EP0160692A1 - Übertragungsverfahren von exogenen genen in pflanzen unter verwendung von pollen als vektor - Google Patents

Übertragungsverfahren von exogenen genen in pflanzen unter verwendung von pollen als vektor

Info

Publication number
EP0160692A1
EP0160692A1 EP84904249A EP84904249A EP0160692A1 EP 0160692 A1 EP0160692 A1 EP 0160692A1 EP 84904249 A EP84904249 A EP 84904249A EP 84904249 A EP84904249 A EP 84904249A EP 0160692 A1 EP0160692 A1 EP 0160692A1
Authority
EP
European Patent Office
Prior art keywords
pollen
dna
plant
plants
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP84904249A
Other languages
English (en)
French (fr)
Inventor
Johannes Martenis Jacob De Wet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0160692A1 publication Critical patent/EP0160692A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector

Definitions

  • the invention herein described relates to a method for the transfer of exogenous genes in Angiosperms from a selected donor plant to a host plant.
  • the method involves incubation of pollen from the parent plant with foreign DNA from the donor.
  • the host plant is then pollinated with treated pollen and normal fertilization and development of seed occur.
  • a self-pollination system is preferred.
  • Transformed offspring generated from seed express genetic traits characteristic of the foreign DNA donor.
  • Agrobacterium tumefaciens and the Ti plasmid holds promise, but this system is limited to dicotyledonous plants.
  • A. tumefaciens does not infect monocotyledonous plants. This plant group includes grasses and cereals, and indeed most of the world's important food crops [Sci. Amer., 248(6) ;59, 1983].
  • Tissue culture techniques are also being investigated. Many dicotyledonous plants can be quite easily regen- erated into intact plants from undifferentiated tis ⁇ sue-culture cells.
  • the male gametophyte is a complex structure.
  • the male gametophyte (pollen grain) of maize consists of a tube nucleus and a generative cell. Soon after germination the pollen tube protrudes from the pore of the pollen grain and the generative cell divides to produce two sperm.
  • the pollen tube then enters the stigma, grows down the style, and enters the female gametophyte where it disposes of its contents into the cytoplasm of the embryosac [Pfahler, P.L. 1978. Biology of the male gametophyte. Iri D.B. Walden (ed.). Maize breeding and genetics. John Wiley and Sons, New York, pp. 517-530; Earle, E. 1982. Gametogenesis, fertilization and embryo development. I I H. Smith and D. Grierson (eds.). Molecular biology of plant development. Bot. Monogs. 1 : 285-305. Univ. Calif. Press, Berkeley; and Linskens, H.F. 1983.
  • Mutations and transformations achieved through sexual transfer of exogenous DNA are phenotypically similar to expressions of known mutant loci. If actual gene transfer does take place, it is assumed that incorporation into the genome of the zygote will be at specific sites on one or more chromosomes (Rubin, G.M. , and A,C, Spradling. 1982. Genetic transformation with transposable vectors. Sci. 218: 348-353; Spradling, A.C., and G.M. Rubin. 1982. Transposition of cloned P elements into
  • Transformed plants either segregate in a
  • OMPI phenotypes and whether loci coding for these genet ⁇ ically mutated phenotypes are located on the expected chromosomes and expected positions on chromosomes arms.
  • cultivated maize Zea mays
  • arose through natural crossing perhaps first with gamagrass (Tripsacum dactyloides) .
  • Hybrids with 36 Tripsacum (Tr) + 10 Zea (Zm) chromosomes are characterized mostly by 18 Tr bivalents and 10 Zm univalents during meiotic prophase [de Wet, J.M.J. and J.R. Harlan. 1974. Tripsacum - maize interaction: A novel cytogenetic system. Genetics 7_8. 493-502; de Wet, J.M.J. et al. 1982. Systematics of . Tripsacum dactyloides (Gramineae) . Amer. J. Bot. 69.* 1251-1257] .
  • Tripsacoid maize genotypes so produced carry several traits new to the genome of maize, and are highly desirable in maize improvement (Bergquist, R.L. 1981.
  • Diploid Tripsacum taxa produce functional female gametes that are haploid (18 chromosomes) or diploid (36 chromosomes) .
  • the ⁇ ytologically non-reduced female gamete may function sexually or develop parthenogenetically to produce a functional embryo.
  • Offspring from such crosses were therefore expected to have 18 Tr + 10 Zm, 36 Tr + 10 Zm, or 36 Tr + 0 Zm chromosomes, the last cytotype being maternal. These cytotypes were indeed produced, but some offspring with 36 Tr + 0 Zm chromosomes resembled true hybrids with 36 Tr + 10 Zm in phenotype.
  • OMPI _ litter mates that were not genetically altered. Plant embryos were similarly transformed by Sayfer (1980, supra) and by Zhou et a].. (1983, supra) . Pollen may serve as a transfer vector of exogenous DNA (Hess, D. 1980. Investigations on the intra- and interspecific transfer of anthocyanin genes using pollen as vectors. Zeitschr. Dephysiol. Bd. 9J3: 321-337) .
  • an object of this invention is to -provide a new and useful method for the transfer of foreign genes among flowering plants using the devel ⁇ oping male gametophyte as a transfer vector.
  • a further object is to provide a male gametophyte system for the transfer of genes between maize cultivars.
  • Yet another object is to provide a method for the inter-species transfer of genes between gamagr ss and maize using pollen as a vector.
  • the male gametophyte of Angiosperms can effectively act as a transfer vector of exogenous genes.
  • One of species selected as experimental material for gene transfer is maize (Zea mays) .
  • Another experimental species is gamagrass (Tripsacum dactyloides) .
  • the genetics of maize is fairly well understood; stocks of marker genes are available; and two genes have been cloned and are available for experimentation.
  • pollen can be used as a transfer vector of foreign genes.
  • the technique of the invention can be used with flowering plants (Angiosperms) for dicot-dicot or monocot-monocot genetic transfer. This genetic engineering techniques is so simple that it can be used in plant breeding with little refinement.
  • the male gametophyte has two major advan ⁇ tages over the use of plasmids as transfer vectors.
  • the most important advantage is efficiency. Germinating and incubating of pollen are readily achieved in the field, and self-pollination followed by selection are standard breeding tools for plant im ⁇ provement.
  • the usefulness of this technique is further enhanced by the ability to transform zygotes, bypassing problems associated with generating func ⁇ tional plants from protoplasts. Data indicate that germinating pollen grains incubated with alien DNA affect fertilization, and induce directional mutations in the genome of the zygote which are expressed in the resulting offspring and their descendents.
  • the technique of the invention can be used to consistently transfer selected marker or other desirable genes from a DNA donor plant to a recipient mother cultivar. However, the mechanisms involved in DNA uptake by the
  • OMPI pollen tube transportation of alien DNA to the embryosac by the male gametophyte, and exogenous nucleotide incorporation into the genome of the zygote, as well as the genetics of transferred or mutated genes in the offspring of the recipient mother, are not yet well known.
  • the method of the invention comprises the isolation of exogenous DNA from a selected donor plant, removal of mature pollen from the chosen donor plant, germination of this pollen in pollen- germinating liquid medium, incubation of germinating pollen with the foreign DNA, pollination of the mother plant with treated pollen, fertilization of the eggs within mature embryosacs of the mother plant, matura- tion of the ovary, obtain ent of seeds from mother plant and germination of same, and selection of transformed plants from the population obtained from said seeds.
  • pollen from a compatible cultivar related to the mother plant- can be treated with exogenous genes and used to pollinate the respec ⁇ tive mother plant.
  • OMPI OMPI :4321-4325
  • PGM aqueous pollen-germi- nating medium
  • PGM comprising carbohydrate, calcium, and boron
  • Mature pollen is sprinkled onto a thin layer of PGM. Most of the pollen will begin to germinate within approximately 15 minutes.
  • the previously-prepared donor DNA is added to the germinating pollen grains after approximately 10% of the pollen grains have begun germination.
  • PGM is poured over germinating pollen and SSC buffer with DNA is added to give a final DNA concentration of approxi ⁇ mately 4-5 g/ml. Pollination is then initiated immediately. The PGM/DNA mixture is then transferred to the stigmatic surface of a receptive female inflorescence. Pollinated flowers are protected from foreign pollen by shoot bags until the PGM evaporates and then are covered with brown paper bags. Fer ⁇ tilization eventually occurs, but embryo and endosperm development is reduced. This effect is due to a reduction of functional pollen and sperm. It is known that several pollen grains are essential for the development of a seed (Klyucharena, M.V. 1962.
  • IPO polar cells may come from the same or different male gametophyte as the sperm that fertilizes the egg.
  • Pollen grains typically contain a tube nucleus and a generative cell.
  • the haploid generative cell divides to form two sperm, the sperm travel down the pollen tube of a germinating pollen grain, traverses the stigmatic surface and the style of a mature female inflorescence, and eventually enters the ovary where one sperm combines in the fertilization process with the haploid egg cell.
  • Gametic delivery results in deposition near the egg of two sperm, the vegetative nucleus and cytoplasm by each of several male gametophytes. This is accom ⁇ panied by loss of sperm and egg cell wall components.
  • Gametic fusion results in the transmission of nearly the total sperm cytoplasm and organelle complement to the egg. The one sperm plays a role in the develop- ment of endosperm.
  • OMPI normal stigma penetration and fertilization occurs, but embryo and endosperm development is greatly reduced. It is also suggested that a critical number of male gametophytes need to deposit their contents into the cytoplasm of the female gametophyte for successful seed development. Increase in quantity of treated pollen used in pollination increases the number of seeds produced.
  • Results obtained using the method of the in- vention and maize demonstrate that exogenous genes are incorporated into the genome of the zygote. When and exactly how this occurs is unknown. If the DNA is carried to the female gametophyte by the sperm, incorporation may either be directly from the sperm -genome or indirectly from the sperm cytoplasm. It is also possible that DNA is transported as free frag ⁇ ments in the cytoplasm of the male gametophyte or sperm. Incorporation may then take place during division of the zygote to produce an embryo.
  • the Zea mays cultivar B73 was selected for various experiments using the method of the invention.
  • the female inflorescence of the standard maize inbred B73 consists of some 500 individual ovules arranged in 8 rows of paired spikelets around a central rachis. Each ovule has its own style with a feathery stigma, and contains a single female gametophyte. Sytles grow to over 15 cm long. Pollen grains are large, and it is possible to pick up individual grains with a fine, moist human hair for transportation to the stigma. Pollen germination and pollen tube growth down the stigma can be followed using fluorescence microscopy. Pollen germination is not severely affected by PGM or DNA incubation but pollen tube growth is retarded and few sperm reach the female gametophyte.
  • Maize B73 is self-pollinated with pollen incubat ⁇ ed with DNA obtained from Tripsacum dactyloides or DNA from other maize genotypes carrying specific marker genes using the method of the invention.
  • tripsacoid traits, as well as specific genes of the maize DNA donor transferable to maize through sexual transfer of exogenous DNA are similar to those incorporated into the maize genome through introgression (de Wet, J.M.J. et al. 1978.
  • Nuclear DNA is extracted from seedling or mature leaves of the donor genotype using a combination of published techniques [J. Mol. Biol. 3:208-219 (1961); Plant Physiol. 6_6_: 1140-1143 (1980) ; Nucl. Acids Res. 8_: 4321-4325 (1980)], using a Trisbase buffer [0.2 M Trisbase (24.22g) , 0.2 M Disodium di-H 2 0 EDTA (74.45g), 4% SDS (40g) in one liter H_0] . Extracted DNA is purified as described in procedures cited above.
  • Pollen germination and pollination after incu ⁇ bation with exogenous DNA are the most difficult aspects of the method of the invention using the male gametophyte as a carrier of foreign DNA.
  • Pollen germinating medium PGM. comprises a ' solution of approximately 15% sucrose, 0.03% calcium nitrate and 0.01% boric acid in water. Maize, as well as the pollen of other plants, germinates well in the PGM. The base of a large petri dish is covered with a thin layer of pollen germinating medium and sprinkled with mature pollen of the recipient mother. In experiments with maize approximately 27mm of pollen is used for each set of pollinations.
  • pollen from a single anther is sufficient to insure seed set.
  • pollen starts to germinate within 3 to 10 minutes.
  • Approximately 60 to 90% of the pollen is germinated after 15 minutes.
  • DNA is obtained from donor plants according to the method of Example 1. Incubation of pollen with exogenous DNA begins after approximately 10% of pollen grains show visible signs of germination. Pollen tubes longer than the diameter of the grains break . during pollination.
  • Nine ml of PGM is poured over the germinated pollen and 1 ml of buffer with DNA is added, to obtain a DNA concentration of 4-5 g/ml. Pollination is initiated immediately.
  • the 11 ml of solution thus prepared is suffi ⁇ cient, for example, to pollinate three female inflorescences of corn each with approximately 300 to 500 ovules. Pollinating an ear of corn requires approximately one minute. Stigmas are cut to the tip of the cob twelve hours before pollination. The PGM with DNA and pollen is transferred to stigmas with a pasteur pipet. Pollinated ears are protected from foreign pollen by shoot bags until PGM evaporates, and they are then covered by standard brown paper bags. , PGM takes approximately 15 minutes to evaporate. Incubation continues until the developing pollen tube enters the stigma, or until the DNA is destroyed on the stigmas. Pollen tube growth continues during incubation with DNA, and penetration of stigmas proceeds normally. Fertilization takes place, but embryo and endosperm development is greatly reduced. This is believed due to a reduction of functional pollen and sperm. Resultant seeds are then screened for transposed genetic characteristics. Similar procedures are adapted for other experimental plants.
  • Maize inbreds B73, DP194 and Zm 1974 produce an average of 425, 368 and 572 caryopses respectively per female inflorescence when they are self-pollinated.
  • Various treatments of mature pollen of B73 are per ⁇ formed using the methods described in Example 1 and 2. Results of these experiments are presented in Table I below:
  • Zm Zea mays (domesticated maize) ; Z ⁇ mays subsp. parviglumis
  • Percentage seedset is negatively correlated with successful germination. Ears were classified into those with 1 to 10, 11 to 20, 21 to 30 and 31 to 40 caryopses. Seedset classes were planted separately and percentage germination recorded. Results of this experiment are presented in Table III below.
  • Seedset of 31-40 caryopses per ear resulted in 3.5% germination, of 21-30 caryopses in 31-34% germination, of 11-20 caryopses in 32-43% germination and 1-10 caryopses in 39-63% germination.
  • Poor germination from ears with relatively high seedset is due to reduced amounts of endosperm in the small caryopses in relation to caryopses from ears with low seedset.
  • Germination is essentially perfect when caryopses are planted in sterile vermiculite and kept in a growth chamber at 75 F.
  • Inbred Zea mays DP194 is highly susceptible to common leaf-rust caused by Puccinia sorghi.
  • the DNA donor, Zea mays B14-A is resistant to rust. Resistance is dominant over susceptibility, and the genotype of B14-A used as DNA donor was homozygous resistant (Rpl /Rpl) .
  • Rpl /Rpl homozygous resistant
  • Seedlings are transplanted when the second leaf appears, inoculated with rust starting at the 4-leaf stage. Field germination of the same treatment was 73%. DP194 control planted in vermiculite produced 90% germination within six days, and 100% germination by the eleventh day. These data show that three out of 103 seedlings (No. 74, 102, 103) showed complete resis ⁇ tance after repeated inoculations with rust spores at the four-leaf and later stages. All other seedlings showed disease symptoms within five days after inocu ⁇ lation. Five out of 103 seedlings (No.
  • each inflorescence branch is composed of solitary female spikelets, alternately arranged in cavities of an indurated rachis, with the paired male spikelets arranged on the same rachis above the female section.
  • Sixteen plants were characterized by soli ⁇ tary female spikelets on tassel branches below the male spikelets.
  • Female spikelets in the tassel do " occur in maize as a rare mutation, but they are paired as is typical in the female inflorescence of maize. Five of these robust plants tillered to produce 3 to 6 fertile culms.
  • Peduncles of female inflorescences in Zml974 vary from 13 to 57 cm in length.
  • trans- formed offspring were three plants with peduncle lengths of 87 cm, 102 cm and 110 cm. Two of these plants tillered while the other was characterized by a single culm.
EP84904249A 1983-11-03 1984-10-31 Übertragungsverfahren von exogenen genen in pflanzen unter verwendung von pollen als vektor Withdrawn EP0160692A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54826083A 1983-11-03 1983-11-03
US548260 2004-02-27

Publications (1)

Publication Number Publication Date
EP0160692A1 true EP0160692A1 (de) 1985-11-13

Family

ID=24188063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84904249A Withdrawn EP0160692A1 (de) 1983-11-03 1984-10-31 Übertragungsverfahren von exogenen genen in pflanzen unter verwendung von pollen als vektor

Country Status (2)

Country Link
EP (1) EP0160692A1 (de)
WO (1) WO1985001856A1 (de)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3585638D1 (de) * 1984-05-11 1992-04-23 Ciba Geigy Ag Transformation von pflanzenerbgut.
DE3636991A1 (de) * 1986-03-03 1987-09-24 Transgene Gmbh Verfahren zur uebertragung organischer und/oder anorganischer substanzen auf ei- und/oder somazellen von tieren sowie entsprechende zusammensetzungen
LU86372A1 (fr) * 1986-03-26 1987-11-11 Cen Centre Energie Nucleaire Procede de traitement de materiel vegetal afin d'otenir l'expression d'au moins un gene,et materiel vegetal dans lequel ce gene s'exprime
US5120657A (en) * 1986-12-05 1992-06-09 Agracetus, Inc. Apparatus for genetic transformation
IL84459A (en) * 1986-12-05 1993-07-08 Agracetus Apparatus and method for the injection of carrier particles carrying genetic material into living cells
EP0275069A3 (de) * 1987-01-13 1990-04-25 DNA PLANT TECHNOLOGY CORPORATION (under the laws of the state of Delaware) Gentransformation in Pflanzen mittels Pollen
US5049500A (en) * 1987-01-13 1991-09-17 E. I. Du Pont De Nemours Pollen-mediated gene transformation in plants
IL82153A (en) * 1987-04-09 1991-12-15 Yissum Res Dev Co Process for introducing genes into plants
US5371003A (en) * 1987-05-05 1994-12-06 Sandoz Ltd. Electrotransformation process
DK240088A (da) * 1987-05-05 1988-11-06 Sandoz Ag Fremgangsmaade til transformation af et plantecellematerale
US5350689A (en) * 1987-05-20 1994-09-27 Ciba-Geigy Corporation Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells
ES2121803T3 (es) * 1987-05-20 1998-12-16 Novartis Ag Plantas de zea mays y plantas transgenicas de zea mays generadas a partir de protoplastos o celulas derivadas de protoplastos.
CA1327173C (en) * 1987-07-21 1994-02-22 Erwin Heberle-Bors Method of gene transfer into plants
US5629183A (en) * 1989-05-08 1997-05-13 The United States Of America As Represented By The Secretary Of Agriculture Plant transformation by gene transfer into pollen
US5550318A (en) * 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
HU220773B1 (hu) * 1990-01-22 2002-05-28 Dekalb Genetics Corporation Eljárás termő transzgenikus kukoricanövények előállítására
US5484956A (en) * 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
US5149655A (en) * 1990-06-21 1992-09-22 Agracetus, Inc. Apparatus for genetic transformation
WO1992003041A1 (en) * 1990-08-21 1992-03-05 Florigene Bv Method for producing transformed chrysanthemum plants
US5780709A (en) * 1993-08-25 1998-07-14 Dekalb Genetics Corporation Transgenic maize with increased mannitol content
US5750868A (en) * 1994-12-08 1998-05-12 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5763243A (en) * 1994-12-08 1998-06-09 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
EP0757102A1 (de) 1995-08-04 1997-02-05 Plant Genetic Systems N.V. Genetische Transformation durch Verwendung von einem PARP-Inhibitor
US6084164A (en) * 1996-03-25 2000-07-04 Pioneer Hi-Bred International, Inc. Sunflower seeds with enhanced saturated fatty acid contents
JP4062366B2 (ja) 1997-01-17 2008-03-19 マキシジェン,インコーポレイテッド 再帰的配列組換えによる全細胞および生物の進化
US5929300A (en) * 1997-07-15 1999-07-27 The United States Of America As Represented By The Secretary Of Agriculture Pollen-based transformation system using solid media
EP3214177A3 (de) 1998-04-08 2017-11-22 Commonwealth Scientific and Industrial Research Organisation Verfahren und mittel zum erhalt von modifizierten phänotypen
US20050086718A1 (en) 1999-03-23 2005-04-21 Mendel Biotechnology, Inc. Plant transcriptional regulators of abiotic stress
US7897843B2 (en) 1999-03-23 2011-03-01 Mendel Biotechnology, Inc. Transcriptional regulation of plant biomass and abiotic stress tolerance
EP1950306A1 (de) 1999-11-17 2008-07-30 Mendel Biotechnology, Inc. Umweltstress-Toleranzgene
MXPA02004878A (es) 1999-11-17 2004-04-05 Mendel Biotechnology Inc Genes relacionados con la bioquimica de la planta.
EP2045262B1 (de) 1999-12-28 2013-05-29 Bayer CropScience NV Insektizide Proteine aus dem Bacillus thuringiensis
EP1406483A4 (de) 2000-08-22 2005-05-25 Mendel Biotechnology Inc Gene zum verandern der eigenschaften von pflanzen
US7517975B2 (en) 2000-09-26 2009-04-14 Pioneer Hi-Bred International, Inc. Nucleotide sequences mediating male fertility and method of using same
ES2397549T3 (es) 2001-01-09 2013-03-07 Bayer Cropscience Nv Proteínas insecticidas de Bacillus thuringiensis
DE10212892A1 (de) 2002-03-20 2003-10-09 Basf Plant Science Gmbh Konstrukte und Verfahren zur Regulation der Genexpression
EP2360179A1 (de) 2002-03-22 2011-08-24 Bayer BioScience N.V. Neue insektizide Proteine von Bazillus thuringiensis
AU2003250115B2 (en) 2002-07-26 2009-03-12 Basf Plant Science Gmbh Inversion of the negative-selective effect of negative marker proteins using selection methods
PT1546336E (pt) 2002-09-18 2012-04-09 Mendel Biotechnology Inc Polinucleótidos e polipéptidos em plantas
US20040210961A1 (en) 2003-03-07 2004-10-21 Palys Joseph Michael Markerless transformation
IL157538A0 (en) 2003-08-21 2004-03-28 Bar Ilan Res & Dev Company Ltd Plant resistant to cytoplasm-feeding parasites
US9085774B2 (en) 2005-04-19 2015-07-21 Basf Plant Science Gmbh Methods controlling gene expression
WO2007007147A2 (en) 2005-07-08 2007-01-18 Universidad Nacional Autonoma De Mexico Instituto De Biotecnologia Novel bacterial proteins with pesticidal activity
CN101268194A (zh) 2005-09-20 2008-09-17 巴斯福植物科学有限公司 使用ta-siRNA调控基因表达的方法
WO2007107302A2 (en) 2006-03-21 2007-09-27 Bayer Bioscience N.V. Novel genes encoding insecticidal proteins
EP2041284B1 (de) 2006-07-05 2021-05-26 Arkansas State University Research and Development Institute Produktion von stilbenen und stilben-derivaten in pflanzlichen wurzelhaarkulturen
WO2008010859A2 (en) 2006-07-19 2008-01-24 The Regents Of The University Of California Plant superoxide dismutase expression resistant to micro-rna regulation
US8395020B2 (en) 2006-08-31 2013-03-12 Monsanto Technology Llc Methods for rapidly transforming monocots
MX2009007608A (es) 2007-02-06 2009-07-27 Basf Plant Science Gmbh Composiciones y metodos que utilizan arn de interferencia para el control de nematodos.
ATE554174T1 (de) 2007-02-06 2012-05-15 Basf Plant Science Gmbh Verwendung von alanin-racemase-genen zur vermittlung von nematodenresistenz an pflanzen
EP2111452B1 (de) 2007-02-08 2012-04-11 BASF Plant Science GmbH Zusammensetzungen und verfahren mit rna-interferenz opr3-ähnlichem gen zur kontrolle von nematoden
US20100017910A1 (en) 2007-02-09 2010-01-21 Basf Plant Science Gmbh Compositions and Methods Using RNA Interference of CDPK-Like For Control of Nematodes
CA2679571A1 (en) 2007-03-15 2008-09-18 Basf Plant Science Gmbh Use of nematode chitinase genes to control plant parasitic nematodes
CN101688216B (zh) 2007-06-01 2014-03-26 拜尔作物科学公司 编码杀虫蛋白质的新基因
EP2173883A1 (de) 2007-08-03 2010-04-14 Pioneer Hi-Bred International Inc. Msca1-nukleotidsequenzen mit auswirkung auf männliche fruchtbarkeit bei pflanzen und verfahren unter verwendung davon
US8809626B2 (en) 2007-12-21 2014-08-19 Keygene N.V. Trichome specific promoters
US8367899B2 (en) 2007-12-31 2013-02-05 E I Du Pont De Neumours And Company Gray leaf spot tolerant maize and methods of production
CN101280315B (zh) 2008-05-20 2010-09-01 中国农业科学院油料作物研究所 毛白杨木质素单体合成基因4-cl及应用
MX2011001356A (es) 2008-08-27 2011-03-29 Basf Plant Science Gmbh Plantas transgenicas resistentes a nematodos.
US20100083400A1 (en) 2008-09-30 2010-04-01 Kindiger Bryan K Lolium Multiflorum Line Inducing Genome Loss
US8536404B2 (en) 2008-12-11 2013-09-17 Basf Plant Science Gmbh Plant root-specific nematode resistance
EP2408923A1 (de) 2009-03-20 2012-01-25 BASF Plant Science Company GmbH Nematodenresistente transgene pflanzen
EA025000B1 (ru) 2009-06-08 2016-11-30 Нунхемс Б.В. Засухоустойчивые растения
EP2449108A1 (de) 2009-07-01 2012-05-09 Bayer BioScience N.V. Verfahren und vorrichtung zur gewinnung von pflanzen mit erhöhter glyphosattoleranz
US20120151629A1 (en) 2009-08-25 2012-06-14 Basf Plant Science Company Gmbh Nematode-Resistant Transgenic Plants
BR112012013713B1 (pt) 2009-12-09 2023-12-12 Basf Plant Science Company Gmbh Método para produzir uma planta e/ou uma parte dessa resistente a um fungo, construção de vetor e uso da construção de vetor
MX2012007581A (es) 2009-12-28 2012-07-30 Pioneer Hi Bred Int Genotipos restauradores de la fertilidad de sorgo y metodos de seleccion asistida por marcadores.
WO2011094199A1 (en) 2010-01-26 2011-08-04 Pioneer Hi-Bred International, Inc. Polynucleotide and polypeptide sequences associated with herbicide tolerance
MX2012009033A (es) 2010-02-23 2012-11-23 Basf Plant Science Co Gmbh Plantas transgenicas resistentes a los nematodos.
EP2575430A1 (de) 2010-05-28 2013-04-10 Nunhems B.V. Pflanzen mit grösserer fruchtgrösse
JP2013531502A (ja) 2010-07-08 2013-08-08 バイエル・クロップサイエンス・エヌ・ヴェー グルコシノレート輸送タンパク質及びその使用
WO2012074868A2 (en) 2010-12-03 2012-06-07 Ms Technologies, Llc Optimized expression of glyphosate resistance encoding nucleic acid molecules in plant cells
BR112013015335A2 (pt) 2010-12-20 2019-09-24 Basf Plant Science Co Gmbh plantas transgências resistentes a nematoides
AU2011349148C1 (en) 2010-12-22 2017-08-24 Pioneer Hi-Bred International, Inc. QTLs associated with and methods for identifying whole plant field resistance to Sclerotinia
US8648230B2 (en) 2011-03-18 2014-02-11 Ms Technologies, Llc Regulatory regions preferentially expressing in non-pollen plant tissue
EP2535416A1 (de) 2011-05-24 2012-12-19 BASF Plant Science Company GmbH Entwicklung einer Phytophthora-resistenten Kartoffel mit verbessertem Ertrag
US9234193B2 (en) 2011-05-31 2016-01-12 Keygene N.V. Pest resistant plants
US20150059018A1 (en) 2011-10-19 2015-02-26 Keygene N.V. Methods and compositions for producing drimenol
WO2013134651A1 (en) 2012-03-09 2013-09-12 Board Of Trustees Of Michigan State University Method of enhancing plant drought tolerance by expression of ndr1
RU2670517C2 (ru) 2012-03-20 2018-10-23 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Молекулярные маркеры низкого содержания пальмитиновой кислоты в подсолнечнике (helianthus annus) и способы их применения
WO2013173535A2 (en) 2012-05-18 2013-11-21 E. I. Du Pont De Nemours And Company Inducible promoter sequences for regulated expression and methods of use
US9598707B2 (en) 2012-11-26 2017-03-21 Arkansas State University-Jonesboro Method to increase the yield of products in plant material
WO2014118018A1 (en) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Fungal resistant plants expressing ein2
WO2014117990A1 (en) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Fungal resistant plants expressing hcp6
CA2897482A1 (en) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Fungal resistant plants expressing hcp7
US9783817B2 (en) 2013-03-04 2017-10-10 Arkansas State University Methods of expressing and detecting activity of expansin in plant cells
AR096014A1 (es) 2013-03-08 2015-12-02 Basf Plant Science Co Gmbh PLANTAS RESISTENTES A HONGOS QUE EXPRESAN EL FACTOR DE TRANSCRIPCIÓN Myb (MybTF)
WO2014142647A1 (en) 2013-03-14 2014-09-18 Wageningen Universiteit Fungals strains with improved citric acid and itaconic acid production
US9714429B2 (en) 2014-01-28 2017-07-25 Arkansas State University Regulatory sequence of cupin family gene
AR100874A1 (es) 2014-06-16 2016-11-09 Consejo Nac De Investig Científicas Y Técnicas (Conicet) Genes quiméricos y proteínas de resistencia oxidativa, y plantas transgénicas que incluyen los mismos
US10570412B2 (en) 2015-02-04 2020-02-25 Basf Plant Science Company Gmbh Method of increasing resistance against soybean rust in transgenic plants by increasing the scopoletin content
AU2016318051B2 (en) 2015-09-04 2022-11-03 Keygene N.V. Diplospory gene
WO2017139544A1 (en) 2016-02-11 2017-08-17 Pioneer Hi-Bred International, Inc. Qtls associated with and methods for identifying lodging resistance in soybean
WO2017184500A1 (en) 2016-04-18 2017-10-26 Bloomsburg University of Pennsylvania Compositions and methods of delivering molecules to plants
EP3054014A3 (de) 2016-05-10 2016-11-23 BASF Plant Science Company GmbH Benutzung einer fungizids auf transgenen pflanzen
WO2017223055A1 (en) 2016-06-20 2017-12-28 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College A green alga bicarbonate transporter and uses thereof
US20210163976A1 (en) 2018-08-13 2021-06-03 Aarhus Universitet Genetically altered plants expressing heterologous receptors that recognize lipo-chitooligosaccharides
EP3837357A1 (de) 2018-08-13 2021-06-23 Aarhus Universitet Genetisch veränderte lysm-rezeptoren mit veränderter agonistenspezifität und -affinität
AU2019392735A1 (en) 2018-12-06 2021-06-17 Wageningen Universiteit Methods of genetically altering a plant NIN-gene to be responsive to cytokinin
CN113906143A (zh) 2019-03-21 2022-01-07 埃塞克斯大学企业有限公司 通过rubp再生和电子传输的刺激来增强植物中生物质的方法
JP2022533813A (ja) 2019-05-29 2022-07-26 キージーン ナムローゼ フェンノートシャップ 単為生殖のための遺伝子
CN114667292A (zh) 2019-07-11 2022-06-24 加利福尼亚大学董事会 用生长调节因子(grf)、grf相互作用因子(gif)或嵌合grf-gif改进植物再生的方法
GB201911068D0 (en) 2019-08-02 2019-09-18 Univ Edinburgh Modified higher plants
EP4007769A1 (de) 2019-08-02 2022-06-08 The Trustees of Princeton University Rubisco-bindende proteinmotive und deren verwendungen
US20220275389A1 (en) 2019-08-19 2022-09-01 Aarhus Universitet Modified exopolysaccharide receptors for recognizing and structuring microbiota
WO2021170794A1 (en) 2020-02-28 2021-09-02 Cambridge Enterprise Limited Methods, plants and compositions for overcoming nutrient suppression of mycorrhizal symbiosis
EP4153731A1 (de) 2020-05-19 2023-03-29 Aarhus Universitet Lysm-rezeptormotive
IL301700A (en) 2020-10-13 2023-05-01 Keygene Nv Adapted promoter of parthenogenesis gene
EP4347845A2 (de) 2021-05-26 2024-04-10 The Board of Trustees of the University of Illinois C4-pflanzen mit erhöhter photosynthetischer effizienz
US20220387581A1 (en) 2021-06-03 2022-12-08 Mazen Animal Health Inc. Oral administration of coronavirus spike protein for altering cytokine levels and providing passive immunity to newborn pigs
US20230323480A1 (en) 2022-04-11 2023-10-12 The Regents Of The University Of California Methods of screening for plant gain of function mutations and compositions therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8501856A1 *

Also Published As

Publication number Publication date
WO1985001856A1 (en) 1985-05-09

Similar Documents

Publication Publication Date Title
EP0160692A1 (de) Übertragungsverfahren von exogenen genen in pflanzen unter verwendung von pollen als vektor
CN110213961A (zh) 基于基因组编辑的作物工程化和生产矮秆植物
WO2020248969A1 (zh) 一种雄性不育保持系植物及其用途
JP2021520223A (ja) 植物ヘテロシスの利用方法
WO2016054236A1 (en) In situ embryo rescue and recovery of non-genetically modified hybrids from wide crosses
AU2017336342B2 (en) Parthenocarpic watermelon plants
JPH0646697A (ja) 外部から誘導し得るプロモーター配列を用いた小胞子形成の制御
WO2020213728A1 (ja) 生長性が改良された細胞質雄性不稔Brassica rapa植物
CN115843674A (zh) 玉米单倍体诱导系的选育方法及其应用
Rose et al. The transfer of cytoplasmic and nuclear genomes by somatic hybridisation
CN109837295A (zh) 一种用基因编辑创制的水稻单倍体诱导系及其创制方法和应用
WO1998057535A1 (fr) Soja androsterile cytoplasmique et procede de production de soja hybride
Wenzel et al. New strategy to tackle breeding problems of potato
CN110938122A (zh) 雄性不育基因OsNIN5及其应用和育性恢复的方法
Kiyoharu Tissue culture and genetic engineering in rice
Mujeeb-Kazi et al. A simplified and effective protocol for production of bread wheat haploids (n= 3x= 21, ABD) with some application areas in wheat improvement
US6583335B1 (en) Direct transformation of higher plants through pollen tube pathway
Li et al. Construction of a novel female sterility system for hybrid rice
Brar et al. Application of biotechnology in hybrid rice
JPH04505553A (ja) 雄性発生を受けるトウモロコシの能力を高めるための方法及びそれから生成される生成物
CN117296710B (zh) 一种快速创制细胞质雄性不育系的方法
US11672216B2 (en) Methods for promoting production of viable seeds from apomictic guayule plants
Al-Ahmad et al. Infertile interspecific hybrids between transgenically mitigated Nicotiana tabacum and Nicotiana sylvestris did not backcross to N. sylvestris
JP2002534102A (ja) タバコ属種間雑種およびその後代
CN112772404B (zh) 一种水稻雌性核不育恢复系的选育方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19851008