object of the invention is therefore to provide a further material of the constitution AgSnO 2 Bi 2 O 3 CuO for the above-mentioned application.
  • the object is achieved in that the SnO 2 mass fraction is specifically in the range from 4% to 8 % .
  • the Bi 2 0 3 mass fraction is preferably between 0.5% and 4%, while the CuO mass fraction is between 0.3% and 1%; the rest is silver.
  • the ratio of the mass fractions in% of SnO 2 to CuO is preferably between 8: 1 and 12: 1.
  • GB-A-20 55 398 describes materials based on silver metal oxide, for the production of which sheets are produced from alloys, which are subsequently oxidized internally. So this is not a factory made with powder metallurgical processes substances, in particular not egleiterspulvern to the internal oxidation of L followed by compaction and sintering.
  • GB-A-20 55 398 specifies, inter alia, a composition in mass fractions of 90.8% Ag, 8.5% Sn, 0.2% Bi and 0.5% Cu for the starting alloy. Otherwise, in the prior art, further components, for example cobalt, iron or nickel, are still added to the specified four-component system.
  • the present invention was based on the surprising finding that the Sn0 2 content can be reduced and thus the Bi 2 0 3 content can be increased in order to obtain more favorable temperature properties than in the prior art.
  • An alloy of AgSnBiCu of the specified composition is melted at 1353 K from 93.60% fine silver grains, 5.20% tin grains, 0.6% metallic bismuth as fragments and 0.6% copper in rod form.
  • an alloy powder of the same composition is obtained.
  • the powder portion is sieved to L 200 ⁇ m.
  • This portion is internally oxidized in an oxygen-containing atmosphere between 723 K and 872 K, after which a composite powder of AgSnO 2 Bl 2 O 3 CuO of the composition in mass fractions of 92.10% Ag, 6.50% SnO 2 , 0.66% Bi 2 0 3 and 0.74% CuO is obtained.
  • Such a composite powder is quantitatively completely internally oxidized and is referred to as IOLP.
  • the composite powder is used to produce contact pieces by pressing in a die with 600 MPa.
  • the contact pieces are sintered at 1173 K for one hour in air.
  • the contact pieces are compacted by hot pressing at 923 K at 900 MPa. Further compression and solidification is achieved by a second sintering at 1173 K for one hour in air and a subsequent cold compression at 800 MPa.
  • Metallographic micrographs show that the structure of the contact material produced in this way is fine and uniform with an average oxide particle size of 1.5 ⁇ m.
  • method steps as in example 1 were selected; However, starting materials of the following composition in mass fractions were assumed: 93.96% fine silver grains, 4.00% tin grains, 1.64% metallic bismuth and 0.40% copper, from which an alloy is melted. Corresponding alloy powder is produced from this in the manner described above.
  • an IOLP of AgSnO 2 Bi 2 C 3 CuO of the composition in mass fractions of 92.70% Ag, 5.01% SnO 2 , 1.80% Bi 2 0 3 and 0.49% Cuo is obtained.
  • This IOLP is the starting material for the material and the contact pieces to be made from it.
  • This material essentially corresponds to that of the material except for a larger grain size
  • the welding force of the contact materials produced according to the invention was determined in a test switch.
  • the measured values obtained essentially correspond to those of the AgCd012Bi2031, O contact material produced from internally oxidized alloy powder.
  • service life and heating tests were carried out in motor contactors.
  • the key parameters are the AC4 service life switching numbers of the contact pieces and the overtemperature of the current paths. in the Compared to AgCdO 12 Bi 2 O 3 1.0 materials, the lifespan switching numbers are about a factor of 1.8 higher, with higher temperatures only showing up to 10 ° C higher temperatures.
  • test data of the new materials are shown in the table in comparison to the known material.
  • the tin content is reduced to a suitable range, starting from the predetermined volume fraction of the sum metal oxides, and thus at least the relative Bi 2 0 3 fraction is increased, which leads to unexpectedly good results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Contacts (AREA)
  • Manufacture Of Switches (AREA)
  • Powder Metallurgy (AREA)
  • Glass Compositions (AREA)

Abstract

Es wurden bereits Kontaktwerkstoffe auf AgSnO2-Basis mit Bi203 und Cu0 als weitere Metalloxidzusätze vorgeschlagen. Dabei soll der Volumenanteil an Metalloxid zwischen 10 % und 25 % mit einem SnO2-Volumenanteil ≥ 70 % der Gesamtoxidmenge betragen.
Es wird vorgeschlagen, den SnO2-Massenanteil speziell im Bereich von 4 % bis 8 % zu wählen. Dabei liegt der Bi2O2-Massenanteil zwischen 0,5 % und 4 % und der CuO- Massenanteil zwischen 0,3 % und 1 %, wobei der Rest jeweils Silber ist. Aus solchen Werkstoffen lassen sich Kontaktwerkstücke fertigen, die überraschend gute elektrische Eigenschaften aufweisen.

Description

  • Die Erfindung bezieht sich auf einen Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik aus AgSn02 mit Bi203 und Cu0 als weitere Metalloxidzusätze, wobei der Volumenanteil an Summenmetalloxid zwischen 10 % und 25 % mit einem SnO2-Volumenanteil 70 % der Gesamtoxidmenge beträgt.
  • Ein solcher Werkstoff ist unter anderem Gegenstand der älteren deutschen Patentanmeldung P 33 04 637.9.
  • Für Niederspannungsschaltgeräte der Energietechnik, z.B. in Schützen oder Selbstschaltern, haben sich Kontaktwerkstoffe auf der Basis von Silber-Metalloxiden (AgMeO) als besonders vorteilhaft erwiesen. In der Vergangenheit wurde als Wirkkomponente insbesondere Cadmiumoxid verwendet, wobei speziell diese Kontaktwerkstoffe die gewünschten elektrisch-technologischen Eigenschaften erfüllen und sich im praktischen Langzeiteinsatz von Schaltgeräten bewährt haben. Da aber Cadmium bekanntermaßen zu den toxischen Schwermetallen zählt und beim Abbrand der Kontaktstücke CdO auch an die nähere Umgebung abgegeben wird, sind seit einiger Zeit Bestrebungen im Gange, das CdO möglichst vollständig durch andere Metalloxide zu ersetzen. Diese Werkstoffe sollen aber einen ebenso kleinen Abbrand im Lichtbogen, sowie geringe Schweißkraft und insbesondere geringe Erwärmung bei Dauerstromführung wie die bewährten AgCdO-Werkstoffe für Kontaktstücke aufweisen.
  • Es wurde bisher versucht, das Cadmium durch Zinn oder Zink zu ersetzen. Die bekannten Vorschläge mit AgSnO2 und AgZnO-Kontaktwerkstoffen konnten jedoch insgesamt nicht die hochwertigen Eigenschaften von AgCdo-Kontaktstücken erreichen. Insbesondere bei Kontaktstücken aus AgSnO2 als Alternativwerkstoff zu AgCdO hat sich gezeigt, daß dieser aufgrund seiner höheren thermischen Stabilität nach Lichtbogeneinwirkung durch Bildung von Oxiddeckschichten einen gegenüber AgCdO-erhöhten Ubergangswiderstand aufweist. Dadurch treten im stromführenden Zustand des Schaltgerätes unzulässig hohe Ubertemperaturen an den Schaltgliedern auf, die zu Schäden am Schaltgerät führen können. Andererseits weisen aber AgSnO2-Kontaktstücke gegenüber AgCdO einen geringeren Abbrand auf, was zu einer erhöhten Kontaktlebensdauer führt. Daher kann vorteilhaft die Größe der benötigten Kontaktstücke im Vergleich zu AgCdO verringert werden, wodurch eine nicht unerhebliche Silbereinsparung erzielt wird.
  • Mit der älteren Patentanmeldung P 33 04 637.9 wurde bereits ein neuer Sinterkontaktwerktoff für obigen Zweck auf der Basis AgSnO2 offenbart, bei dem als weitere Metalloxide Bi203 und CuO sowie wahlweise CdO vorgesehen sind und der Volumenanteil an Summenmetalloxidzwischen 10% und 25 % mit einem SnO2-Volumenateil ≥70 % der Gesamtoxidmenge beträgt. Dabei wird der Kontaktwerkstoff pulvermetallurgisch aus einem inneroxidierten Legierungspulver (sogenanntes IOLP) hergestellt. Für die cadmiumfreie Alternative ist speziell der Werkstoff folgender Zusammensetzung in Massenanteilen von 87,95 % Ag, 9,97 % SnO2, 0,98 % Bi203 und 1,10 % CuO Erprobungen haben nun ergeben, daß der angegebene Werkstoff noch nicht voll den Bedürfnissen der Praxis genügt.
  • Aufgabe der Erfindung ist es daher, einen weiteren Werkstoff der Konstitution AgSnO2Bi2O3CuO für obengenannte Anwendung anzugeben.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß der SnO2-Massenanteil speziell im Bereich von 4 % bis 8 % liegt. Dabei liegt der Bi203-Massenanteil vorzugsweise zwischen 0,5 % und 4 % , während der CuO-Massenanteil zwischen 0,3 % und 1 % liegt; als Rest ist jeweils Silber vorhanden. Vorzugsweise beträgt das Verhältnis der Massenanteile in % von Sn02 zu CuO zwischen 8:1 und 12:1.
  • Die vergleichsweise günstigen Eigenschaften von Werkstoffen der Konstitution AgSnO2Bi2O3CuO sind bereits seit einiger Zeit erkannt: Neben der älteren Patentanmeldung P 33 04 637.9 werden solche Werkstoffe auch in der DE-OS 27 54 335 angegeben. Bei den dort beschriebenen Werkstoffen wird jedoch immer ein vergleichsweise geringer Sn02-Massenanteil gewählt, der meist unter 4 % liegt. Lediglich bei einem, der DE-OS 27.54 335 entnehmbaren Werkstoff (Beispiel 18) liegt der Sn-Anteil höher; jedoch beträgt in diesem Fall der SnO2-Volumenanteil an den Summenoxiden weniger als 70 %, so daß ein anderes Eigenschaftsspektrum zu erwarten ist. Daneben sind in der GB-A-20 55 398 Werkstoffe auf Silbermetalloxidbasis beschrieben, zu deren Herstellung aus Legierungen Bleche erzeugt werden, welche anschließend inneroxidiert werden. Hier handelt es sich also nicht mit pulvermetallurgische Verfahren hergestellte Werkstoffe, insbesondere nicht um die innere Oxidation von Legierungspulvern mit anschließender Verdichtung und Sinterung. Bei der GB-A-20 55 398 ist für die Ausgangslegierung unter anderem eine Zusammensetzung in Massenanteilen von 90,8 % Ag, 8,5 % Sn, 0,2 % Bi und 0,5 % Cu angegeben. Ansonsten werden beim Stand der Technik zu dem angegebenen Vierstoffsystem immer noch weitere Komponenten, beispielsweise Kobalt, Eisen oder Nickel, hinzulegiert.
  • Vorliegender Erfindung lag nun die überraschende Erkenntnis zugrunde,daß der Sn02-Anteil erniedrigt und damit der Bi203-Anteil erhöht werden kann, um günstigere Temperatureigenschaften als beim Stand der Technik zu erhalten.
  • Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der Beschreibung zweier labormäßig realisierter Sinterkontaktwerkstoffe. Bei deren Herstellung werden im allgemeinen nur die Massenanteile in % (Massengehalt) angegeben. Ausgehend von einem konstanten Volumenanteil an Silber, bietet sich für die Optimierung des Eigenschaftsspektrums die Variation der Wirkkomponenten bei vorgegebenem Volumenanteil der Summenmetall oxide am Dieser beträgt bei der Erfindung zwischen 10 % und 25 %, wobei der Volumenanteil von SnO2 ≥ 70 % ist. Da die Dichte der Oxide unterschiedlich ist, hat es sich in der Praxis bewährt, einerseits die Volumenanteile der Summenmetalloxide und andererseits speziell die Massenanteile in % der einzelnen Komponenten wie bei den nachfolgenden Beispielen anzugeben.
  • Beispiel 1:
  • Aus 93,60 % Feinsilberkörnern, 5,20 % Zinnkörnern, 0,6 % metallischem Wismut als Bruchstücke und 0,6 % Kupfer in Stangenform wird eine Legierung aus AgSnBiCu der angegebenen Zusammensetzung bei 1353 K erschmolzen. Durch Zerstäuben der Schmelze in Wasser mit einer Druckverdüsungsanlage wird daraus ein gleich zusammengesetztes Legierungspulver erhalten. Nach dem Trocknen wird der Pulveranteil auf L 200 µm abgesiebt. Dieser Anteil wird in sauerstoffhaltiger Atmosphäre zwischen 723 K und 872 K inneroxidiert, wonach ein Verbundpulver aus AgSnO2Bl2O3CuO der Zusammensetzung in Massenanteilen von 92,10 % Ag, 6,50 % SnO2, 0,66 % Bi203 und 0,74 % CuO erhalten wird. Ein solches Verbundpulver ist quantitativ vollständig inneroxidiert und wird als sogenanntes IOLP bezeichnet.
  • Aus dem Verbundpulver werden durch Pressen in einer Matrize mit 600 MPa Kontaktstücke hergestellt. Für eine sichere Verbindungstechnik durch Hartlöten ist es dabei vorteilhaft, beim Pressen des Verbundpulvers eine zweite Schicht aus Reinsilber gemeinsam mit der Kontaktschicht zu einem Zweischichten-Kontaktstück zu verpressen. Die Sinterung der Kontaktstücke erfolgt bei 1173 K während einer Stunde an Luft. Durch Warmpressen bei 923 K mit 900 MPa werden die Kontaktstücke verdichtet. Eine weitere Verdichtung und Verfestigung wird durch eine zweite Sinterung bei 1173 K während einer Stunde an Luft und eine darauf folgende Kaltverdichtung mit 800 MPa erreicht.
  • Metallographische Schliffbilder zeigen, daß das Gefüge des so erzeugten Kontaktwerkstoffes fein und gleichmäßig mit einer mittleren Oxidteilchengröße von 1,5 µm ist.
  • Beispiel 2:
  • Bei einem weiteren Ausführungsbeispiel wurden Verfahrensschritte wie bei Beispiel 1 gewählt; es wurde jedoch von Ausgangsmaterialien folgender Zusammensetzung in Massenanteilen ausgegangen: 93,96% Feinsilberkörner, 4,00 % Zinnkörner, 1,64 % metallisches Wismut und 0,40 % Kupfer, woraus eine Legierung erschmolzen wird. Daraus wird in oben beschriebener Weise entsprechendes Legierungspulver erzeugt.
  • Nach innerer Oxidation des Legierungspulvers wird ein IOLP aus AgSnO2Bi2C3CuO der Zusammensetzung in Massenanteilen von 92,70 % Ag, 5,01 % SnO2, 1,80 % Bi203 und 0,49 % Cuo erhalten. Dieses IOLP ist Ausgangsmaterial für den Werkstoff und die daraus zu fertigenden Kontaktstücke.
  • Das Gefüge dieses Werkstoffes entspricht bis auf eine stärkere Umkörnung im wesentlichen dem Werkstoff nach
  • Beispiel 1.
  • Von den erfindungsgemäß hergestellten Kontaktwerkstoffen wurde in einem Prüfschalter die Schweißkraft ermittelt. Die erhaltenen Meßwerte entsprechen im wesentlichen denen des aus inneroxidierten Legierungspulver hergestellten AgCd012Bi2031,O-Kontaktwerkstoffes. Darüber hinaus wurden in Motorschützen Lebensdauer- und Erwärmungsprüfungen durchgeführt. Wesentliche Kenngrößen sind dabei die AC4-Lebensdauerschaltzahlen der Kontaktstücke und die Ubertemperatur der Strombahnen. Im Vergleich zum AgCdO12Bi2O31,0-Werkstoffe liegen die Lebensdauerschaltzahlen etwa um den Faktor 1,8 höher, wobei sich bei den Ubertemperaturen lediglich bis zu 10 °C höhere Werte ergaben.
  • Die Prüfdaten der neuen Werkstoffe sind in der Tabelle im Vergleich zum bekannten Werkstoff wiedergegeben.
  • Bei Werkstoffen nach der Erfindung wird also, ausgehend vom vorgegebenen Volumenanteil der Summenmetalloxide, der Zinngehalt auf einen geeigneten Bereich erniedrigt und damit zumindest der relative Bi203-Anteil erhöht, was zu unerwartet guten Ergebnissen führt.
    Figure imgb0001

Claims (8)

1. Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik aus AgSnO2 mit Bi203 und CuO als weitere Metalloxidzusätze, wobei der Volumenanteil an Summenmetalloxid zwischen 10 % und 25 % mit einem SnO2-Volumenanteil ≥ 70 % der Gesamtoxidmenge beträgt, dadurch gekennzeichnet , daß der SnO2-Massenanteil speziell im Bereich von 4 % bis 8 % liegt.
2. Sinterkontaktwerkstoff nach Anspruch 1, dadurch gekennzeichnet , daß der Bi203-Massenanteil zwischen 0,5 % und 4 % liegt.
3. Sinterkontaktwerkstoff nach Anspruch 1, dadurch gekennzeichnet , daß der CuO-Massenanteil zwischen 0,3 % und 1 % liegt.
4. Sinterkontaktwerkstoff nach Anspruch 3, dadurch gekennzeichnet , daß das Verhältnis der Massenanteile in % von SnO2 zu CuO zwischen 8:1 und 12:1 liegt.
5. Sinterkontaktwerkstoff nach Anspruch 4, dadurch gekennzeichnet , daß das Verhältnis der Massenanteile in % von SnO2 zu CuO etwa 9:1 beträgt.
6. Sinterkontaktwerkstoff nach Anspruch 5, dadurch gekennzeichnet , daß er in Massenanteilen 6,5 % SnO2, 0,66 % Bi203, 0,74 % CuO und als Rest Silber enthält.
7. Sinterkontaktwerkstoff nach Anspruch 4, dadurch gekennzeichnet , daß das Verhältnis der Massenanteile in % von SnO2 zu CuO etwa 10:1 beträgt.
8. Sinterkontaktwerkstoff nach Anspruch 7 . dadurch gekennzeichnet , daß er in Massenanteilen 5,01 % SnO2, 1,80 % Bi2O3, 0,49 % CuO und als Rest Silber enthält.
EP85106748A 1984-06-12 1985-05-31 Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik Expired - Lifetime EP0164664B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85106748T ATE84905T1 (de) 1984-06-12 1985-05-31 Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete der energietechnik.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3421759 1984-06-12
DE19843421759 DE3421759A1 (de) 1984-06-12 1984-06-12 Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete der energietechnik

Publications (3)

Publication Number Publication Date
EP0164664A2 true EP0164664A2 (de) 1985-12-18
EP0164664A3 EP0164664A3 (en) 1988-03-23
EP0164664B1 EP0164664B1 (de) 1993-01-20

Family

ID=6238160

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85106748A Expired - Lifetime EP0164664B1 (de) 1984-06-12 1985-05-31 Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik

Country Status (6)

Country Link
EP (1) EP0164664B1 (de)
JP (1) JPH0768593B2 (de)
AT (1) ATE84905T1 (de)
BR (1) BR8502760A (de)
DE (2) DE3421759A1 (de)
ZA (1) ZA854389B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369283A3 (de) * 1988-11-17 1991-03-13 Siemens Aktiengesellschaft Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik, insbesondere für Motorschütze
EP0369282A3 (de) * 1988-11-17 1991-03-13 Siemens Aktiengesellschaft Niederspannungsschaltgeräte-Sinterkontaktwerkstoff der Energietechnik, insbesondere für Motorschütze
WO1993015517A1 (de) * 1992-01-24 1993-08-05 Siemens Aktiengesellschaft Sinterverbundwerkstoff für elektrische kontakte in schaltgeräten der energietechnik und verfahren zu dessen herstellung
DE4331913A1 (de) * 1993-09-20 1995-03-23 Siemens Ag Verfahren zum Verbinden von einer Kontaktauflage aus Silber-Metalloxid-Werkstoff mit einem metallischen Kontaktträger
RU2144093C1 (ru) * 1995-02-01 2000-01-10 Дегусса Акциенгезельшафт Спеченный материал на основе серебра-окиси олова для электрических контактов и способ его получения
RU2346069C1 (ru) * 2007-06-15 2009-02-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" Способ получения серебряно-оловооксидного материала для электрических контактов
CN117102479A (zh) * 2023-10-18 2023-11-24 佛山通宝精密合金股份有限公司 一种改性银氧化锡的制备工艺及其制得的改性银氧化锡

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141727A (en) * 1976-12-03 1979-02-27 Matsushita Electric Industrial Co., Ltd. Electrical contact material and method of making the same
JPS6018735B2 (ja) * 1977-12-15 1985-05-11 松下電器産業株式会社 電気接点材料
JPS6013051B2 (ja) * 1978-08-11 1985-04-04 中外電気工業株式会社 銀↓−錫↓−ビスマス系合金を内部酸化した電気接点材料の改良
GB2055398B (en) * 1979-08-01 1983-06-02 Chugai Electric Ind Co Ltd Electrical contact materials of internally oxidized ag-sn-bi alloy
JPS6027746B2 (ja) * 1979-09-19 1985-07-01 松下電器産業株式会社 電気接点材料
JPS57181339A (en) * 1981-05-02 1982-11-08 Chugai Electric Ind Co Ltd Electrical contact material of selectively and internally oxidized silver-tin alloy containing bismuth
JPS57134532A (en) * 1981-02-12 1982-08-19 Chugai Electric Ind Co Ltd Electrical contact material of silver-tin-bismuth alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369283A3 (de) * 1988-11-17 1991-03-13 Siemens Aktiengesellschaft Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik, insbesondere für Motorschütze
EP0369282A3 (de) * 1988-11-17 1991-03-13 Siemens Aktiengesellschaft Niederspannungsschaltgeräte-Sinterkontaktwerkstoff der Energietechnik, insbesondere für Motorschütze
WO1993015517A1 (de) * 1992-01-24 1993-08-05 Siemens Aktiengesellschaft Sinterverbundwerkstoff für elektrische kontakte in schaltgeräten der energietechnik und verfahren zu dessen herstellung
US5486222A (en) * 1992-01-24 1996-01-23 Siemens Aktiengesellschaft Sintered composite materials for electric contacts in power technology switching devices and process for producing them
DE4331913A1 (de) * 1993-09-20 1995-03-23 Siemens Ag Verfahren zum Verbinden von einer Kontaktauflage aus Silber-Metalloxid-Werkstoff mit einem metallischen Kontaktträger
US5628448A (en) * 1993-09-20 1997-05-13 Siemens Aktiengesellschaft Process for bonding a contact layer of silver-metal oxide material and metal contact base, and suitable contact layer
RU2144093C1 (ru) * 1995-02-01 2000-01-10 Дегусса Акциенгезельшафт Спеченный материал на основе серебра-окиси олова для электрических контактов и способ его получения
RU2346069C1 (ru) * 2007-06-15 2009-02-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" Способ получения серебряно-оловооксидного материала для электрических контактов
CN117102479A (zh) * 2023-10-18 2023-11-24 佛山通宝精密合金股份有限公司 一种改性银氧化锡的制备工艺及其制得的改性银氧化锡
CN117102479B (zh) * 2023-10-18 2024-01-02 佛山通宝精密合金股份有限公司 一种改性银氧化锡的制备工艺及其制得的改性银氧化锡

Also Published As

Publication number Publication date
EP0164664A3 (en) 1988-03-23
EP0164664B1 (de) 1993-01-20
JPH0768593B2 (ja) 1995-07-26
DE3421759A1 (de) 1985-12-12
BR8502760A (pt) 1986-02-18
ATE84905T1 (de) 1993-02-15
ZA854389B (en) 1986-02-26
JPS619541A (ja) 1986-01-17
DE3587004D1 (de) 1993-03-04

Similar Documents

Publication Publication Date Title
DE2659012A1 (de) Sinterkontaktwerkstoff aus silber und eingelagerten metalloxiden
EP0170812B1 (de) Verfahren zur Herstellung von Sinterkontaktwerkstoffen
DE2908923C2 (de) Innenoxidierter Verbundwerkstoff für elektrische Kontakte
DE2924238C2 (de) Elektrisches Kontaktmaterial und Verfahren zu seiner Herstellung
EP0118717B2 (de) Sinterverbundwerkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung
EP0182386B1 (de) Verfahren zur Herstellung von Kontaktstücken aus diesem Werkstoff
EP0725154B1 (de) Sinterwerkstoff auf der Basis Silberzinnoxid für elektrische Kontakte und Verfahren zu dessen Herstellung
EP0586411B1 (de) Kontaktwerkstoff auf silberbasis zur verwendung in schaltgeräten der energietechnik sowie verfahren zur herstellung von kontaktstücken aus diesem werkstoff
EP0152606B1 (de) Kontaktwerkstoff und Herstellung von Kontaktstücken
DE3027732A1 (de) Kontakt fuer einen vakuumleistungsschalter
EP0164664B1 (de) Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik
EP0369283B1 (de) Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik, insbesondere für Motorschütze
EP0660964B1 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid und verfahren zu seiner herstellung
DE69614489T2 (de) Kontaktmaterial für Vakuumschalter und Verfahren zu dessen Herstellung
EP0369282B1 (de) Niederspannungsschaltgeräte-Sinterkontaktwerkstoff der Energietechnik, insbesondere für Motorschütze
DE2824117A1 (de) Verfahren zum herstellen eines anisotropen sinterverbundwerkstoffes mit richtgefuege
DE19916082C2 (de) Pulvermetallurgisch hergestellter Verbundwerkstoff, Verfahren zu dessen Herstellung sowie dessen Verwendung
DE3116442C2 (de) Sinterkontaktwerkstoff
DE3405218C2 (de)
DE1930859A1 (de) Pulvermetallzusammensetzungen und Verfahren zu ihrer Herstellung
EP0916146B1 (de) Verfahren zur herstellung eines erzeugnisses aus einem kontaktwerkstoff auf silberbasis, kontaktwerkstoff sowie erzeugnis aus dem kontaktwerkstoff
DE19608490C1 (de) Kontaktwerkstoff aus Silber und Wirkkomponenten, daraus gefertigtes Formstück sowie Verfahren zur Herstellung des Formstücks
EP0876670A2 (de) Verfahren zur herstellung eines formstücks aus einem kontaktwerkstoff auf silberbasis
DE3232627A1 (de) Werkstoff fuer elektrische kontakte
DD209317A1 (de) Kontaktwerkstoff fuer vakuumschalter und verfahren zur herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19880425

17Q First examination report despatched

Effective date: 19900618

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 84905

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3587004

Country of ref document: DE

Date of ref document: 19930304

ET Fr: translation filed
ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930421

Year of fee payment: 9

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930531

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EAL Se: european patent in force in sweden

Ref document number: 85106748.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960419

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960514

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970819

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970531

EUG Se: european patent has lapsed

Ref document number: 85106748.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980529

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980720

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST