WO2020213728A1 - 生長性が改良された細胞質雄性不稔Brassica rapa植物 - Google Patents

生長性が改良された細胞質雄性不稔Brassica rapa植物 Download PDF

Info

Publication number
WO2020213728A1
WO2020213728A1 PCT/JP2020/016928 JP2020016928W WO2020213728A1 WO 2020213728 A1 WO2020213728 A1 WO 2020213728A1 JP 2020016928 W JP2020016928 W JP 2020016928W WO 2020213728 A1 WO2020213728 A1 WO 2020213728A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
brmt
brassica rapa
cytoplasmic
cytoplasmic male
Prior art date
Application number
PCT/JP2020/016928
Other languages
English (en)
French (fr)
Inventor
慎吾 堀内
鈴木 隆夫
敦 泉田
和裕 西川
Original Assignee
株式会社サカタのタネ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サカタのタネ filed Critical 株式会社サカタのタネ
Priority to CN202410237003.0A priority Critical patent/CN118109452A/zh
Priority to AU2020258736A priority patent/AU2020258736A1/en
Priority to US17/604,200 priority patent/US20220322627A1/en
Priority to CN202080044203.4A priority patent/CN113993373B/zh
Priority to JP2021514248A priority patent/JPWO2020213728A1/ja
Priority to KR1020217035651A priority patent/KR20210153071A/ko
Priority to EP20791489.6A priority patent/EP3957167A4/en
Publication of WO2020213728A1 publication Critical patent/WO2020213728A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/022Genic fertility modification, e.g. apomixis
    • A01H1/023Male sterility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/121Plant growth habits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • A01H6/204Brassica rapa
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Definitions

  • the present invention relates to a cytoplasmic male sterile Brassica rapa plant with improved growth.
  • Brassica rapa belongs to the Brassicaceae genus Brassica and is said to have originated in the Mediterranean region. By natural crossing, it is differentiated into subspecies with various morphological characteristics, and has been inherited by many vegetables such as Chinese cabbage, turnip, Japanese mustard spinach, and pakchoi (Non-Patent Document 1).
  • F1 F1 hybrid varieties
  • F1 varieties are widespread among major crops.
  • F1 varieties have great advantages such as vigorous growth due to heterosis, fast growth, and high yield.
  • F1 varieties can be expected to improve resistance to pests and environmental adaptability such as cold resistance and heat resistance due to vigorous growth.
  • genotypes of the F1 varieties are heterozygous but have the same genotype, the phenotype shows extremely high uniformity. Therefore, the marketability of the product is enhanced.
  • useful traits controlled by dominant genes can be accumulated in parents of F1 varieties, rapid breeding becomes possible. Due to the above advantages, F1 varieties have come to occupy the mainstream of cultivars in the main crops.
  • CMS cytoplasmic male sterility
  • Ogura CMS which is used in Raphanus sativus, Brassica oleracea, Brassica juncea, Brassica napus, etc.
  • Ogura CMS was discovered in Japanese radish of unknown variety name, and has been widely used for the development of F1 varieties of Japanese radish to date.
  • Ogura CMS was introduced into rapeseed (Brassica napus) by intergeneric crossing and continuous backcrossing, and a male sterile strain was obtained, but initially it had the drawback of showing chlorosis at low temperature and could not be put into practical use. It was. To overcome this chlorosis, cell fusion was performed between Ogura CMS B. napus and B.
  • Non-Patent Document 2 Non-Patent Document 2
  • the Ogura CMS B.oleracea plant of Patent Document 1 was used as the seed parent, and the B.rapa plant was used as the pollen parent for continuous backcrossing to develop the Ogura CMS B.rapa plant that does not cause chlorosis. It is cultivated from the seeds of Sakata Co., Ltd.
  • Non-Patent Document 4 CMS in petunia has been known for a long time, and its causative gene, S-pcf, is widely used as a research material.
  • S-pcf causative gene
  • F1 varieties using this CMS are rarely used at present because they cause flowering delay and flower bud development arrest (Non-Patent Document 4).
  • the existing Ogura CMS B.rapa plant has a problem that its growth is reduced as compared with the B.rapa plant having a normal cytoplasm because the affinity between the nuclear genome and the mitochondrial genome is insufficient.
  • the present invention provides Ogura CMS B. rapa plants that do not reduce growth, and the Ogura CMS B. rapa plants. It is an object of the present invention to provide a method for producing F1 seeds of a B. rapa plant that does not reduce the growth of the plant.
  • the present inventors have made the existing Ogura CMS B.rapa plant a cytoplasmic donor, and accept the B.rapa interspecific hybrid plant having high redifferentiation ability and normal cytoplasm.
  • asymmetric cytoplasmic fusion makes it possible to improve the mitochondrial genome, create an Ogura CMS B.rapa plant that does not reduce growth, and use the Ogura CMS B.rapa plant to improve growth. It was found that the Ogura CMS B.rapa plant was obtained.
  • the present invention is based on these findings. That is, according to the present invention, the following invention is provided.
  • ⁇ 4> Any of the above ⁇ 1> to ⁇ 3> obtained by performing asymmetric cell fusion using a cytoplasmic male sterile Brassica plant having a cytoplasmic male sterility gene derived from a Raphanus sativus plant as a cytoplasmic donor parent. Cytoplasmic male sterile Brassica rapa plant, or its progeny.
  • Cytoplasmic male sterility of any of the above ⁇ 1> to ⁇ 3> obtained by performing asymmetric cell fusion using a cytoplasmic male sterility Brassica genus plant derived from a cytoplasmic male sterility Brassica plant as a cytoplasmic donor parent. Sterile Brassica rapa plant, or its progeny.
  • Cytoplasmic male sterility obtained by performing asymmetric cell fusion using a cytoplasmic male sterility Brassica rapa plant derived from a Brassica oleracea plant as a cytoplasmic donor parent, and which is any of the above ⁇ 1> to ⁇ 3>.
  • ⁇ 7> The above ⁇ 1> to obtained by performing asymmetric cell fusion using an existing cytoplasmic male sterile Brassica genus plant as a cytoplasmic donor and a Brassica rapa interspecific hybrid plant having a normal cytoplasm as a cytoplasmic acceptor. Any of the ⁇ 4> cytoplasmic male sterile Brassica rapa plants, or progeny.
  • cytoplasmic male sterile Brassica rapa plant according to any one of ⁇ 3> to ⁇ 7> above, or a progeny thereof, wherein the interspecific hybrid plant is derived from the Brassica oleracea plant and the Brassica rapa plant.
  • ⁇ 9> The interspecific hybrid plant according to any one of ⁇ 3> to ⁇ 8>, wherein the interspecific hybrid plant has a high redifferentiation ability.
  • ⁇ 10> The cytoplasmic male sterility Brassica rapa plant according to ⁇ 7>, or a progeny thereof, wherein the existing cytoplasmic male sterility Brassica genus plant is an existing cytoplasmic male sterility Brassica rapa plant.
  • ⁇ 11> The cytoplasmic male sterility Brassica rapa plant of ⁇ 7>, or its progeny, wherein the existing cytoplasmic male sterility Brassica genus plant is derived from the cytoplasmic male sterility Brassica oleracea plant.
  • cytoplasmic male sterility Brassica rapa plant according to any one of ⁇ 4> to ⁇ 11> above, or a progeny thereof, wherein the cytoplasmic donor has the cytoplasmic male sterility gene orf138.
  • Cytoplasmic male sterile Brassica rapa plant having DNA derived from the mitochondrial genome of Raphanus sativus plant, Brassica oleracea plant and Brassica rapa plant in the mitochondrial genome, or its progeny. Cytoplasmic male sterile Brassica rapa plant, or its progeny, obtained by performing asymmetric cell fusion using a Brassica rapa interspecific hybrid plant with normal cytoplasm as the cytoplasmic acceptor.
  • Cytoplasmic male sterile Brassica rapa plant according to any one of ⁇ 1> to ⁇ 13> above, which contains a plant-derived mitochondrial genome identified by accession number FERM BP-22371 or accession number FERM BP-22372, or thereafter. Substitute.
  • At least one of the mitochondrial DNAs identified by the mitochondrial genome markers BrMt-13K, BrMt-23K, BrMt-74K, BrMt-120K, BrMt-149K, and BrMt-185K is of the Brassica rapa type. 1> ⁇ ⁇ 14> Cytoplasmic male sterile Brassica rapa plant, or its progeny.
  • At least one of the mitochondrial DNAs identified by the mitochondrial genome markers BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, BrMt-208K is of the Brassica oleracea type, described above ⁇ 1> to ⁇ 14> Any Brassica rapa plant, or its progeny.
  • Mitochondrial genome markers BrMt-13K, BrMt-16K, BrMt-23K, BrMt-28K, BrMt-43K, BrMt-58K, BrMt-63K, BrMt-70K, BrMt-74K, BrMt-88K, BrMt-100K The mitochondrial DNA identified by BrMt-111K, BrMt-120K, BrMt-141K, BrMt-149K, BrMt-157K, BrMt-161K, BrMt-185K, BrMt-199K, BrMt-213K, and BrMt-215K is Brassica rapa.
  • the Mitochondrial DNA identified by BrMt-208K is a Brassica oleracea type, any of the above ⁇ 1> to ⁇ 14> Brassica rapa plants, or its progeny.
  • Cytoplasmic male sterile Brassica rapa plant having the mitochondrial genome of the plant identified by accession number FERM BP-22371 or accession number FERM BP-22372 is used as a cytoplasmic donor and has normal cytoplasm among Brassica rapa species.
  • ⁇ 21> A part of the cytoplasmic male sterile Brassica rapa plant or its progeny plant according to any one of ⁇ 1> to ⁇ 20>.
  • ⁇ 22> The seed of the cytoplasmic male sterile Brassica rapa plant or its progeny according to any one of ⁇ 1> to ⁇ 20>.
  • ⁇ 23> Mitochondria contained in the cytoplasmic male sterile Brassica rapa plant according to any one of ⁇ 1> to ⁇ 20>, or its progeny, a part of the plant body of ⁇ 21>, or the seed of ⁇ 22>. genome.
  • ⁇ 24> Equivalent to a Brassica rapa plant having a normal cytoplasm, including asymmetric cell fusion using an existing cytoplasmic male sterile Brassica rapa plant as a cytoplasmic donor and a Brassica rapa plant having a normal cytoplasm as a cytoplasmic acceptor.
  • the method for producing ⁇ 24>, wherein the Brassica rapa plant having a normal cytoplasm is an interspecific hybrid plant of the Brassica rapa plant or a plant derived thereto.
  • cytoplasmic male sterile Brassica rapa plant according to any one of ⁇ 1> to ⁇ 20> or its progeny is used as a seed parent, and a Brassica rapa plant capable of mating with the plant is mated as a pollen parent, and after mating.
  • a method for producing a F1 hybrid seed which comprises collecting a F1 hybrid seed from a seed parent.
  • Cytoplasmic male sterility including any of the above ⁇ 1> to ⁇ 20>, including continuous backcrossing of any Brassica rapa plant to the Brassica rapa plant or its progeny, and cytoplasmic replacement.
  • cytoplasmic male sterile Brassica rapa plant with improved growth and above all, an Ogura CMS B. rapa plant with improved growth.
  • Growth is achieved by using the cytoplasmic male sterile B.rapa plant with improved growth according to the present invention as the seed parent and the B.rapa plant having normal cytoplasm as the pollen parent for F1 seed collection of the B.rapa plant. It becomes possible to efficiently collect F1 seeds of B. rapa plants that do not decrease.
  • Cytoplasmic male sterile Brassica rapa plant with improved growth and its progeny presents a cytoplasmic male sterile B. rapa plant or progeny with improved growth compared to existing cytoplasmic male sterile B. rapa plants. Regarding. This can be described as a cytoplasmic male sterile B.rapa plant, or its progeny, which has growth equivalent to that of a B.rapa plant having a normal cytoplasm, as described above.
  • normal cytoplasm is typically used to mean that the cytoplasm of a plant exhibiting male sterility, that is, the male sterility cytoplasm, is normal without showing sterility. ..
  • “equivalent” in the case of “growth equivalent to B. rapa plant having normal cytoplasm” means “equivalent” to B. rapa plant having normal cytoplasm when the growth property is measured by the weight of the above-ground part of the plant body. It means that the measured value in the target plant is within a range that can fluctuate within 25% (preferably within 20%, more preferably within 15%, and further preferably within 10%) as compared with the value. Therefore, for example, when the measured value of the target plant is 90% of the value of the normal plant with respect to the value of the above-ground weight of "B.rapa plant having normal cytoplasm", the above-mentioned The variation corresponds to 10%. Equivalence does not exclude cases that exceed the growth of "B. rapa plants with normal cytoplasm".
  • progeny includes a progeny using a B. rapa plant having a normal cytoplasm, and a cytoplasmic male sterile B. rapa plant with improved growth according to the present invention, which is hybridized with the plant. Hybrids obtained by crossing with possible B. rapa plants are also included. Therefore, for the "progeny", for example, the cytoplasmic male sterile B.rapa plant with improved growth according to the present invention is used as the seed parent (female parent), and the B.rapa plant capable of mating with the plant is used as the pollen parent (pollen parent). It also includes those obtained by mating as a male parent).
  • progeny includes, for example, a plant produced by cell fusion of a cytoplasmic male sterile B. rapa plant having improved growth according to the present invention and a plant capable of being fused with the B. rapa plant, or interspecific crossing. Plants are also included.
  • the "B. rapa plants” are bok choy (B. rapa var. Chinensis), cub (B. rapa var. Rapa), Mizuna (B. rapa var. Laciniifolia), hakusai (B. rapa var. Pekinensis), It is preferably Komatsuna (B. rapa var. Perviridis), Taasai (B. rapa var. Narinosa), or an interspecies hybrid plant between these and related species.
  • the cytoplasmic male sterility B. rapa plant or its progeny with improved growth of the present invention is the mitochondrial genome of the orf138 gene, which is a cytoplasmic male sterility gene derived from the R. sativus plant.
  • the mitochondrial genome more preferably DNA derived from the mitochondrial genome of Raphanus sativus plant, Brassica oleracea plant and Brassica rapa plant, and more preferably the orf138 gene and B. oleracea derived from R. sativus plant. It has a recombinant mitochondrial genome of plants and B. rapa plants.
  • asymmetric cell fusion means that one of the nuclear genomes of the isolated protoplasts used for cell fusion is previously destroyed before being fused, and then cell fusion is performed using the nuclear genome.
  • a cytoplasm donor a cell that destroys the nuclear genome during fusion and donates the cytoplasm to the fused cell by cell fusion.
  • a cytoplasmic accepting parent is a substance that maintains the nuclear genome without destroying it during fusion and accepts the cytoplasm from the cytoplasmic donor parent.
  • the cytoplasmic male sterility B.rapa plant with improved growth of the present invention uses the existing cytoplasmic male sterility B.rapa plant as the cytoplasmic donor parent and uses normal cytoplasm. It can be obtained by performing asymmetric cell fusion using a B. rapa interspecific hybrid plant as a cytoplasmic acceptor.
  • the existing cytoplasmic male sterile B.rapa plant means a cytoplasmic male sterile B.rapa plant before the growth is improved by the present invention.
  • the existing cytoplasmic male sterile B.rapa plant has room for improvement in growth, that is, the growth is reduced as compared with the B.rapa plant having normal cytoplasm. Means.
  • the existing cytoplasmic male sterility Brassica rapa plant is a cytoplasmic male sterility Brassica rapa plant derived from the cytoplasmic male sterility Brassica oleracea plant.
  • the cytoplasmic male sterile Brassica oleracea plant referred to here can be produced with reference to JP-A-07-031307, and as a typical example, it was developed by Sakata Seed Corporation and is a B. oleracea crop.
  • the CMS system "Cabbage MS-2" Japanese Patent Laid-Open No. 07-031307) used in the above can be mentioned.
  • the cytoplasm of "Cabbage MS-2” is used in commercially available broccoli varieties “Grandome", “Pixel” and the like, and can be easily obtained.
  • the cytoplasmic male sterility Brassica genus plant having a cytoplasmic male sterility gene derived from Raphanus sativus is typically a plant having an Ogura CMS gene, as described above.
  • At least one of the identified mitochondrial DNAs is of the Brassica rapa type.
  • the above-mentioned "at least any one” is more preferably “at least any two", further preferably “at least any three", and even more preferably "at least any four”. ..
  • DNA is of Brassica rapa type
  • At least one of the DNAs is of the Brassica oleracea type.
  • the above-mentioned "at least any one” is more preferably “at least any two", further preferably “at least any three", and even more preferably "at least any four”. ..
  • the mitochondrial DNA identified by the mitochondrial genomic markers BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, BrMt-208K in the Brassica rapa plant of the present invention or its progeny is Brassica. It is an oleracea type.
  • At least one of the mitochondrial DNAs identified is of the Brassica oleracea type.
  • the above-mentioned "at least any one” is more preferably “at least any two", further preferably “at least any three", and even more preferably "at least any four”. ..
  • the mitochondrial DNA identified by -199K, BrMt-213K, and BrMt-215K is of the Brassica rapa type and is a mitochondrial genome marker BrMt-3K, BrMt-4K, BrMt-36K, BrMt-65K, BrMt-80K,
  • the mitochondrial DNA identified by BrMt-94K, BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, and BrMt-208K is of the Brassica oleracea type.
  • the cytoplasmic male sterile B. rapa plant with improved growth according to the present invention, or its progeny is the same as Accession No. FERM BP-22371 or FERM BP-22372 (described later).
  • the term "part of a plant" of a cytoplasmic male sterile B. rapa plant with improved growth or its protoplasts is derived from one or more cells or one or more cells of the plant. It contains a cytoplasm, specifically, an organ or tissue such as a flower, a leaf, a stem, a root, or a cell (including a protoplast prepared from a cell) or a cytoplasm from these organs or tissues, or the cell. Or it means an aggregate of cytoplasm.
  • the cytoplasmic male sterile B.rapa plant with improved growth can be produced, for example, according to the following procedure. (1) Creation of cytoplasmic receptor parents with high redifferentiation ability and normal cytoplasm (2) Preparation of protoplasts (i) Isolation of protoplasts of B.
  • rapa interspecific hybrid plants with normal cytoplasm ii) Existing Isolation of protoplasts from cytoplasmic male sterility B.rapa plants (3) Fusion treatment of protoplasts (4) Culture of fused hybrid cells (5) Selection of cytoplasmic hybrid plants with cytoplasmic male sterility (6) Plants from callus Regeneration of the body (7) Acquisition of protoplasts and selection of excellent strains
  • production method can also be rephrased as the "production method”. That is, the terms “production” and “manufacturing” here are used interchangeably.
  • cytoplasmic receptor parent with high redifferentiation ability and normal cytoplasm
  • the cytoplasm that expresses male sterility is other than male sterility. It is important that it does not affect the traits of.
  • mitochondrial genome recombination occurs randomly, so there is a high probability that recombinant mitochondria that maintain male sterility without defective traits will be obtained. Since it is low, it is necessary to produce a large number of cytoplasmic hybrids and select excellent individuals.
  • B.rapa plants are more difficult to regenerate from fused cells obtained by asymmetric cell fusion than B.oleracea and B.napus plants of the same Brassica genus. Efficient methods for producing cytoplasmic hybrid plants of plants have not been reported. Therefore, it is indispensable to develop a method for efficiently producing a large number of cytoplasmic hybrids.
  • the cytoplasmic hybrid plant refers to a plant in which the cytoplasm is in a hybrid state, and refers to a plant obtained by performing cell fusion (preferably here, asymmetric cell fusion).
  • B. oleracea plants are known to have high redifferentiation ability from cultured cells.
  • the redifferentiation ability of B. rapa plants is low, and the examples of successful regeneration of plants from cultured cells are limited to specific varieties. Therefore, in order to increase the production efficiency of cytoplasmic hybrids, first, an interspecific hybrid plant is produced using a normal cytoplasmic B. rapa plant as a seed parent and a B. oleracea plant as a pollen parent, and B. has a high redifferentiation ability. It is desirable to produce interspecific hybrid plants of rapa plants and B. oleracea plants and use them as cytoplasmic acceptors.
  • B.rapa and B.oleracea interspecific hybrid plants with high redifferentiation ability may be referred to as "B.rapa interspecific hybrid plants”.
  • the obtained B.rapa interspecific hybrid plant has a normal cytoplasmic B.rapa plant as a seed parent, and has the same cytoplasm as the normal cytoplasmic B.rapa due to maternal inheritance of the cytoplasm, and is redifferentiated. It is desirable as a property of cytoplasmic acceptor because of its improved ability.
  • high redifferentiation ability means that the ability to redifferentiate from callus cells to plants is high, and the redifferentiation rate (redifferentiation) one month after placing the callus in the redifferentiation medium.
  • the number of differentiated callus / the number of callus placed in the redifferentiation medium) is 30% or more, more preferably 50% or more.
  • the diploidy produced by artificially doubling the above B.rapa interspecific hybrid plant is backcrossed as the seed parent and the normal cytoplasmic B.rapa plant as the pollen parent, and the obtained progeny is tissueed.
  • triploid B. rapa interspecific hybrid plants with high redifferentiation ability can be obtained.
  • a diploid B.rapa interspecific hybrid plant close to B.rapa is obtained. Since female fertility increases as the diploid approaches, it is desirable to use these B. rapa interspecific hybrid plants as cytoplasmic receptive parents.
  • the B.rapa plant used as the cytoplasmic acceptor is the interspecific B.rapa plant of (1) above. It is preferable to use a hybrid plant, more preferably a B.rapa interspecific hybrid plant grown by backcrossing B.rapa.
  • mesophyll tissue having high yield and high mitotic activity
  • other tissues such as hypocotyl, stem and callus may also be used as materials. ..
  • the method for isolating the protoplast may be a commonly used method known in the art (for example, the method described in Matsumoto, E, Plant cell reports, 1991. vol9 (10), etc.) and is not particularly limited.
  • the following shows procedures as specific examples, but the present invention is not necessarily bound by them.
  • the cell tissue of the B. rapa plant is shredded, and the protoplast is isolated by enzyme treatment using an enzyme solution for protoplast isolation.
  • This solution is an inorganic salt buffer solution mainly containing a cell wall degrading enzyme and an osmoregulator.
  • the cell wall degrading enzyme is not particularly limited as long as it can be used for decomposing the cell wall of a plant, and examples thereof include cellulase, hemicellulase, and pectinase.
  • a combination of cellulase Y-C and macerozyme R-10 is preferable.
  • osmoregulator general sugar alcohols such as mannitol, sorbitol, glucose and the like can be used, mannitol is preferable, and mannitol having a concentration of 0.3M to 0.7M is particularly preferable.
  • an inorganic salt to the enzyme solution in order to stabilize the protoplast membrane.
  • a CPW salt (Cocking and Peberdy, 1974) having the composition shown in Table 1 below. is there.
  • the enzyme treatment is preferably a standing treatment at 25 to 30 ° C. for 8 to 20 hours.
  • Protoplasts isolated by enzyme treatment are filtered through a nylon mesh with a pore size of 30 to 100 ⁇ m, centrifuged to collect protoplasts, and the enzyme solution is removed. The protoplasts are then suspended in the wash solution to wash the protoplasts.
  • a commonly used CPW salt solution to which sugar alcohols are added as an osmotic pressure adjusting agent can be used.
  • the inactivation treatment can be carried out by suspending protoplasts in a CPW salt solution or the like in which an iodine compound such as iodoacetic acid or iodoacetamide is dissolved.
  • an iodine compound such as iodoacetic acid or iodoacetamide is dissolved.
  • the suspension of protoplasts also contains fragments of conduits and cells, it is preferable to further purify the protoplasts by a density gradient centrifugation method or the like.
  • the reagent used for purification include saccharides and synthetic colloids.
  • the use of a sucrose solution is preferable, and the use of a sucrose solution of 15% to 20% is particularly preferable.
  • the cell density is measured by a hemocytometer, and the liquid volume is adjusted with a CPW salt solution so that the cell density is suitable for cell fusion.
  • the cell density of protoplast is preferably 1 ⁇ 10 5 to 1 ⁇ 10 7 cells / ml, and the use of CPW salt solution is preferable for adjusting the liquid volume.
  • cytoplasm of "Cabbage MS-2" can be used directly, but it is also subjected to nuclear replacement by continuous backcrossing of the conventional B.rapa plant to produce and use a cytoplasmic male sterile B.rapa plant. It is more desirable to do.
  • Isolation of the protoplasts of existing cytoplasmic male sterile plants can be performed, for example, according to the same method as the isolation of protoplasts of B. rapa interspecific hybrid plants described above.
  • the isolated protoplast of the existing cytoplasmic male sterile B. rapa plant whose nucleus is inactivated by radiation treatment examples include X-rays, ⁇ -rays, ultraviolet rays, and the like, but the radiation is not particularly limited as long as it can destroy the nucleus.
  • the irradiation dose is preferably as low as possible within the range in which the nucleus can be destroyed. For example, in the case of soft X-ray irradiation in the present invention, an irradiation amount of 100 Gy to 900 Gy is preferable.
  • Protoplast fusion treatment both types of protoplasts obtained above are mixed and cell fusion is performed.
  • fusion method conventional methods, for example, known electric fusion method (Planta, 151, 26-32, 1981), PEG (polyethylene glycol) method (Planta, 120, 215-227, 1974), dextran method (Jap) . J. Genet., 50, 235, 1975), etc., but are not particularly limited.
  • the PEG method is preferably used.
  • the cells obtained by the fusion treatment are preferably cultured in a medium suitable for culturing protoplasts derived from B. rapa interspecific hybrid plants.
  • the method for culturing protoplasts derived from interspecific hybrid plants of B. rapa and B. oleracea, which have high redifferentiation ability, is not particularly limited as long as it is appropriately modified based on the method for culturing Brassica protoplasts.
  • cytoplasmic hybrid plants with cytoplasmic male sterility The fusion cells are cultured, and when cell division is started and the callus can be visually confirmed, the callus is transplanted into the callus growth medium.
  • Conventional callus growth medium can be used, and the reaction varies depending on the genotype of the plant used as the material and the state of callus, but for example, 1.0 to 5.0 mg / l NAA and 0.1 to 3.0 mg. It is preferable to use an MS medium containing / l 4-CPPU.
  • the causative gene for cytoplasmic male sterility in Ogura CMS has been identified as orf138 in the mitochondrial genome. Therefore, in order to select an individual having cytoplasmic male sterility from the obtained callus, DNA is extracted from the callus grown by the above procedure, and a PCR method is used using a marker capable of specifically amplifying orf138. It is preferable to detect by.
  • the obtained callus having orf138 is transplanted to a redifferentiation medium and redifferentiated.
  • a redifferentiation medium a conventional medium can be used, and the reaction varies depending on the genotype of the plant used as the material and the state of callus, but for example, 0.1 to 1.0 mg / l NAA and 0.1 to 1. It is preferable to use an MS medium containing 0 mg / l 4-CPPU.
  • the regenerated shoots are transplanted to an MS medium or the like to which 3% sucrose and 0.8% agar are added to root them, and the plants are regenerated.
  • the regenerated plants are acclimatized and grown in the greenhouse.
  • the nucleus of the cytoplasmic donor is generally destroyed by radiation treatment, but the destruction of the nuclear genome is not complete, and a part of the genome is often taken up by the cytoplasmic recipient parent.
  • a plurality of protoplasts derived from the cytoplasmic donor parent or protoplasts of the cytoplasmic recipient parent may be fused, so that aneuploidy or higher-order polyploidy is often generated.
  • Higher-order polyploids of octaploids and above are likely to be difficult to redifferentiate, and it is difficult to obtain progeny due to decreased female fertility. Therefore, the DNA content was measured by flow cytometry. It is desirable to exclude higher-order polyploids higher than diploids.
  • Recombination of the mitochondrial genome by asymmetric cell fusion occurs frequently and randomly, so it is desirable to produce 50 or more cytoplasmic hybrid plants.
  • cytoplasmic hybrid plants are cultivated and bloomed, individuals having male sterility traits are selected, and any B. rapa plant having normal cytoplasm is bred as a pollen parent. .. Pollen parents should use any B. rapa plant with multiple genetically diverse normal cytoplasms, as cytoplasmic hybrid plants are often aneuploids or higher-order polyploids and difficult to obtain progeny. Is desirable. Embryo culture is often required to obtain progeny from the resulting cytoplasmic hybrid plants.
  • Embryo culture is a technique for removing embryos and growing them on an appropriate medium when the embryos grow insufficiently after pollination and die as they are.
  • the method of embryo culture can be carried out by a conventional method, but in the present invention, the embryo is extracted from the ovule 7 to 10 days after mating, 3% sucrose, 10% coconut water (Sigma-Aldrich), 0. It is desirable to culture on a 1/2 concentration MS medium supplemented with 8% agar.
  • the regenerated shoots are transplanted to an MS medium or the like to which 3% sucrose and 0.8% agar are added to root them, and the plants are regenerated.
  • the regenerated plants are acclimatized and grown in the greenhouse. When the regenerated plant blooms, male sterile individuals are selected.
  • Mating with any B. rapa plant having this normal cytoplasm as a pollen parent and subsequent embryo culture will continue until progeny seeds are obtained from male sterile individuals.
  • Individuals for which progeny seeds have become available undergo continuous backcrossing with B. rapa plants having a specific normal cytoplasm as pollen parents.
  • the B.rapa plant having a specific normal cytoplasm produces a genetically fixed lineage in which the growth is significantly reduced when continuous backcrossing is performed on the existing cytoplasmic male sterile B.rapa plant. It is desirable to select in advance.
  • Example 1 Method for producing Ogura CMS B. rapa plant with improved growth
  • B.rapa "SH" is used for the purpose of imparting high redifferentiation ability.
  • W potash flower
  • Embryos were removed from the ovules 10 days after mating in a sterile environment and placed in a 1/2 concentration MS medium containing 3% sucrose, 10% coconut water (Sigma-Aldrich), and 0.8% agar. , Embryo culture was performed. Two weeks later, the grown seedlings were transplanted into MS medium supplemented with 3% sucrose and 0.8% agar.
  • Six interspecific hybrids (F1) were obtained by embryo culture.
  • the petioles of "SH" and various inter-hybrids were cut to a length of 5 mm, placed on an MS medium supplemented with 1 mg / l 2,4-D, 3% sucrose, and 0.8% agar, and cultured for 3 weeks. .. Callus grown to a size of about 1 cm is cut into 1 mm sizes and put into an MS medium containing 0.3 mg / l 4-CPPU, 0.3 mg / l NAA, 3% sucrose, and 0.8% agar. The cells were placed on the bed, cultured for 1 month, and the redifferentiation rate was investigated.
  • Embryos were removed from the ovules 10 days after mating in a sterile environment and placed in a 1/2 concentration MS medium containing 3% sucrose, 10% coconut water (Sigma-Aldrich), and 0.8% agar. , Embryo culture was performed. Two weeks later, the grown seedlings were transplanted into MS medium supplemented with 30 g / l of sucrose. Seven interspecific hybrids (F1BC1) were obtained by embryo culture.
  • the petioles of various interhybrid were similarly cut to a length of 5 mm, placed on MS medium supplemented with 1 mg / l 2,4-D, 3% sucrose, and 0.8% agar, and cultured for 3 weeks. did. Callus grown to a size of about 1 cm is cut into 1 mm sizes and put into an MS medium containing 0.3 mg / l 4-CPPU, 0.3 mg / l NAA, 3% sucrose, and 0.8% agar. The cells were placed on the bed, cultured for 1 month, and the redifferentiation rate was investigated.
  • the petioles of various interhybrid (F1BC2) individuals were cut to a length of 5 mm, placed on an MS medium supplemented with 1 mg / l 2,4-D, 3% sucrose, and 0.8% agar, and cultured for 3 weeks. did.
  • Callus grown to a size of about 1 cm is cut into 1 mm sizes and put into an MS medium containing 0.3 mg / l 4-CPPU, 0.3 mg / l NAA, 3% sucrose, and 0.8% agar.
  • the cells were placed on the bed, cultured for 1 month, and the redifferentiation rate was investigated.
  • F1BC2 has a high redifferentiation rate of 83% for "SH-WC4D-S5-X12" and 89% for "SH-WC4D-S5-X32", although the difference is large depending on the strain.
  • the redifferentiation rate was shown. Since “SH-WC4D-S5-X12” has low female fertility, we decided to try “SH-WC4D-S5-X32" with high female fertility as a cytoplasmic acceptor.
  • the enzyme solution containing leaf tissue was filtered through a 92 ⁇ m nylon mesh to remove cell residues.
  • the obtained protoplast suspension was transferred to a centrifuge tube and centrifuged at 800 rpm for 5 minutes.
  • the obtained protoplast after removing the supernatant was suspended in 5 ml of a CPW salt solution containing 15 mM iodoacetamide and incubated at 4 ° C. for 15 minutes. After incubation, the iodoacetamide-treated protoplast suspension was centrifuged at 800 rpm for 5 minutes, and the supernatant was removed. 10 ml of CPW salt solution was added to the protoplast suspension, and the operation of centrifuging at 800 rpm for 5 minutes to remove the supernatant was repeated 3 times to wash the protoplast.
  • the washed protoplast suspension was centrifuged at 800 rpm for 5 minutes, the supernatant was removed, and 2 ml of CPW salt solution was added to suspend the protoplast.
  • 5 ml of a CPW salt solution containing 20% sucrose was added to a new centrifuge tube, the suspension of the above protoplast was layered on it, and centrifugation was performed at 800 rpm for 5 minutes.
  • the cell debris sank to the bottom of the centrifuge tube and the purified protoplasts floated into the upper CPW salt solution layer and were transferred to a new centrifuge tube with a Pasteur pipette. A small amount of the suspension was taken, the cell density of protoplast was determined using a hemocytometer, and CPW solution was added to prepare 1 ⁇ 10 6 cells / ml.
  • the sterilized seeds were placed on an MS medium containing 3% sucrose and 0.8% agar, and grown at 20 ° C. for 16 hours under illumination for about 1 month. Approximately 1 g of the developed true leaf was collected, chopped to a size of approximately 2 mm, and then immersed in 10 ml of a CPW salt solution containing 0.3% cellulase Y-C, 0.3% macerozyme R-10, and mannitol. The mixture was allowed to stand at 25 ° C. for 16 hours.
  • the enzyme solution containing leaf tissue was filtered through a 92 ⁇ m nylon mesh to remove cell residues.
  • the protoplast was transferred to a plastic petri dish with a Pasteur pipette and irradiated with 900 Gy of soft X-rays.
  • the obtained protoplast suspension was transferred to a centrifuge tube, centrifuged at 800 rpm for 5 minutes, the supernatant was removed, and 2 ml of CPW salt solution was added to suspend the protoplast.
  • 5 ml of a CPW salt solution containing 20% sucrose was added to a new centrifuge tube, the suspension of the above protoplast was layered on it, and centrifugation was performed at 800 rpm for 5 minutes.
  • the cell debris sank to the bottom of the centrifuge tube and the purified protoplasts floated into the upper CPW salt solution layer and were transferred to a new centrifuge tube with a Pasteur pipette.
  • a small amount of the suspension was taken, the cell density of protoplast was determined using a hemocytometer, and a CPW salt solution was added to prepare 1 ⁇ 10 6 cells / ml.
  • CPW salt solution After 1 minute, 3.5 ml of CPW salt solution was added dropwise around the protoplast mixture. After another 2 minutes, 3.5 ml of CPW salt solution was added dropwise around the protoplast mixture. After 5 minutes, the dropped liquid was gently sucked up and removed from the edge of the petri dish, and 20 ml of CPW salt solution was added from the edge of the petri dish. The operation of washing with this CPW salt solution was repeated 3 times at 5-minute intervals.
  • the cells attached to the bottom of the petri dish were peeled off by rubbing with the tip of a tweezers, and 7.5 ml of a solution containing 0.2 M mannitol, 4% sucrose, and 0.6% gellan gum was added. , A semi-solid gel medium was formed by mixing, and the culture was continued.
  • callus Approximately one month after the start of culturing, the callus became visible to the naked eye, so callus was added to the callus growth medium (1 mg / l 4-CPPU, 3 mg / l NAA, 3.0% sucrose, 0.8% agar). The MS medium containing the mixture was transplanted to pH 5.8). As for callus, 464 individuals were obtained from 13 fusion treatment experiments.
  • PCR was performed using the extracted whole genomic DNA as a template and each combination of primers orf138-1F and orf138-2R. For PCR, heat denaturation at 94 ° C. for 1 minute, annealing at 60 ° C. for 2 minutes, and extension reaction at 72 ° C. for 2 minutes were repeated for 35 cycles.
  • the PCR product was electrophoresed on a 1.8% agarose gel, immersed in an ethidium bromide solution, and then photographed under UV irradiation to select individuals having a band of the expected size (376 bp).
  • 154 calluses had the orf138 gene and were considered to be cytoplasmic hybrid cells.
  • Callus started shoot differentiation 2 weeks after transplantation into the redifferentiation medium.
  • the differentiated shoots were rooted by transplanting them into MS medium (pH 5.8) containing 3.0% sucrose and 0.8% agar.
  • MS medium pH 5.8
  • a redifferentiation medium containing 3.0% sucrose and 0.8% agar.
  • 154 calluses having the orf138 gene in (5) into a redifferentiation medium and subculturing them, 68 lines of redifferentiated plants were obtained.
  • the cytoplasmic hybrid plants were transplanted to a 50-well cell tray and acclimatized, and after acclimatization, seedlings were raised in a glass greenhouse.
  • the cytoplasmic hybrid plant When the ploidy of the cytoplasmic hybrid plant was tested by a flow cytometer, it was diploid to octaploid including aneuploidy.
  • the aneuploidy was caused by the introduction of a part of the genome of the cytoplasmic donor parent irradiated with soft X-rays. For plants with polyploidy within octaploid, progeny may be obtained, so seedling raising of all individuals was continued in this experiment.
  • the cytoplasmic hybrid plants were raised in a glass greenhouse for 1 month, then stored in a refrigerator (8-hour lighting) set at 4 ° C. and subjected to vernalization treatment for 2 months. After vernalization, cytoplasmic hybrid plants were transplanted into 15 cm pots. Within 1 to 2 months after the vernalization treatment, 49 of the 68 cytoplasmic hybrid plants reached flowering, but 11 did not bloom due to morphological abnormalities, and 8 were genetically weak. It died because of it. Of the 49 flowering lines, 29 lines developed male sterility, and the remaining 20 lines were male fertile. Of the 20 strains that were male fertile, one strain had lost the orf138 gene, but 19 strains showed complete or partial male fertility despite carrying the orf138 gene. ..
  • cytoplasmic hybrid plants produced by asymmetric cell fusion have the mitochondrial genome recombined and the heteroplasmy state continues for 5 generations or more. Therefore, the orf138 gene was considered to have completely disappeared in the process of mitochondria moving from the heteroplasmy state to the homoplasmy state. In addition, even if the orf138 gene was introduced, there were cases in which male sterility became unstable due to its lack of quantity.
  • each cytoplasmic hybrid line was divided into many lines due to differences in characteristics thought to be due to heteroplasmy, but growth, male sterility stability, seed collection, and flowers. Selection was repeated from the mold, and finally "J1" with the best trait was selected. "J1" was lined in each generation of continuous backcrossing, but two lines, "J1-3” and “J1-7", were finally selected due to the difference in growth. That is, “J1-3” and “J1-7”, which are branches of "J1", are lines derived from the same fused cell, but the mitochondria after cell fusion are in a heteroplasmic state to a homoplasmic state. It was divided into BC4 generations in the process of going to. The growth of "J1-3” was higher than that of the normal cytoplasmic line, and that of "J1-7” was equal to or slightly higher than that of the normal cytoplasmic line.
  • Example 2 Evaluation of Growth of "J1-3" and "J1-7" In order to confirm the usefulness of the improved CMS strain produced by Example 1, B. rapa plants having normal cytoplasm and CMS cytoplasm A comparative test of growth was performed.
  • the seeds of the collected "SH” and each CMS strain were sown in a 50-hole cell tray and cultivated in an artificial weather room set to a day temperature of 20 ° C., a night temperature of 10 ° C., and lighting for 16 hours.
  • the above-ground part of the seedlings of each line was cut off at the ground, and the weight per plant was weighed and shown in Table 6.
  • the generations in the table indicate the number of times "SH” was continuously backcrossed, for example BC7 means that "SH" was used as the pollen parent for 7 consecutive backcrosses.
  • the existing Ogura CMS strains derived from "Shiraran oil rape", “Niihao phon", and “Cabbage MS-2” have a relative value of the above-ground weight to "SH” of 60.7, respectively. , 76.0, 63.4, showing low growth.
  • the improved CMS system "J1-3” showed a very high growth property with the relative value of the above-ground weight to "SH” being 130.0.
  • the improved CMS system "J1-7” showed a growth property equivalent to that of "SH", with the relative value of the above-ground weight to "SH” being 105.5.
  • the CMS line derived from "Shiraran oil rape” has a relative value of 77.8 above-ground weight to "SH"
  • the CMS line derived from "Cabbage MS-2” has a above-ground weight relative to "SH”.
  • the relative value of was 85.3, and a decrease in growth was observed. Compared with the test with seedlings, the decrease in growth was small overall, which was considered to be due to the restriction of fertilizer components in the medium by relatively long-term pot cultivation. Comparing the results in Tables 6 and 7, there was a correlation in the order of decreased growth of each CMS line. Therefore, it can be confirmed that the existing Ogura CMS strains derived from "Shiraran oil rape", “Niihao von”, and "Cabbage MS-2” have reduced growth in the background of the "SH” nuclear genome. It was.
  • the improved CMS line "J1-3” showed a very high growth property as in the test at the time of seedling, with the relative value of the above-ground weight to "SH” being 130.0.
  • the improved CMS system “J1-7” showed a growth property equivalent to that of "SH", with the relative value of the above-ground weight to "SH” being 104.4.
  • the existing Ogura CMS B.rapa plant-derived CMS line shows lower growth than the normal cytoplasmic B.rapa plant
  • the improved CMS line of the present invention has a normal cytoplasmic B. It was confirmed that it has the same or higher growth potential than the .rapa plant.
  • Example 3 In order to analyze the mitochondrial genomes of the improved CMS lines "J1-3" and “J1-7” produced in Example 1, known B. rapa mitochondrial genome sequence information (Gene Bank registration number AP017997), known B.oleracea mitochondrial genome nucleotide sequence information (Gene Bank registration number AP012988) and known R. sativus mitochondrial genome nucleotide sequence information (Gene Bank registration number AB694744) were compared and identified SNPs (single nucleotide polymorphisms) and in Based on the -del (insertion / deletion) polymorphism information, markers targeting 35 regions were designed (Table 8, SEQ ID NOs: 1-88 (seq ID-1-ID-88)).
  • a marker for detecting the orf138 gene which is a cytoplasmic male sterility gene derived from the R. sativus plant, was designed based on known nucleotide sequence information (Gene Bank registration number AB055435.1) (Table 8, SEQ ID NO:). 89, SEQ ID NO: 90 (seq ID-89, ID-90)).
  • primers as shown in Table 9 were designed based on the known nucleotide sequence information of the B. rapa chloroplast genome (Gene Bank registration number DQ231548) (Table 9, sequence). Numbers 91 to 92 (seq ID-91 to ID-92)).
  • test materials include B.rapa plant "SH” with normal cytology, B.oleracea plant “G” with normal cytology, R.sativus plant “KN” with Ogura CMS cytology, and the existing CMS line “ “Shiraran oil rape”, “Niihao phon”, “Cabbage MS-2”, and improved CMS strains "J1-3" and "J1-7" were used.
  • PCR Whole genomic DNA was extracted from each test material and used as a template, and PCR was performed using the primer sets shown in Tables 8 and 9.
  • the PCR conditions were as follows: heat denaturation at 94 ° C. for 1 minute, annealing at 65 ° C., 60 ° C. or 55 ° C. for 1 minute, extension reaction at 72 ° C. for 2 minutes, and 30 or 35 cycles of reaction (Table 10).
  • PCR products were treated with the restriction enzymes listed in Table 10 to perform PCR-RFLP analysis to detect polymorphisms among B. rapa plants, B. oleracea plants, and R. sativus plants. These PCR products were electrophoresed on a 1.8% agarose gel, immersed in an ethidium bromide solution, and photographed under UV irradiation to investigate polymorphisms.
  • Table 11 shows the analysis results of the mitochondrial genome using the PCR-RFLP method
  • Table 12 shows the analysis results of the chloroplast genome.
  • “Br” indicates B.rapa type
  • “Bo” indicates B.oleracea type
  • “Rs” indicates R.sativus type.
  • “0” indicates that there is no detection with the marker
  • “1” indicates that there is detection with the marker.
  • the results of mitochondrial genome analysis are summarized in Table 13.
  • the numbers in parentheses in Table 13 indicate the ratio of each mitochondrial genome type to the total number of markers used.
  • the total number of markers here refers to the 35 markers Nos. 1 to 35 in Table 11 used for the analysis of the mitochondrial genome, excluding orf138 among the markers in Table 11.
  • the CMS strains derived from "Shiraran oil rape” and “Niihao von” had chloroplasts derived from B.rapa and had recombinant mitochondrial genomes of B.rapa and R.sativus.
  • the pattern of recombination was exactly the same at 35 markers, suggesting that it was a CMS cytoplasm of the same origin.
  • a chloroplast derived from B.rapa, and a recombinant mitochondrial genome of B.rapa and R.sativus it has an Ogura CMS cytoplasm and a normal cytoplasm. It was considered that it was produced by asymmetric cell fusion with a plant having a cytoplasm of a B.
  • the recombinant mitochondrial genome of the CMS strain derived from "Shirahao Fon" has 63% of B.rapa type mitochondrial DNA and 37% of R. sativus type mitochondrial DNA.
  • the decrease in growth shown in Tables 6 and 7 is derived from the nuclear genome and R. sativus of B. rapa plants because many R. sativus-type mitochondrial genomes were introduced into B. rapa plants together with orf138. It was thought that the cause was the incompatibility between the mitochondrial genomes of.
  • Cabbage MS-2 had 77% of B. oleracea type mitochondrial DNA and 23% of R. sativus type mitochondrial DNA, and its chloroplast was derived from B. oleracea.
  • the decrease in growth shown in Tables 6 and 7 is due to the fact that the chloroplasts are derived from B. oleracea and that they have mitochondrial genomes from B. oleracea and R. sativus. It was thought that it induced an incompatibility with the nuclear genome of the plant and reduced its growth. However, the degree of decrease in growth is intermediate between "Shiraran oil rape" and “Niihao phon” and does not cause obvious growth abnormalities such as chlorosis.
  • the mitochondrial genomes of "J1-3" and "J1-7" produced according to the present invention have 60% of B.rapa type mitochondrial DNA and 31% of B.oleracea type mitochondrial DNA, and are of R. sativus type. The proportion of mitochondrial DNA was only 9%.
  • the method of the present invention increases the efficiency of producing cytoplasmic hybrid plants of B. rapa plants by asymmetric cell fusion, thereby introducing the cytoplasmic male sterility gene orf138 and causing a decrease in growth. It was considered that CMS strains with minimal introduction of the mitochondrial genome of R. sativus could be selected. As a result, it was considered that the obtained CMS strain had an increased affinity between the B. rapa plant and the mitochondrial genome while maintaining cytoplasmic male sterility, and the growth was improved.
  • Any B.rapa plant can be freely converted to CMS by continuous backcrossing with the CMS plant as the seed parent and any B.rapa plant as the pollen parent to perform nuclear substitution. It doesn't matter at all. That is, by using the Ogura CMS B.rapa plant with improved growth, which was deposited in the present invention, any B.rapa plant can be freely converted to CMS.
  • Table 11 show an example of the analysis results of individuals expressing cytoplasmic male sterility, and it is assumed that Ogura CMS B.rapa plants with improved growth always show such a band pattern. Is not always.
  • Example 4 Since the productivity of seeds of CMS lines is directly linked to the productivity of seed parents and commercial seeds, the seed productivity of each CMS line was compared.
  • B.rapa plant "SH” with normal cytoplasm existing CMS line "Shirahao Yuna”, “Niihao Fon”, “Cabbage MS-2”, improved CMS line "J1-3""And” J1-7 "were used.
  • Table 14 shows the results of the average seed collection amount per strain of each strain.
  • the CMS line of "Cabbage MS-2” grew at the same level as the CMS line derived from "Shiraran oil rape” and “Niihao Fong” before the vernalization treatment, but the growth after the vernalization treatment was temporary. It was considered that the growth was extremely poor and it was easily damaged by low temperature.
  • the improved CMS strains "J1-3” and “J1-7” have larger plant sizes than "SH” throughout the period, and as a result, the relative values of the seeds are different, respectively. It was 149.2, 146.7, and it was confirmed that the seed collection was high and there was no problem with female fertility.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本明細書は、正常細胞質を有するBrassica rapa植物と同等の生長性を有する、細胞質雄性不稔Brassica rapa植物、またはその後代を開示する。既存の細胞質雄性不稔 B.rapa植物は、核ゲノムとミトコンドリアゲノムの親和性が不十分なため、正常細胞質を有するB.rapa植物に比較して、生長性が低下する問題点があった。本発明の態様によれば、従来の細胞質雄性不稔 B. rapa植物にみられる生長性が低下する点を改善し、生長性が改善された細胞質雄性不稔 B. rapa植物を提供することができる。

Description

生長性が改良された細胞質雄性不稔Brassica rapa植物 関連出願の参照
 本願は、先行する日本国特許出願である特願2019-78906号(出願日:2019年4月17日)に基づくものであって、その優先権の利益を主張するものであり、その開示内容全体は参照することによりここに組み込まれる。
 本発明は、生長性が改良された細胞質雄性不稔Brassica rapa植物に関する。
 Brassica rapaは、アブラナ科アブラナ属に属し、地中海地方が起源とされている。自然交雑により、様々な形態的特徴を有する亜種に分化し、ハクサイやカブ、コマツナ、パクチョイなど数多くの野菜類へと受け継がれている(非特許文献1)。
 一般的に、植物品種には、固定種と雑種第一代(以下、「F1」と記す)品種があり、主要作物においてはF1品種が普及している。F1品種は、雑種強勢(ヘテロシス)により生育が旺盛で、生育が速く、収量性が高まるなど大きな利点がある。さらにF1品種は、生育が旺盛になることにより、病害虫への耐性や、耐寒・耐暑性などの環境適応性の向上も期待できる。またF1品種の遺伝子型はヘテロ性でありながら同一の遺伝子型であるため、表現型は極めて高い均一性を示す。このため、生産物の市場性が高まる。さらにF1品種の両親に優性遺伝子に支配されている有用形質を集積できるため、迅速な育種が可能となる。
 以上のような優位性があることから、F1品種は、主要作物において栽培品種の主流を占めるようになった。
 F1品種の採種を行う場合、一般に両親は、自殖(近交)系統が用いられ、雑種強勢の効果が大きい組み合わせ等の中で、種子親と花粉親が選定される。種子親は、自家受精を防ぐため除雄を行う必要があるが、人手による除雄は、極めて多大な労力が必要となる。そこで、遺伝的な雄性不稔性である細胞質雄性不稔(Cytoplasmic Male Sterility(以下において、「CMS」と記す))系統を種子親に用いれば、人手による除雄の作業が不要となり、F1種子を経済的かつ大量に生産することができる。CMSを利用したF1種子の生産は、ヒマワリ、テンサイ、ジャガイモ、コムギ、ニンジン、タマネギ、ネギ、キャベツ、ブロッコリー、カリフラワー、ダイコン、およびハクサイなどで商業的な生産システムが確立されている。
 アブラナ科作物の中で、最も利用されているCMSは、Ogura CMSであり、Raphanus sativus 、Brassica oleracea、Brassica juncea、Brassica napus等で利用されている。Ogura CMSは、品種名不明の日本型ダイコンから発見され、今日までダイコンにおけるF1品種の開発に広く利用されている。さらに、Ogura CMSは、属間交雑と連続戻し交雑によって、ナタネ(Brassica napus)に導入され、雄性不稔系統が得られたが、当初は低温でクロロシスを示す欠点を持っており実用化できなかった。このクロロシスを克服するため、Ogura CMS B.napus と正常な細胞質を有するB.napusの間で細胞融合が行われた。得られた再生植物は、ダイコン由来の葉緑体が、B.napus由来の葉緑体に置換されており、低温下でも正常に生育した。B.napusでは、細胞融合を用いることにより、実用的なCMS系統が作出されている(非特許文献2)。
 その後、B.oleraceaとR.sativusの間でも同様に細胞融合が行われ、クロロシスを引き起こさないOgura CMS B.oleracea植物が作出され、ブロッコリー、キャベツなどのF1品種の開発において実用化されている(特許文献1)。
 B.rapa植物においても、特許文献1のOgura CMS B.oleracea植物を種子親とし、B.rapa植物を花粉親として連続戻し交雑を行い、クロロシスを引き起こさないOgura CMS B.rapa植物が開発され、株式会社サカタのタネから品種化されている。
 しかしながら、育種の過程では、多くの親系統やF1系統において、生長性の低下が認められていた。そのため、自家不和合性(Self Incompatibility(以下において、「SI」と記す))利用F1と比較して、既存のCMS を利用したF1では一般的に、その生長性が低下することが顕著であった。したがって、B.rapa植物では、CMS利用のF1化が進んでいなかった。
 例えば、コマツナ、チンゲンサイ等の軟弱野菜では、種子を段播きして、計画的に栽培し、一斉収穫することから、播種から収穫までの熟期の均一性は非常に重要で、農家の収益に直結する特性である。ここでの生長性の低下の問題は、収穫期が3日遅れることで、市場性が著しく低下し、品種としての価値を失ってしまうほど深刻である。また、収穫までの生育が比較的長いハクサイなどにおいても、同様に収穫期が5日程度ずれることで、別品種と見なされるほど、生長性は、重要な特性といえる。
 このように、幼苗から青果に至るまで、生長性が低下しないことは、B.rapaでのCMS利用F1においては非常に大きな課題であり、このため、CMS利用 F1の普遍的普及が遅れてきた。この課題が克服されれば、前述のCMS利用F1のメリットが最大限享受可能となる。使用する系統によっては、生長性の低下が軽微であったため、F1の雑種強勢を利用しつつ品種化に成功した例があるが、使用できる親系統や組み合わせが限られ、少なからず育種的制限が存在することから、ユニバーサルに使用できるOgura CMS B.rapa植物の開発が強く求められてきた。
 他にもB.rapa植物では、属間交雑と連続戻し交雑によって、Ogura CMS R.sativus植物からB.rapaにCMSが導入され、有性交雑により核置換されたOgura CMS B.rapa植物が得られたが、ナタネと同様に低温でクロロシスを示す欠点を有していた。このクロロシスの問題点を克服するため、有性交雑により核置換されたOgura CMS B.rapa植物と正常細胞質のB.rapaの間で非対称細胞融合が行われ、新しいOgura CMS B.rapa植物である「new OguCMS」が作出された。「new OguCMS」は、低温でのクロロシスを引き起こさず、発達した蜜腺を有しており、その種子生産性は、維持系統と同等であるなどの特性が示された(特許文献2、非特許文献3)。
 しかしながら、特許文献2および非特許文献3では、「new OguCMS」の生長性に関する定量的な評価は行われておらず、当該CMS植物の種子も寄託されていないため、「new OguCMS」の生長性を確認することはきわめて困難であった。この点に関し、非特許文献3のFig. 1.の写真では、「new OguCMS」は、「parental CMS」よりも植物体が明らかに小さく見えるので、正常細胞質を有するB.rapa植物よりも生長性が低いと推察された。また本発明者等が「new OguCMS」ではないかと推測する品種「紫羅蘭油菜」(注1)や「ニイハオ・フォン」はいずれもミニチンゲンサイの品種であることから、この点からも「new OguCMS」は正常細胞質を有するB.rapa植物よりも生長性が低いと考えられた。
Figure JPOXMLDOC01-appb-M000001
 
 CMSを利用するF1品種の開発において、雄性不稔性を発現させる細胞質は、雄性不稔性以外の形質にできるだけ影響を及ぼさないことが重要となる。例えば、トウモロコシでは、T型雄性不稔細胞質を導入したF1品種が育成されたが、1970年に、ごま葉枯病菌のTレースが出現し、T型雄性不稔細胞質は、この病原菌に特異的に罹病性であったため、大きな打撃を受けた。このため、T型雄性不稔細胞質の利用は、直ちに中止され、従来の人工除雄法に逆戻りせざるを得なかった(非特許文献4)。
 また、ペチュニアにおけるCMSは、古くから知られており、その原因遺伝子であるS-pcfが研究材料として、数多く利用されている。しかしながら、このCMSを利用したF1品種は、開花遅れや花蕾の発達停止等を引き起こすため、現在ではほとんど利用されていない(非特許文献4)。
 これらの例のように、CMSが見出されても、そのCMSが不良形質を伴う場合には、CMSの利用が困難あるいは利用が限定される場合があり、さらなるCMSの改良法の開発と、改良CMSの提供が依然として求められているといえる。
日本国 特開平7-31307号公報 CN1232608A 日本国特許第3964368号 日本国特許第5089764号
諏訪部圭太(2012)育種学研究14:114-120 Hiroshi Yamagishi and Shripad R. Bhat (2014) Breeding Science 64: 38-47"Cytoplasmic male sterility in Brassicaceae crops" Xi-Lin Hou, Shou-Chun Cao, Yu-Ke He (2004) ISHS Acta Horticulturae 637:75-81"Creation of a New Germplasm of CMS Non-Heading Chinese Cabbage" 細胞質雄性不稔と育種技術1985年 株式会社シーエムシー出版発行
 既存のOgura CMS B.rapa植物は、核ゲノムとミトコンドリアゲノムの親和性が不十分なため、正常細胞質を有するB.rapa植物に比較して、生長性が低下する問題点があった。
 本発明は、上記したような既存のOgura CMS B. rapa植物における生長性が低下する問題点に鑑みて、生長性の低下しないOgura CMS B. rapa植物の提供および、当該Ogura CMS B. rapa植物を利用した生長性の低下しないB. rapa植物のF1種子の生産方法を提供することを目的とする。
 本発明者らは今般、鋭意検討を行った結果、既存のOgura CMS B.rapa植物を細胞質供与親とし、高再分化能を有し、正常細胞質を有するB.rapa種間雑種植物を細胞質受容親として、非対称細胞融合を行うことによって、ミトコンドリアゲノムの改良が可能となり、生長性の低下しないOgura CMS B.rapa植物を作出し、当該Ogura CMS B.rapa植物を利用して、生長性が改良されたOgura CMS B.rapa植物が得られることを見出した。
 本発明はこれらの知見に基づくものである。すなわち、本発明によれば、以下の発明が提供される。
<1> 正常細胞質を有するBrassica rapa植物と同等の生長性を有する、細胞質雄性不稔Brassica rapa植物、またはその後代。
<2> Raphanus sativus植物、Brassica oleracea植物およびBrassica rapa植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する、前記<1>の細胞質雄性不稔Brassica rapa植物、またはその後代。
<3> 正常細胞質を有するBrassica rapa種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、前記<1>または<2>の細胞質雄性不稔Brassica rapa植物、またはその後代。
<4> Raphanus sativus 植物に由来する細胞質雄性不稔遺伝子を有する細胞質雄性不稔Brassica属植物を細胞質供与親として用いる非対称細胞融合を行うことにより得られる、前記<1>~<3>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代 。
<5> 細胞質雄性不稔Brassica oleracea植物に由来する細胞質雄性不稔Brassica属植物を細胞質供与親として用いる非対称細胞融合を行うことにより得られる、前記<1>~<3>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代。
<6> 細胞質雄性不稔Brassica oleracea植物に由来する細胞質雄性不稔Brassica rapa植物を細胞質供与親として用いる非対称細胞融合を行うことにより得られる、前記<1>~<3>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代。
<7> 既存の細胞質雄性不稔Brassica属植物を細胞質供与親として用い、正常細胞質を有するBrassica rapa 種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、前記<1>~<4>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代。
<8> 種間雑種植物が、Brassica oleracea植物およびBrassica rapa植物に由来するものである、前記<3>~<7>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代。
<9> 種間雑種植物が、高再分化能を有するものである、前記<3>~<8>のいずれかの種間雑種植物。
<10> 既存の細胞質雄性不稔Brassica属植物が、既存の細胞質雄性不稔Brassica rapa植物である、前記<7>の細胞質雄性不稔Brassica rapa植物、またはその後代。
<11> 既存の細胞質雄性不稔Brassica属植物が、細胞質雄性不稔Brassica oleracea植物に由来するものである、前記<7>の細胞質雄性不稔Brassica rapa植物、またはその後代。
<12> 細胞質供与親が、細胞質雄性不稔遺伝子orf138を有するものである、前記<4>~<11>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代。
<13> Raphanus sativus植物、Brassica oleracea植物およびBrassica rapa植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔Brassica rapa植物、またはその後代であって、
 正常細胞質を有するBrassica rapa 種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、細胞質雄性不稔Brassica rapa植物、またはその後代。
<14> 受託番号FERM BP-22371または受託番号FERM BP-22372で特定される植物由来のミトコンドリアゲノムを含む、前記<1>~<13>のいずれかの細胞質雄性不稔 Brassica rapa 植物、またはその後代 。
<15> ミトコンドリアゲノムマーカー BrMt-13K, BrMt-23K, BrMt-74K, BrMt-120K, BrMt-149K, BrMt-185K により特定されるミトコンドリアDNAの少なくともいずれか1つが、Brassica rapa 型である、前記<1>~<14>のいずれかの細胞質雄性不稔Brassica rapa 植物、またはその後代。
<16> ミトコンドリアゲノムマーカー BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, BrMt-208K により特定されるミトコンドリアDNAの少なくともいずれか1つが、Brassica oleracea型である、前記<1>~<14>のいずれかのBrassica rapa 植物、またはその後代。
<17> ミトコンドリアゲノムマーカー BrMt-13K, BrMt-16K, BrMt-23K, BrMt-28K, BrMt-43K, BrMt-58K, BrMt-63K, BrMt-70K, BrMt-74K, BrMt-88K, BrMt-100K, BrMt-111K, BrMt-120K, BrMt-141K, BrMt-149K, BrMt-157K, BrMt-161K, BrMt-185K, BrMt-199K, BrMt-213K, およびBrMt-215K により特定されるミトコンドリアDNAが、Brassica rapa 型であり、かつ、ミトコンドリアゲノムマーカー BrMt-3K, BrMt-4K, BrMt-36K, BrMt-65K, BrMt-80K, BrMt-94K, BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, およびBrMt-208K により特定されるミトコンドリアDNAが、Brassica oleracea型である、前記<1>~<14>のいずれかのBrassica rapa 植物、またはその後代。
<18> 受託番号FERM BP-22371、または、受託番号FERM BP-22372で特定される植物のミトコンドリアゲノムを有する、細胞質雄性不稔Brassica rapa植物、またはその後代。
<19> 受託番号FERM BP-22371、または、受託番号FERM BP-22372で特定される、細胞質雄性不稔Brassica rapa植物、またはその後代。
<20> 受託番号FERM BP-22371または、受託番号FERM BP-22372で特定される植物のミトコンドリアゲノムを有する、細胞質雄性不稔Brassica rapa植物を細胞質供与親として用い、正常細胞質を有するBrassica rapa 種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、前記<1>~<19>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代。
<21> 前記<1>~<20>のいずれかの細胞質雄性不稔Brassica rapa植物またはその後代の植物体の一部。
<22> 前記<1>~<20>のいずれかの細胞質雄性不稔Brassica rapa植物またはその後代の種子。
<23> 前記<1>~<20>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代、前記<21>の植物体の一部、または前記<22>の種子に含まれる、ミトコンドリアゲノム。
<24> 既存の細胞質雄性不稔Brassica rapa植物を細胞質供与親として用い、正常細胞質を有するBrassica rapa植物を細胞質受容親として用いる非対称細胞融合を行うことを含む、正常細胞質を有するBrassica rapa植物と同等の生長性を有する、細胞質雄性不稔Brassica rapa植物、またはその後代の製造方法。
<25> 正常細胞質を有するBrassica rapa植物が、Brassica rapa植物の種間雑種植物またはそれに由来するものである、前記<24>の製造方法。
<26> 前記<1>~<20>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代を種子親とし、該植物と交配可能なBrassica rapa植物を花粉親として交配し、交配後の種子親から雑種第一代種子を採種することを含む、雑種第一代種子の製造方法。
<27> 前記<26>のいずれかの方法により製造された雑種第一代種子、または該種子から生育させた雑種第一代植物、その後代、またはそれらの植物体の一部。
<28> 前記<1>~<20>のいずれかの細胞質雄性不稔Brassica rapa植物、またはその後代に、任意のBrassica rapa植物を連続戻し交雑し、細胞質置換することを含む、細胞質雄性不稔性を発現するBrassica rapa植物の製造方法。
 本発明によれば、生長性が改良された細胞質雄性不稔Brassica rapa植物、中でも、生長性が改良されたOgura CMS B.rapa植物を提供することができる。本発明による生長性が改良された細胞質雄性不稔B.rapa植物を種子親、正常細胞質を有するB.rapa植物を花粉親としてB.rapa植物のF1種子の採種に利用することにより、生長性が低下しないB.rapa植物のF1種子を効率的に採種することが可能となる。
 以下、本発明について詳細に説明する。
生長性が改善された細胞質雄性不稔Brassica rapa植物およびその後代
 本発明は、既存の細胞質雄性不稔B.rapa植物に比べて生長性が改良された細胞質雄性不稔B.rapa植物またはその後代に関する。これは、前記したように、正常細胞質を有するB.rapa植物と同等の生長性を有する、細胞質雄性不稔B.rapa植物、またはその後代と表現することができる。
 本発明においては、典型的には、「正常細胞質」は、雄性不稔性を示す植物の細胞質、すなわち雄性不稔細胞質に対して、不稔性を示さず正常であるという意味で使用される。
 また「正常細胞質を有するB.rapa植物と同等の生長性」という場合における「同等」とは、生長性を植物体の地上部の重量で計量した場合に、正常細胞質を有するB.rapa植物の値に比べて、対象とする植物における計量値が、25%以内(好ましくは20%以内、より好ましくは15%以内、さらに好ましくは10%以内)で変動しうる範囲に入る場合をいう。したがって、例えば「正常細胞質を有するB.rapa植物」の地上部重量の値に対して、対象とする植物の計量値が、正常な植物の値の90%の値である場合には、前記の変動が10%であるに相当する。同等は、「正常細胞質を有するB.rapa植物」の生長性を超える場合を排除しない。
 本明細書において、「後代」とは、正常細胞質を有するB.rapa植物を用いた後代を含む他、本発明による生長性が改良された細胞質雄性不稔B.rapa植物と、該植物と交配可能なB.rapa植物とを交配させて得られる交雑種も包含される。したがって、「後代」には、例えば、本発明による生長性が改良された細胞質雄性不稔B.rapa植物を種子親(雌親)とし、該植物と交配可能なB.rapa植物を花粉親(雄親)として交配することによって得られるものも含まれる。また、「後代」には、例えば本発明による生長性が改良された細胞質雄性不稔B.rapa植物と、該B.rapa植物と融合可能な植物との細胞融合による植物や、種属間交雑植物も含まれる。
 ここで「B.rapa植物」は、チンゲンサイ(B. rapa var. chinensis)、カブ(B. rapa var. rapa)、ミズナ(B. rapa var. laciniifolia)、ハクサイ(B. rapa var. pekinensis)、コマツナ(B. rapa var. perviridis)、タアサイ(B. rapa var. narinosa) 、またはこれらと近縁種との種属間雑種植物であることが好ましい。
 本発明の好ましい態様によれば、本発明の生長性が改良された細胞質雄性不稔B.rapa植物またはその後代は、R.sativus植物に由来する細胞質雄性不稔遺伝子であるorf138遺伝子をミトコンドリアゲノム内に有し、より好ましくはRaphanus sativus植物、Brassica oleracea植物 およびBrassica rapa植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有し、さらに好ましくはR.sativus植物に由来するorf138遺伝子とB.oleracea植物およびB.rapa植物の組み換えミトコンドリアゲノムを有する。
 本明細書において、非対称細胞融合とは、細胞融合に用いる単離したプロトプラストの一方の核ゲノムを融合させる前に予め破壊させた後、それを用いて細胞融合を行うことをいう。この非対称細胞融合において、融合に際して核ゲノムを破壊して、細胞融合によってその細胞質を融合細胞に供与するものを、細胞質供与親という。また、融合に際して、核ゲノムを破壊させることなく、維持し、前記細胞質供与親からの細胞質を受け入れるものを、細胞質受容親という。
 本発明の生長性が改良された細胞質雄性不稔B.rapa植物を得る場合には、非対称細胞融合において、細胞質受容親として、正常細胞質を有するB. rapa種間雑種植物を用いることが望ましい。したがって、本発明の好ましい態様によれば、本発明の生長性が改良された細胞質雄性不稔B.rapa植物は、既存の細胞質雄性不稔B.rapa植物を細胞質供与親として用い、正常細胞質を有するB.rapa種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得ることができる。
 ここで、既存の細胞質雄性不稔B.rapa植物とは、本発明によって生長性が改良される前の細胞質雄性不稔B.rapa植物を意味する。本発明では好ましくは、既存の細胞質雄性不稔B.rapa植物は、生長性を改良する余地のあるもの、すなわち、生長性が、正常細胞質を有するB.rapa植物に比べて低下しているものを意味する。
 本発明の好ましい態様によれば、既存の細胞質雄性不稔Brassica rapa植物は、細胞質雄性不稔Brassica oleracea植物に由来する細胞質雄性不稔Brassica rapa植物である。ここでいう、細胞質雄性不稔Brassica oleracea植物としては、特開平07-031307号公報を参考に作出することができ、典型的な例としては、株式会社サカタのタネで開発され、B.oleracea作物で使用されている、CMS系統“キャベツMS-2”(特開平07-031307号公報)が挙げられる。なお、“キャベツMS-2”の細胞質は、市販のブロッコリー品種“グランドーム”、“ピクセル”などで使用されており、容易に入手することができる。
 Raphanus sativus に由来する細胞質雄性不稔遺伝子を有する細胞質雄性不稔Brassica属植物とは、上記したように、典型的には、Ogura CMS遺伝子を有するものをいう。
 本発明の一つの好ましい態様によれば、本発明のBrassica rapa 植物、またはその後代において、ミトコンドリアゲノムマーカー BrMt-13K, BrMt-23K, BrMt-74K, BrMt-120K, BrMt-149K, BrMt-185K により特定されるミトコンドリアDNAの少なくともいずれか1つは、Brassica rapa 型である。なおここで、前記の「少なくともいずれか1つ」は、より好ましくは「少なくともいずれか2つ」、さらに好ましくは「少なくともいずれか3つ」、さらにより好ましくは「少なくともいずれか4つ」である。さらに好ましい態様によれば、本発明のBrassica rapa 植物、またはその後代において、ミトコンドリアゲノムマーカー BrMt-13K, BrMt-23K, BrMt-74K, BrMt-120K, BrMt-149K, BrMt-185K により特定されるミトコンドリアDNAは、Brassica rapa 型である
 本発明の一つの好ましい態様によれば、本発明のBrassica rapa 植物、またはその後代において、ミトコンドリアゲノムマーカー BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, BrMt-208K により特定されるミトコンドリアDNAの少なくともいずれか1つが、Brassica oleracea型である。なおここで、前記の「少なくともいずれか1つ」は、より好ましくは「少なくともいずれか2つ」、さらに好ましくは「少なくともいずれか3つ」、さらにより好ましくは「少なくともいずれか4つ」である。さらに好ましい態様によれば、本発明のBrassica rapa 植物、またはその後代において、ミトコンドリアゲノムマーカー BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, BrMt-208K により特定されるミトコンドリアDNAは、Brassica oleracea型である。
 本発明の一つの好ましい態様によれば、本発明のBrassica rapa 植物、またはその後代において、ミトコンドリアゲノムマーカー BrMt-13K, BrMt-16K, BrMt-23K, BrMt-28K, BrMt-43K, BrMt-58K, BrMt-63K, BrMt-70K, BrMt-74K, BrMt-88K, BrMt-100K, BrMt-111K, BrMt-120K, BrMt-141K, BrMt-149K, BrMt-157K, BrMt-161K, BrMt-185K, BrMt-199K, BrMt-213K, およびBrMt-215K により特定されるミトコンドリアDNAの少なくともいずれか1つは、Brassica rapa 型であり、かつ、ミトコンドリアゲノムマーカー BrMt-3K, BrMt-4K, BrMt-36K, BrMt-65K, BrMt-80K, BrMt-94K, BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, およびBrMt-208K により特定されるミトコンドリアDNAの少なくともいずれか1つは、Brassica oleracea型である。なおここで、前記の「少なくともいずれか1つ」は、より好ましくは「少なくともいずれか2つ」、さらに好ましくは「少なくともいずれか3つ」、さらにより好ましくは「少なくともいずれか4つ」である。
 本発明の一つのさらに好ましい態様によれば、本発明のBrassica rapa 植物、またはその後代において、ミトコンドリアゲノムマーカー BrMt-13K, BrMt-16K, BrMt-23K, BrMt-28K, BrMt-43K, BrMt-58K, BrMt-63K, BrMt-70K, BrMt-74K, BrMt-88K, BrMt-100K, BrMt-111K, BrMt-120K, BrMt-141K, BrMt-149K, BrMt-157K, BrMt-161K, BrMt-185K, BrMt-199K, BrMt-213K, およびBrMt-215K により特定されるミトコンドリアDNAは、Brassica rapa 型であり、かつ、ミトコンドリアゲノムマーカー BrMt-3K, BrMt-4K, BrMt-36K, BrMt-65K, BrMt-80K, BrMt-94K, BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, およびBrMt-208K により特定されるミトコンドリアDNAは、Brassica oleracea型である。
 本発明のより好ましい態様によれば、本発明による生長性が改良された細胞質雄性不稔B.rapa植物、またはその後代は、受託番号FERM BP-22371またはFERM BP-22372(後述)と同一の植物のミトコンドリアゲノムを有するB.rapa植物またはその後代であり、さらに好ましくは、受託番号FERM BP-22371またはFERM BP-22372と同一のB.rapa植物、またはその後代である。
 本明細書において、生長性が改良された細胞質雄性不稔B.rapa植物またはその後代の「植物体の一部」とは、当該植物体の1個以上の細胞または1個以上の細胞からの細胞質を含むものであり、具体的には花、葉、茎、根等の器官または組織、或いは、これらの器官または組織からの細胞(細胞から調製されたプロトプラストを含む)もしくは細胞質、或いは前記細胞もしくは細胞質の集合体を意味する。
生長性が改良された細胞質雄性不稔B.rapa植物の作出方法
 本発明による生長性が改良された細胞質雄性不稔B.rapa植物は、例えば、以下の手順に従って作出することができる。
(1)高再分化能を有し、正常細胞質を有する細胞質受容親の作出
(2)プロトプラストの調製
 (i)正常細胞質を有するB. rapa種間雑種植物のプロトプラストの単離
 (ii)既存の細胞質雄性不稔B.rapa植物のプロトプラストの単離
(3)プロトプラストの融合処理
(4)融合雑種細胞の培養
(5)細胞質雄性不稔性を有する細胞質雑種植物の選抜
(6)カルスからの植物体の再生
(7)後代の獲得と優良系統の選抜
 なお本明細書においては、「製造方法」は「作出方法」とも言い換えることができる。すなわち、ここでいう「作出」と「製造」との用語は同等の意味で使用される。
 これら各工程は、より具体的には以下のとおりである。
(1)高再分化能を有し、正常細胞質を有する細胞質受容親の作出
 前述のように、CMSを利用するF1品種の開発において、雄性不稔性を発現させる細胞質は、雄性不稔性以外の形質にできるだけ影響を及ぼさないことが重要となる。非対称細胞融合技術を用いて細胞質雑種を作出する場合、ミトコンドリアゲノムの組換えは、ランダム(random)に生じるため、不良形質を伴わずに、雄性不稔性を維持する組み換えミトコンドリアが得られる確率は低いため、数多くの細胞質雑種を作出し、優良個体を選抜する必要がある。
 しかしながら、B.rapa植物は、同じBrassica属植物のB.oleracea植物やB.napus植物に比べて、非対称細胞融合によって得られた融合細胞からの植物体の再生が困難であるため、B.rapa植物の効率的な細胞質雑種植物の作出方法は、報告されていない。そのため、数多くの細胞質雑種を効率的に作出する方法の開発が必要不可欠である。
 なおここで、細胞質雑種植物とは、細胞質が雑種状態となっている植物をいい、例えば、細胞融合(ここで好適には、非対称細胞融合)を行うことにより得られるものを言う。
 また、軟X線など放射線を利用した非対称細胞融合を実施した場合、アブラナ科植物では、細胞質供与親の断片化した核ゲノムの一部が導入されることが多く、融合細胞の分裂や融合細胞からの植物体の再生が困難となる場合がある。したがって、細胞質受容親の再分化能をできるだけ高めておくことは、細胞質雑種を効率的に作出するために非常に重要となる。
 アブラナ科植物の中でB.oleracea植物は、培養細胞からの再分化能が高いことが知られている。それに対し、B.rapa植物の再分化能は低く、培養細胞から植物体の再生に成功した例は、特定の品種に限られている。そのため、細胞質雑種の作出効率を高めるためには、まず、正常細胞質のB.rapa植物を種子親、B.oleracea植物を花粉親として種間雑種植物を作出し、高再分化能を有するB.rapa植物とB.oleracea植物の種間雑種植物を作出し、細胞質受容親とすることが望ましい。
 以下において、「高再分化能を有するB.rapaとB.oleraceaの種間雑種植物」は、「B.rapa種間雑種植物」と表記することがある。得られたB.rapa種間雑種植物は、正常細胞質のB.rapa植物を種子親としており、細胞質が母性遺伝することにより、正常細胞質のB.rapaと同一の細胞質を有し、かつ再分化能が向上しているため、細胞質受容親の性質として望ましい。
 ここで、「高再分化能」とは、カルス化した細胞から植物体への再分化する能力が高いことをいい、カルスを再分化培地へ置床した後1か月後の再分化率(再分化したカルス数/再分化培地に置床したカルス数)が30%以上、より好ましくは50%以上の場合をいう。
 さらに望ましくは、上記B.rapa種間雑種植物を人為的に倍加して作出した複二倍体を種子親、正常細胞質のB.rapa植物を花粉親として戻し交雑し、得られた後代を組織培養し高再分化能を有する個体を選抜すると、高再分化能を有する三倍体のB.rapa種間雑種植物が得られる。このように、正常細胞質のB.rapa植物を花粉親として連続戻し交雑と、組織培養による高再分化能を有する個体の選抜を繰り返すと、最終的には高再分化能を有し、核ゲノムがB.rapaに近い二倍体のB.rapa種間雑種植物が得られる。二倍体に近づくに従って雌性稔性が高まるため、これらのB.rapa種間雑種植物を細胞質受容親とすることが望ましい。
(2)プロトプラストの調製
 (i)正常細胞質を有するB.rapa種間雑種植物のプロトプラストの単離
 本発明において、細胞質受容親として用いるB.rapa植物は、前記(1)のB.rapa種間雑種植物、より好ましくは、さらにB.rapaを戻し交雑して育成したB.rapa種間雑種植物を使用することが好ましい。
 プロトプラストを得るために使用する細胞組織としては、収量性が高く、分裂活性が高い葉肉組織を供試することが望ましいが、胚軸や茎、カルスなどの他の組織も材料として用いてもよい。
 プロトプラストを単離する方法は、当該技術分野において公知である通常用いられる方法(例えば、Matsumoto,E, Plant cell reports, 1991. vol9(10)等に記載の方法)で良く、特に制限されない。以下は具体例としての手順を示すが本発明は必ずしもそれらに拘束されるものではない。
 まず、B.rapa植物の細胞組織を細切し、プロトプラスト単離用酵素溶液を用いて、酵素処理することによってプロトプラストを単離する。この溶液は主に細胞壁分解酵素、浸透圧調整剤を含む無機塩緩衝液である。細胞壁分解酵素としては、植物の細胞壁の分解に使用できるものであれば特に制限されないが、例えば、セルラーゼ、ヘミセルラーゼ、ペクチナーゼ等が挙げられる。本発明では、セルラーゼY-CとマセロザイムR-10の組み合わせが好ましい。
 浸透圧調整剤としては、一般的な糖アルコール類、例えば、マンニトール、ソルビトール、グルコース等を用いることができ、マンニトールが好ましく、0.3M~0.7Mの濃度のマンニトールが特に好ましい。さらに、酵素溶液には、プロトプラストの膜の安定化のために、無機塩を添加することが望ましく、例えば、下記表1に記載の組成のCPW塩(Cocking and Peberdy, 1974)を添加すると好適である。酵素処理は、25~30℃で8~20時間静置処理すると好適である。
Figure JPOXMLDOC01-appb-T000002
 
 酵素処理により単離したプロトプラストを30~100μmの孔径のナイロンメッシュで濾過し、遠心分離してプロトプラストを集めて酵素液を除く。次にプロトプラストを洗浄液に懸濁し、プロトプラストを洗浄する。洗浄液としては、一般的に用いられるCPW塩溶液に浸透圧調整剤として糖アルコール類を添加したものを用いることができる。
 次に、B.rapa種間雑種植物プロトプラストの単独での分裂を防ぐために不活化処理を行うことが望ましい。不活化処理は、ヨード酢酸、ヨードアセトアミド等のヨード化合物を溶解したCPW塩溶液などにプロトプラストを懸濁させることで行うことができる。本発明ではヨードアセトアミドを5mM~30mMの濃度に調整したCPW溶液に懸濁し5~20分間処理を行うと好適である。
 次に遠心分離機を利用してCPW塩溶液での洗浄操作を1~3回繰り返すことが好ましい。プロトプラストの懸濁液には、導管や細胞の断片も混入するため、さらに密度勾配遠心分離法等により、プロトプラストを精製することが好ましい。
 精製に用いる試薬には、糖類、合成コロイド等が挙げられるが、本発明ではショ糖液の利用が好適であり、15%~20%のショ糖液の利用が特に好適である。プロトプラストの精製後、血球計算盤によって細胞密度を計測し、細胞融合に適した細胞密度になるようにCPW塩溶液によって液量を調整する。プロトプラストの細胞密度は、1×10~1×10細胞/mlが好ましく、液量の調整にはCPW塩溶液の利用が好ましい。
 (ii) 既存の細胞質雄性不稔B.rapa植物のプロトプラストの単離
 細胞質供与親として用いる既存の細胞質雄性不稔B.rapa植物は、特に制限されないが、株式会社サカタのタネで開発され、B.oleracea作物で使用されている、CMS系統“キャベツMS-2”(特開平07-031307号公報)の使用が望ましい。“キャベツMS-2”の細胞質は、市販のブロッコリー品種“グランドーム”、“ピクセル”などで使用されており、容易に入手することができる。“キャベツMS-2”の細胞質は、直接利用することも可能であるが、さらに慣用のB.rapa植物の連続戻し交雑による核置換を行い、細胞質雄性不稔B.rapa植物を作出して使用することがより望ましい。
 既存の細胞質雄性不稔植物のプロトプラストの単離は、例えば、上述したB.rapa種間雑種植物のプロトプラストの単離と同様の方法に従って行うことができる。
 単離した、既存の細胞質雄性不稔B.rapa植物のプロトプラストは、放射線処理により核を不活化したものを用いることが望ましい。放射線処理のために照射する放射線としては、X線、γ線、紫外線等が挙げられるが、核を破壊できれば、特に限定されるものではない。照射線量は核を破壊できる範囲で、できる限り低照射量で行うことが好ましい。例えば、本発明での軟X線の照射の場合100Gy~900Gyの照射量が好ましい。
(3) プロトプラストの融合処理
 次に、前記で得られた両種のプロトプラストを混合し、細胞融合を行う。
 融合方法としては、慣用の方法、例えば、公知の電気融合法(Planta, 151, 26-32, 1981)、PEG(ポリエチレングリコール)法(Planta, 120, 215-227, 1974)、デキストラン法(Jap. J. Genet., 50, 235, 1975)などが挙げられるが、特に限定されない。本発明では好ましくは、PEG法を用いる。
(4) 融合雑種細胞の培養
 融合処理して得られた細胞は、B.rapa種間雑種植物由来のプロトプラストの培養に好適な培地で培養することが好ましい。高再分化能を有するB.rapaとB.oleraceaの種間雑種植物由来のプロトプラストの培養方法としては、Brassica類のプロトプラストの培養法に基づいて、適宜改変を行えば、特に限定されないが、本発明では、NHNOを200mg/lに低減させた1/2濃度のMS培地を基本培地とし、適宜、植物生長調整物質、各種添加物等を加えて、用いることが好ましい。
(5) 細胞質雄性不稔性を有する細胞質雑種植物の選抜
 融合細胞の培養を行い、細胞分裂が開始され、カルスが目視で確認できるようになった段階で、カルスをカルス増殖培地に移植する。カルス増殖培地は、慣用のものが使用でき、材料とする植物の遺伝子型やカルスの状態により反応の差はあるが、例えば1.0~5.0mg/l NAAおよび0.1~3.0mg/l 4-CPPUを含むMS培地などを用いると好適である。
 Ogura CMSの細胞質雄性不稔性の原因遺伝子は、ミトコンドリアゲノムにあるorf138と特定されている。したがって、得られたカルスから、細胞質雄性不稔性を有する個体を選抜するためには、上記の手順で増殖したカルスからDNAを抽出し、orf138を特異的に増幅できるマーカーを用いて、PCR法によって検出することが好ましい。
(6)カルスからの植物体の再生
 得られたorf138を有するカルスを再分化培地に移植し再分化させる。
 再分化培地は、慣用のものが使用でき、材料とする植物の遺伝子型やカルスの状態により反応の差はあるが、例えば0.1~1.0mg/lのNAAおよび0.1~1.0mg/lの4-CPPUを含むMS培地などを用いると好適である。
 再生したシュートは、3%ショ糖、0.8%寒天を添加したMS培地などに移植して発根させ、植物体を再生させる。再生した植物体は、順化して温室内で育成する。
 アブラナ科植物の非対称細胞融合においては、一般的に放射線処理により細胞質供与親の核を破壊させるが、核ゲノムの破壊は完全ではなく、ゲノムの一部が細胞質受容親に取り込まれることが多い。また、非対称細胞融合時に、細胞質供与親由来のプロトプラスト、または細胞質受容親のプロトプラストが複数融合する場合もあるため、異数体や高次倍数体が生じることが多い。八倍体以上の高次倍数体は、再分化が困難である可能性が高く、また雌性稔性の低下により後代を得ることが困難であるため、フローサイトメトリーでDNA含量を測定し、八倍体以上の高次倍数体を排除しておくことが望ましい。
 非対称細胞融合によるミトコンドリアゲノムの組換えは、高頻度かつ、ランダム(random)に生じるため、50個体以上の細胞質雑種植物を作出することが望ましい。
(7)後代の獲得と優良系統の選抜
 得られた細胞質雑種植物を育成し開花させ、雄性不稔形質を有する個体を選抜し、正常細胞質を有する任意のB.rapa植物を花粉親として交配する。
 細胞質雑種植物は、異数体や高次倍数体である場合が多く後代の獲得が難しいため、花粉親は、遺伝的に多様な複数の正常細胞質を有する任意のB.rapa植物を使用することが望ましい。得られた細胞質雑種植物から、後代を獲得するためには、胚培養を必要とする場合が多い。
 胚培養は、受粉後の胚の生長が不十分で、そのままでは枯死する場合に、胚を摘出して,適切な培地上で胚を成長させる技術である。胚培養の方法は、慣用の方法で行えるが、本発明では、交配後7日~10日目の胚珠から胚を摘出し、3%ショ糖、10%ココナッツ水(Sigma-Aldrich)、0.8%寒天を添加した1/2濃度のMS培地上で培養することが望ましい。再生したシュートは、3%ショ糖、0.8%寒天を添加したMS培地などに移植して発根させ、植物体を再生させる。再生した植物体は、順化して温室内で育成する。再生した植物体が開花したら、雄性不稔性の個体を選抜する。
 この正常細胞質を有する任意のB.rapa植物を花粉親とする交配とその後の胚培養は、雄性不稔性の個体から後代種子が得られるまで継続する。後代種子が得られるようになった個体は、特定の正常細胞質を有するB.rapa植物を花粉親として連続戻し交雑を行う。ここで、特定の正常細胞質を有するB.rapa植物は、既存の細胞質雄性不稔B.rapa植物に連続戻し交雑を行った場合に、生長性が顕著に低下する遺伝的に固定された系統をあらかじめ選定しておくことが望ましい。
 特定の正常細胞質を有するB.rapa植物を花粉親として繰り返し交配することにより、核ゲノムが特定の正常細胞質を有するB.rapa植物と同一となるため、細胞質の特性を比較して選抜することが可能となる。連続戻し交雑は、十分な核置換を行なうため、7回以上行うことが望ましい。連続戻し交雑が完了した系統は、特定の正常細胞質を有するB.rapa植物との比較を行い、細胞質雄性不稔性の形質を有し、その他の不良形質を伴っていないことを確認する。
 以下の実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1: 生長性が改善されたOgura CMS B.rapa植物の作出方法
(1)高再分化能を有し、正常細胞質を有する細胞質受容親の作出
 B.rapaでは、一般的に再分化能が低いため、高再分化能を付与する目的で、B.rapa“SH”を種子親、カリフラワー“WC”を花粉親として交配を行った。交配後10日目の胚珠から無菌環境下で胚を摘出し、3% ショ糖、10% ココナッツ水(Sigma- Aldrich)、0.8% 寒天を添加した1/2濃度のMS培地に置床し、胚培養を行った。2週間後、生長した幼植物を3%ショ糖、0.8% 寒天を添加したMS培地に移植した。胚培養により、6個体の種間雑種(F1)を獲得した。
 “SH”および各種間雑種の葉柄を5mmの長さで切断し、1mg/l 2,4-D、3%ショ糖、0.8%寒天を添加したMS培地へ置床し、3週間培養した。1cm程度の大きさに生育したカルスを1mmの大きさに切り分けて、0.3mg/l 4-CPPU、0.3mg/l NAA、3% ショ糖、0.8% 寒天を添加したMS培地へ置床し、1か月間培養し、再分化率を調査した。
 結果は表2に示される通りであった。
Figure JPOXMLDOC01-appb-T000003
 
 表2で“SH”由来のカルスは、再分化しなかったが、種間雑種では、高再分化能を有する個体が得られた。最も再分化率の高かった系統“SH-WC4”をコルヒチン処理により、人為的に倍加し、複二倍体化した。以後、複二倍体化した“SH-WC4”を“SH-WC4D”と表記する。“SH-WC4D”を種子親、B.rapaの“S”を花粉親として交配した。交配後10日目の胚珠から無菌環境下で胚を摘出し、3%ショ糖、10%ココナッツ水(Sigma-Aldrich)、0.8% 寒天を添加した1/2濃度のMS培地に置床し、胚培養を行った。2週間後、生長した幼植物をショ糖30g/lを添加したMS培地に移植した。胚培養により、7個体の種間雑種(F1BC1)を獲得した。
 各種間雑種(F1BC1)の葉柄を同様に5mmの長さで切断し、1mg/l 2,4-D、3%ショ糖、0.8%寒天を添加したMS培地へ置床し、3週間培養した。1cm程度の大きさに生育したカルスを1mmの大きさに切り分けて、0.3mg/l 4-CPPU、0.3mg/l NAA、3% ショ糖、0.8% 寒天を添加したMS培地へ置床し、1か月間培養し、再分化率を調査した。
 結果は表3に示される通りであった。
Figure JPOXMLDOC01-appb-T000004
 
 表3の結果から、F1BC1においても、系統間により差はあるものの、高い再分化率を示す系統が得られた。SH-WC4D-S1、SH-WC4D-S3、SH-WC4D-S5、SH-WC4D-S7は、再分化率が61%で同じであったが、最も雌性稔性が高い“SH-WC4D-S5”を種子親として選定した。“SH-WC4D-S5”を種子親として、さらにB.rapa植物のバッククロスを行うことが望ましいが、“SH-WC4D-S5”は、複二倍体に二倍体を交配しているため、異質三倍体となっており、後代が得られにくいと予想された。
 したがって、後代を得るには、様々な遺伝子型のB.rapa植物を花粉親に使うことが必要であると考えられたため、“SH”、“OS”、“S”、“W”の4系統を花粉親として準備して交配を行った。しかし、手交配では、全く後代が得られなかったため、閉鎖系温室内に“SH-WC4D-S5”を種子親として配置し、その横に、上記4系統のB.rapa植物を配置して、虫媒による交配を行った。種間雑種の後代は、一般的に高温下で得られやすいため、温室の温度は、昼温32℃、夜温15℃に制御した。虫媒による交配の結果、約100粒の種子が得られたが、サイズの小さい種子が多かった。通常のB.rapa植物の種子の大きさに近い種子を37粒選び、in vitroで無菌播種を行ったところ、F1BC2となる36個体のB.rapa種間雑種植物が発芽した。発芽した個体の系統名をそれぞれ“SH-WC4D-S5―X1~36”とした。
 各種間雑種(F1BC2)の個体の葉柄を5mmの長さで切断し、1mg/l 2,4-D、3% ショ糖、0.8 %寒天を添加したMS培地へ置床し、3週間培養した。1cm程度の大きさに生育したカルスを1mmの大きさに切り分けて、0.3mg/l 4-CPPU、0.3mg/l NAA、3% ショ糖、0.8%寒天を添加したMS培地へ置床し、1か月間培養し、再分化率を調査した。
 結果は表4に示される通りであった。
Figure JPOXMLDOC01-appb-T000005
 
 表4の結果から、F1BC2は、系統間により差が大きいものの、“SH-WC4D-S5―X12”が再分化率83%、“SH-WC4D-S5―X32”が再分化率89%と高い再分化率を示した。“SH-WC4D-S5―X12”は、雌性稔性が低いため、雌性稔性の高い“SH-WC4D-S5―X32”を細胞質受容親として供試することとした。
(2)プロトプラストの調製
 (i) 正常細胞質を有するB. rapa種間雑種植物のプロトプラストの単離
 正常細胞質を有するB. rapa種間雑種植物として、“SH-WC4D-S5―X32”を使用した。“SH-WC4D-S5―X32”は、3%ショ糖、0.8%寒天を添加したMS培地に移植し、1か月間育成した。展開した本葉を約1g採取し、約2mmの大きさに細切した後に、0.3% セルラーゼY-C,0.3% マセロザイムR-10,0.5M マンニトールを含むCPW塩溶液10mlに浸漬し、25℃、16時間静置した。
 葉組織を含む酵素液を92μmのナイロンメッシュで濾過し、細胞残渣を除去した。得られたプロトプラスト懸濁液を遠沈管に移し、800rpmで5分間の遠心分離を行った。上澄みを除去して得られたプロトプラストを15mMのヨードアセトアミドを含むCPW塩溶液5mlに懸濁し、4℃で15分間インキュベートした。インキュベート後、ヨードアセトアミド処理したプロトプラスト懸濁液を800rpmで5分間の遠心分離を行った後、上澄みを除去した。プロトプラスト懸濁液にCPW塩溶液10mlを加え、800rpmで5分間の遠心分離を行って上澄みを除去する操作を3回繰り返して、プロトプラストを洗浄した。
 洗浄されたプロトプラスト懸濁液を800rpmで5分間の遠心分離を行い、上澄みを除去して2mlのCPW塩溶液を加えてプロトプラストを懸濁させた。新しい遠沈管に20%ショ糖を添加したCPW塩溶液5mlを加えて、その上に上記プロトプラストの懸濁液を重層させ、800rpmで5分間の遠心分離を行った。細胞残渣は、遠沈管の底に沈み、精製されたプロトプラストが、上層のCPW塩溶液層中に浮上するのでパスツールピペットで新しい遠沈管に移した。懸濁液を少量取り血球計算板を用いてプロトプラストの細胞密度を求め、CPW液を加えて1×10個/mlに調製した。
 (ii)  既存のOgura CMS B.rapa植物のプロトプラストの単離
 既存のOgura CMS B.rapa植物として、 交配によりB.oleraceaからB.rapaへ核置換させた“キャベツMS-2”由来のCMS系統“HA280”を使用した。
 まず、滅菌した種子を3%ショ糖、0.8%寒天を添加したMS培地に置床し、20℃、16時間照明下で約1か月間育成した。展開した本葉約1gを採取し、約2mmの大きさに細切した後に、0.3%セルラーゼY-C,0.3%マセロザイムR-10,マンニトールを含むCPW塩溶液10mlに浸漬し、25℃、16時間静置した。
 葉組織を含む酵素液を92μmのナイロンメッシュで濾過し、細胞残渣を除去した。パスツールピペットでプロトプラストをプラスチックシャーレに移し、軟X線を900Gy照射した。
 得られたプロトプラスト懸濁液を遠沈管に移し、800rpmで5分間の遠心分離を行い、上澄みを除去して2mlのCPW塩溶液を加えてプロトプラストを懸濁させた。新しい遠沈管に20%のショ糖を添加したCPW塩溶液5mlを加え、その上に上記プロトプラストの懸濁液を重層させ、800rpmで5分間の遠心分離を行った。細胞残渣は、遠沈管の底に沈み、精製されたプロトプラストが、上層のCPW塩溶液層中に浮上するのでパスツールピペットで新しい遠沈管に移した。懸濁液を少量取り血球計算板を用いてプロトプラストの細胞密度を求め、CPW塩溶液を加えて1×10個/mlに調製した。
(3)プロトプラストの融合処理
 ヨードアセトアミド処理したB. rapa種間雑種植物プロトプラスト懸濁液と、軟X線照射した既存のOgura CMS B.rapa植物プロトプラスト懸濁液を1:3の比率で混合し、9cmシャーレの底面中央に混合液を2ml滴下した。30分間静置後、 500g/l PEG溶液(ポリエチレングリコール#6000(nacalai tesque Inc.)、1,500mg/l CaCl・2HO、100mg/l KHPO、pH5.5)3mlをプロトプラスト混合液の周辺に滴下した。
 1分後CPW塩溶液3.5mlをプロトプラスト混合液の周辺に滴下した。さらに2分後 CPW塩溶液3.5mlをプロトプラスト混合液の周辺に滴下した。5分後シャーレの縁から、滴下した液を静かに吸い上げて除去し、CPW塩溶液20mlをシャーレの縁から加えた。このCPW塩溶液での洗浄の操作を5分間隔で3回繰り返した。
(4)融合雑種細胞の培養
 洗浄液を除去後、0.5M マンニトール、150mg/l カザミノ酸、100mg/l L-グルタミン、0.03mg/l NAA、0.03mg/l 2,4-D、0.1mg/l BAおよび1%ショ糖を含み、NHNOを200mg/lに低減させた1/2濃度のMS培地10ml(pH5.8)を添加し、25℃暗所において培養した。
 培養開始から5日後、150mg/lカザミノ酸、100mg/lL-グルタミン、0.03mg/lNAA、0.03mg/l 2,4-D、0.1mg/l BAおよび1%ショ糖を含み、NHNOを200mg/lに低減させた1/2濃度のMS培地5ml(pH5.8)を添加し、マンニトール濃度を低下させて培養を継続した。
 培養開始から10日後、シャーレの底に付着した細胞をピンセットの先で、こするようにして剥がし、0.2Mマンニトール、4%ショ糖、0.6%ゲランガムを含む溶液7.5mlを添加し、混合することにより半固体化状態のゲル培地を形成させ培養を継続した。
 培養開始約1か月で、カルスが肉眼で確認できるようになったため、カルスをカルス増殖培地(1mg/l 4-CPPU、3mg/l NAA、3.0%ショ糖、0.8%寒天を含むMS培地、pH5.8)に移植した。カルスは、13回の融合処理実験より、464個体が得られた。
(5) 細胞質雄性不稔性を有する細胞質雑種植物の選抜
 Ogura CMSの細胞質雄性不稔性の原因遺伝子は、ミトコンドリアゲノムにあるorf138と特定されている。PCR法によりOgura CMSに特異的なDNAを検出するため、公知の塩基配列情報(Gene Bank 登録番号 AB055435.1)よりorf138遺伝子に特異的なプライマーを設計した(表5)。
Figure JPOXMLDOC01-appb-T000006
 
 カルスが5mm以上の大きさに生育した段階で、カルスの一部をサンプリングし、DNAを抽出した。抽出した全ゲノムDNAを鋳型とし、プライマーorf138-1Fとorf138-2Rの各組み合わせを用いてPCRを行った。PCRは、熱変性94℃ 1分、アニーリング60℃ 2分、伸長反応72℃ 2分を35サイクル繰り返した。
 PCR産物は、1.8%アガロースゲルで電気泳動し、エチジウムブロマイド溶液に浸漬後、UV照射下で写真撮影を行い予想されるサイズ(376bp)のバンドを有する個体を選抜した。(4)で得られた464個のカルスを上記PCR法によりorf138遺伝子の有無を調査したところ、154個のカルスがorf138遺伝子を有しており、細胞質雑種細胞であると考えられた。
(6)カルスからの植物体の再生
 カルスが1cm程度の大きさになったときに、カルスを2mm程度のサイズに切り分け、再分化培地(0.3mg/l 4-CPPU、0.3mg/l NAA、3.0% ショ糖、0.8% 寒天を含むMS培地、pH5.8)に移植した。
 カルスは、再分化培地へ移植後2週間で、シュートの分化を開始した。分化したシュートを、3.0%ショ糖,0.8%寒天を含むMS培地(pH5.8)へ移植することにより発根した。(5)でorf138遺伝子を有していた154個のカルスを再分化培地に移植し、継代することにより、68系統の再分化植物が得られた。細胞質雑種植物は、50穴セルトレーに移植して順化を行い、順化後はガラス温室内で育苗を行った。
 細胞質雑種植物の倍数性をフローサイトメーターにより、検定したところ、異数性を含む二倍体~八倍体であった。
 細胞質受容親であるB. rapa種間雑種植物“SH-WC4D-S5―X32”は、二倍体であるが、細胞質雑種植物が高次倍数性になったのは、非対称細胞融合時に複数のB. rapa種間雑種植物由来プロトプラストが融合したためと考えられた。また、異数性となったのは、軟X線を照射した細胞質提供親のゲノムの一部が導入されたためと考えられた。倍数性が八倍体以内の植物は、後代が得られる可能性があるため、本実験では全個体の育苗を継続した。
 細胞質雑種植物は、ガラス温室で1か月間育苗した後、4℃設定の冷蔵庫(8時間照明)に入庫し、2か月間春化処理を行った。春化処理後、細胞質雑種植物は、15cmポットへ移植した。
 春化処理後1~2か月の間に、68系統の細胞質雑種植物のうち、49系統が開花に至ったが、11系統は形態異常のため開花に至らず、8系統は遺伝的弱勢のため枯死した。開花した49系統のうち、雄性不稔性を発現した系統は、29系統で、残りの20系統は、雄性可稔であった。雄性可稔であった20系統のうち、1系統はorf138遺伝子が消失していたが、19系統は、orf138遺伝子を保持しているにもかかわらず完全、あるいは部分的な雄性可稔を示した。
 一般的に、非対称細胞融合により作出された細胞質雑種植物は、ミトコンドリアゲノムが組み換わり、ヘテロプラズミーの状態が5世代以上続くと考えられている。したがって、orf138遺伝子は、ミトコンドリアがヘテロプラズミーな状態からホモプラズミーな状態に向かう過程で完全に消失したと考えられた。また、orf138遺伝子が導入されていても、その量的不足などで雄性不稔性が不安定になるケースも考えられた。
 雄性不稔性を発現した29系統を種子親として、正常細胞質を有するB.rapa植物“OS”を花粉親として温室に入れて虫媒による交配を行った。
 その結果、雄性不稔系統17系統より、後代種子BC1を得ることができた。BC1系統を育成したところ、17系統のうち、10系統は雄性稔性が部分的に回復したため廃棄した。雄性不稔性を維持していた7系統は、さらに、正常細胞質を有する4系統のB.rapa植物“SH”、“OS”、“S”、“W”を花粉親として虫媒による交配を行った。その結果、すべての7系統より、後代種子BC2を得ることができた。
 BC2世代では、種子が容易に得られるようになったため、BC3以降は、正常細胞質を有するB.rapa植物“SH”を使用することとした。“SH”は、以前の試験において、既存のOgura CMS B.rapa植物に連続戻し交雑した場合に、顕著に生長性の低下を示すことがわかっていた。すなわち、あえて生長性が低下しやすい“SH”を連続戻し交雑の花粉親として使用することにより、細胞質の影響による生長性の低下が検出しやすくなるため、生長性の低下しないCMS系統の選抜が可能となる。
 上記雄性不稔性を示す細胞質雑種7系統を種子親とし、“SH”を花粉親として連続戻し交雑を進めた。各世代で“SH”と同等以上の生長性を示す個体を選抜し、“SH”を7回交配したBC7(B.rapaの戻し交配としてはBC9)まで繰り返した。
 各細胞質雑種の系統は、連続戻し交雑の過程で、ヘテロプラズミーによると考えられる特性の違いから多くの分系に分けるなどしたが、生長性、雄性不稔性の安定性、採種性、花型から選抜を繰り返し、最終的に形質が最も優れていた“J1”を選抜した。“J1”は、連続戻し交雑の各世代で系分していたが、生長性の違いから“J1-3”および“J1-7”の2系統を最終的に選抜した。すなわち、“J1”の分系である“J1-3”および“J1-7”は、同一の融合細胞から生じた系統であるが、細胞融合後のミトコンドリアがヘテロプラズミーの状態からホモプラズミーの状態に向かう過程のBC4世代で分系とした。“J1-3”は、生長性が正常細胞質系統を上回り、“J1-7”は、正常細胞質系統と同等かやや上回る生長性を示した。
 “J1-3”および“J1-7”の2系統のBC7の種子はそれぞれ、2018年12月12日付けで独立行政法人 製品評価技術基盤機構 特許生物寄託センター(千葉県木更津市かずさ鎌足2-5-8 120号室)に国際寄託(原寄託)されている。これらの系統の寄託者が付した識別のための表示および受託番号は以下の通りである:
 <J1-3>
 寄託者が付した識別のための表示:SSC-GCC-18-001
 受託番号: FERM BP-22371、
 <J1-7>
 寄託者が付した識別のための表示:SSC-GCC-18-002
 受託番号: FERM BP-22372。
実施例2: “J1-3”および“J1-7”の生長性の評価
 実施例1によって作出された改良CMS系統の有用性を確認するため、正常細胞質、CMS細胞質を有するB.rapa植物の生長性の比較試験を行った。
 実施例1でも記載したように、“SH”は、既存のOgura CMS B.rapa植物に連続戻し交雑した場合に、顕著に生長性が低下することがわかっていた。したがって、この正常細胞質を有するB.rapa植物“SH”を各細胞質雄性不稔系統に連続戻し交雑する核置換によって、各細胞質雄性不稔系統の核ゲノムが“SH”と同一となると共に、生長性の低下を検出しやすくなる。したがって、各細胞質雄性不稔系統を同一条件で栽培することにより、細胞質の違いによる生長性を評価することができる。
 Ogura CMSを使用しているB.rapa植物としては、中国の好地種子有限公司が育成し、中国で種子が販売されている“紫羅蘭油菜”が知られている。また、日本でも渡辺農事株式会社から、“ニイハオ・フォン”の種子が販売されており、いずれもチンゲンサイの品種となっている。
 また、株式会社サカタのタネでは、B.oleracea、B.rapa植物においてクロロシスを引き起こさないOgura CMSである“キャベツMS-2”が開発されている。
 これら市販されている2品種のCMS系統と、サカタのタネが保有する1系統のCMS系統、および、本発明で作出した改良CMS系統“J1-3”および“J1-7”に対して、“SH”の連続戻し交雑を行った。
 各CMS系統の生長性を正確に評価するため、“SH”と上記5系統のCMS系統から、同一環境下で虫媒による採種を行った。
 採種した“SH”および各CMS系統の種子を、50穴セルトレーに播種し、昼温20℃、夜温10℃、16時間照明に設定した人工気象室内で栽培を行った。幼苗の生長性を定量的に評価するため、播種2週間後に、各系統の幼苗の地上部を地際で切り取り、株あたりの重量を計量し、表6に示した。表中の世代は、“SH”を連続戻し交雑した回数を示しており、例えばBC7は“SH”を花粉親として7回の連続戻し交配を行ったことを意味する。
Figure JPOXMLDOC01-appb-T000007
 
 表6に記載のとおり、“紫羅蘭油菜”、“ニイハオ・フォン”、“キャベツMS-2”由来の既存のOgura CMS系統は、“SH”に対する地上部重量の相対値が、それぞれ、60.7、76.0、63.4となり低い生長性を示した。それに対して、改良CMS系統“J1-3”は、“SH”に対する地上部重量の相対値が130.0となり非常に高い生長性を示した。また、改良CMS系統“J1-7”は、“SH”に対する地上部重量の相対値が105.5となり、“SH”と同等の生長性を示した。
 次に、農作物として収穫するステージにおける生長性を評価するため、“SH”および各CMS系統の種子を9cm硬質ポットに播種し、昼温25℃、夜温15℃に設定したガラス温室で栽培を行った。
 苗の生長性を定量的に評価するため、播種46日後に、各系統の苗の地上部を地際で切り取り、株あたりの重量を計量し、表7に示した。表6の幼苗での生長性の評価試験では、“ニイハオ・フォン”由来の既存のOgura CMS系統を試験に含めていた。しかし、後述する実施例3のミトコンドリアゲノムの分析から、“紫羅蘭油菜”と“ニイハオ・フォン”由来の既存のOgura CMS系統は、同一の細胞質を有していると考えられたため、“ニイハオ・フォン”由来の既存のOgura CMS系統の収穫ステージにおける生長性試験を省略した。
Figure JPOXMLDOC01-appb-T000008
 
 表7に記載のとおり、“紫羅蘭油菜”由来CMS系統は、“SH” に対する地上部重量の相対値が77.8となり、“キャベツMS-2”由来CMS系統は、“SH”に対する地上部重量の相対値は、85.3となり生長性の低下が認められた。
 幼苗での試験に比べて、全体的に生長性の低下は小さくなっているが、これは比較的長期のポット栽培によって、用土内の肥料成分が制限された影響が考えられた。表6と表7の結果を比較すると、各CMS系統の生長性低下の順位には相関があった。したがって、“紫羅蘭油菜”、“ニイハオ・フォン”、“キャベツMS-2”由来の既存のOgura CMS系統は、“SH”の核ゲノムの背景において、生長性が低下することを確認することができた。
 一方、改良CMS系統“J1-3”は、“SH” に対する地上部重量の相対値が130.0となり幼苗時の試験と同様に非常に高い生長性を示した。改良CMS系統“J1-7”は、“SH”に対する地上部重量の相対値が104.4となり、“SH”と同等の生長性を示した。
 以上のように、既存のOgura CMS B.rapa植物由来のCMS系統が、正常細胞質のB.rapa植物よりも低い生長性を示すのに対して、本発明の改良CMS系統は、正常細胞質のB.rapa植物よりも同等以上の高い生長性を有することが確認できた。
実施例3
 実施例1で作出された改良CMS系統“J1-3”および“J1-7”のミトコンドリアゲノムを分析するため、公知のB.rapaミトコンドリアゲノムの塩基配列情報(Gene Bank 登録番号 AP017997)、公知のB.oleraceaミトコンドリアゲノムの塩基配列情報(Gene Bank 登録番号 AP012988)、公知のR.sativusミトコンドリアゲノムの塩基配列情報(Gene Bank 登録番号 AB694744)を比較し、同定したSNPs(一塩基多型)やin-del(挿入/欠失)の多型情報に基づいて、35の領域をターゲットとしたマーカーを設計した(表8、配列番号1~88(seq ID-1~ID-88))。また、R.sativus植物に由来する細胞質雄性不稔遺伝子であるorf138遺伝子を検出するためのマーカーを公知の塩基配列情報(Gene Bank 登録番号 AB055435.1)に基づいて設計した(表8、配列番号89、配列番号90(seq ID-89,ID-90))。
 さらに、葉緑体ゲノムを分析するため、公知のB.rapa葉緑体ゲノムの塩基配列情報(Gene Bank 登録番号 DQ231548)に基づいて、表9に示すようなプライマーを設計した(表9、配列番号91~92(seq ID-91~ID-92))。
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
 供試材料としては、正常細胞質を有するB.rapa植物“SH”、正常細胞質を有するB.oleracea植物“G”、Ogura CMS細胞質を有するR.sativus植物“KN”、既存のCMS系統である“紫羅蘭油菜”、“ニイハオ・フォン”、“キャベツMS-2”、改良CMS系統である“J1-3”、“J1-7”を用いた。
 各供試材料から、全ゲノムDNAを抽出して鋳型とし、表8、表9に記載のプライマーセットを用いてPCRを行った。PCR条件は、熱変性を94℃で1分、アニーリングを65℃、60℃もしくは55℃で1分、伸長反応を72℃で2分とし、30サイクルもしくは35サイクル反応させた(表10)。
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
 B.rapa植物、B.oleracea植物、R.sativus植物の間で、多型を検出するPCR-RFLP分析を行うため、PCR産物を表10に記載された制限酵素により処理した。それらのPCR産物は、1.8%アガロースゲルで電気泳動後、エチジウムブロマイド溶液に浸漬し、UV照射下で写真撮影を行って多型を調査した。
 PCR-RFLP法を用いた、ミトコンドリアゲノムの分析結果を表11に、葉緑体ゲノムの分析結果を表12に示した。表11、表12中の“Br”はB.rapa型、“Bo”はB.oleracea型、“Rs”はR.sativus型であることを示す。“0”は当該マーカーでの検出がないことを、“1”は当該マーカーでの検出があることを示す。また、ミトコンドリアゲノムの分析結果を表13にまとめた。表13の括弧内の数字は、使用した全マーカー数に対する各ミトコンドリアゲノムの型の割合を示す。ここでの全マーカー数は、表11のマーカーのうちorf138を除く、ミトコンドリアゲノムの分析に使用した表11のNo.1~35の35マーカーを指す。
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000018
 
 “紫羅蘭油菜”および“ニイハオ・フォン”由来のCMS系統は、B.rapa由来の葉緑体を有し、B.rapaとR.sativusとの組み換えミトコンドリアゲノムを有していた。その組み換えのパターンは、35マーカーで全く同一であったため、同じ由来のCMS細胞質であると考えられた。また、orf138遺伝子、B.rapa由来の葉緑体を有し、B.rapaとR.sativusとの組み換えミトコンドリアゲノムを有していることから、Ogura CMS細胞質を有するR.sativus植物と、正常細胞質を有するB.rapa植物の細胞質を有する植物との間での非対称細胞融合により作出されたと考えられた。このような細胞質の構成は、特許文献2の”new OguCMS”以外の報告が知られていないため、“紫羅蘭油菜”および“ニイハオ・フォン”の細胞質は特許文献2の方法で作出された可能性が高いと考えられた。
 表13の結果では、“紫羅蘭油菜”および“ニイハオ・フォン”由来CMS系統の組み換えミトコンドリアゲノムは、B.rapa型のミトコンドリアDNAを63%有し、R.sativus型のミトコンドリアDNAを37%有していた。表6および表7で示された生長性の低下は、B.rapa植物に、orf138と共に、多くのR.sativus型のミトコンドリアゲノムが導入されたため、B.rapa植物の核ゲノムとR.sativus由来のミトコンドリアゲノムの間での不親和性が原因であると考えられた。
 “キャベツMS-2”は、B.oleracea型のミトコンドリアDNAを77%有し、R.sativus型のミトコンドリアDNAを23%有しており、その葉緑体は、B.oleracea由来であった。表6および表7で示された生長性の低下は、葉緑体がB.oleracea由来であること、およびB.oleraceaとR.sativus由来のミトコンドリアゲノムを有していることが、B.rapa植物の核ゲノムとの不親和性を誘発し、生長性が低下したと考えられた。しかしながら、その生長性の低下の程度は、“紫羅蘭油菜”および“ニイハオ・フォン”の中間であり、クロロシスなどの明らかな生育異常を引き起こさないことから、B.oleracea型のミトコンドリアゲノムとB.rapa型のミトコンドリアゲノムは、B.rapa植物に与える生長性への影響は、大きな差はないと推察された。本発明に従って作出した“J1-3”および“J1-7”のミトコンドリアゲノムは、B.rapa型のミトコンドリアDNAを60%、B.oleracea型のミトコンドリアDNAを31%有し、R.sativus型のミトコンドリアDNAの割合は、わずか9%であった。
 以上の結果より、本発明の方法は、非対称細胞融合によるB.rapa植物の細胞質雑種植物の作出効率を高めたことにより、細胞質雄性不稔遺伝子orf138を導入しつつ、生長性低下の原因となるR.sativusのミトコンドリアゲノムの導入を最小限に抑えたCMS系統を選抜することができたと考えられた。その結果、得られたCMS系統は、細胞質雄性不稔性を保持しつつも、B.rapa植物とミトコンドリアゲノムの親和性が高まり、生長性が改良されたと考えられた。
 以上のように、“J1-3”および“J1-7”の生長性の向上の理由は、明らかとなっていないが、CMS植物の開発においては、実用的なCMS植物が1系統得られれば、当該CMS植物を種子親として、任意のB.rapa植物を花粉親として連続戻し交雑して核置換を行うことにより、任意のB.rapa植物を自由にCMS化することができるため、実用上何ら問題とならない。すなわち、本願発明で寄託している生長性が改良されたOgura CMS B.rapa植物を使用すれば、任意のB.rapa植物を自由にCMS化することが可能となる。
 なお、表11の結果は細胞質雄性不稔性を発現する個体の分析結果の一例を示したものであり、生長性が改良されたOgura CMS B.rapa植物が必ずしもこのようなバンドパターンを示すとは限らない。
実施例4
 CMS系統の種子の生産性は、種子親と商品種子の生産性に直結するため、各CMS系統の採種性の比較を行った。供試材料として、正常細胞質を有するB.rapa植物“SH”、既存のCMS系統である“紫羅蘭油菜”、“ニイハオ・フォン”、“キャベツMS-2”、改良CMS系統である“J1-3”および“J1-7”を用いた。
 50穴のセルトレーに各系統10粒播種し、昼温23℃、夜温15℃のガラス温室で1か月間育苗した後、4℃設定の冷蔵庫(8時間照明)に2ヶ月間入れて、春化処理を行った。春化処理終了後、各系統2株を10号鉢に定植し、昼温23℃、夜温15℃のガラス温室で栽培を行った。交配は虫媒により行い、結実後精選し、1株あたりの採種量を調査した。
 表14に、各系統の1株あたりの平均採種量の結果を示した。
Figure JPOXMLDOC01-appb-T000019
 
 正常細胞質を有するB.rapa植物“SH”の採種量を100とすると、“紫羅蘭油菜”、“ニイハオ・フォン”由来CMS系統の採種量の相対値は、70前後となった。これらのCMS系統は、生長性の低下により、“SH”に比べて、植物体のサイズが小さいため、採種量の低下に影響したものと思われた。“キャベツMS-2”の採種量の相対値は、19.3となり、極端に低くなった。“キャベツMS-2”のCMS系統は、春化処理前の生育は、“紫羅蘭油菜”、“ニイハオ・フォン”由来CMS系統と同程度であったが、春化処理後の生育は、一時的に極めて生育不良となり、低温による障害を受けやすいと考えられた。改良CMS系統である“J1-3”および“J1-7”は、全期間を通して“SH”よりも植物体のサイズが同等以上に大きくなっており、その結果、採種量の相対値は、それぞれ149.2、146.7となり、採種性が高く、雌性稔性に問題がないことが確認できた。
 

Claims (28)

  1.  正常細胞質を有するBrassica rapa植物と同等の生長性を有する、細胞質雄性不稔Brassica rapa植物、またはその後代。
  2.  Raphanus sativus植物、Brassica oleracea植物およびBrassica rapa植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する、請求項1に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  3.  正常細胞質を有するBrassica rapa種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、請求項1または2に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  4.  Raphanus sativus 植物に由来する細胞質雄性不稔遺伝子を有する細胞質雄性不稔Brassica属植物を細胞質供与親として用いる非対称細胞融合を行うことにより得られる、請求項1~3のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  5.  細胞質雄性不稔Brassica oleracea植物に由来する細胞質雄性不稔Brassica属植物を細胞質供与親として用いる非対称細胞融合を行うことにより得られる、請求項1~3のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  6.  細胞質雄性不稔Brassica oleracea植物に由来する細胞質雄性不稔Brassica rapa植物を細胞質供与親として用いる非対称細胞融合を行うことにより得られる、請求項1~3のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  7.  既存の細胞質雄性不稔Brassica属植物を細胞質供与親として用い、正常細胞質を有するBrassica rapa 種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、請求項1~4のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  8.  種間雑種植物が、Brassica oleracea植物およびBrassica rapa植物に由来するものである、請求項3~7のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  9.  種間雑種植物が、高再分化能を有するものである、請求項3~8のいずれか一項に記載の種間雑種植物。
  10.  既存の細胞質雄性不稔Brassica属植物が、既存の細胞質雄性不稔Brassica rapa植物である、請求項7に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  11.  既存の細胞質雄性不稔Brassica属植物が、細胞質雄性不稔Brassica oleracea植物に由来するものである、請求項7に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  12.  細胞質供与親が、細胞質雄性不稔遺伝子orf138を有するものである、請求項4~11のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  13.  Raphanus sativus植物、Brassica oleracea植物およびBrassica rapa植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔Brassica rapa植物、またはその後代であって、
     正常細胞質を有するBrassica rapa 種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、細胞質雄性不稔Brassica rapa植物、またはその後代。
  14.  受託番号FERM BP-22371または受託番号FERM BP-22372で特定される植物由来のミトコンドリアゲノムを含む、請求項1~13のいずれか一項に記載の細胞質雄性不稔 Brassica rapa 植物、またはその後代。
  15.  ミトコンドリアゲノムマーカー BrMt-13K, BrMt-23K, BrMt-74K, BrMt-120K, BrMt-149K, BrMt-185K により特定されるミトコンドリアDNAの少なくともいずれか1つが、Brassica rapa 型である、請求項1~14のいずれか一項に記載の細胞質雄性不稔Brassica rapa 植物、またはその後代。
  16.  ミトコンドリアゲノムマーカー BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, BrMt-208K により特定されるミトコンドリアDNAの少なくともいずれか1つが、Brassica oleracea型である、請求項1~14のいずれか一項に記載のBrassica rapa 植物、またはその後代。
  17.  ミトコンドリアゲノムマーカー BrMt-13K, BrMt-16K, BrMt-23K, BrMt-28K, BrMt-43K, BrMt-58K, BrMt-63K, BrMt-70K, BrMt-74K, BrMt-88K, BrMt-100K, BrMt-111K, BrMt-120K, BrMt-141K, BrMt-149K, BrMt-157K, BrMt-161K, BrMt-185K, BrMt-199K, BrMt-213K, およびBrMt-215K により特定されるミトコンドリアDNAが、Brassica rapa 型であり、かつ、ミトコンドリアゲノムマーカー BrMt-3K, BrMt-4K, BrMt-36K, BrMt-65K, BrMt-80K, BrMt-94K, BrMt-119K, BrMt-133K, BrMt-139K, BrMt-171K, およびBrMt-208K により特定されるミトコンドリアDNAが、Brassica oleracea型である、請求項1~14のいずれか一項に記載のBrassica rapa 植物、またはその後代。
  18.  受託番号FERM BP-22371、または、受託番号FERM BP-22372で特定される植物のミトコンドリアゲノムを有する、細胞質雄性不稔Brassica rapa植物、またはその後代。
  19.  受託番号FERM BP-22371、または、受託番号FERM BP-22372で特定される、細胞質雄性不稔Brassica rapa植物、またはその後代。
  20.  受託番号FERM BP-22371または、受託番号FERM BP-22372で特定される植物のミトコンドリアゲノムを有する、細胞質雄性不稔Brassica rapa植物を細胞質供与親として用い、正常細胞質を有するBrassica rapa 種間雑種植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、請求項1~19のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代。
  21.  請求項1~20のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物またはその後代の植物体の一部。
  22.  請求項1~20のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物またはその後代の種子。
  23.  請求項1~20のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代、請求項21に記載の植物体の一部、または請求項22に記載の種子に含まれる、ミトコンドリアゲノム。
  24.  既存の細胞質雄性不稔Brassica rapa植物を細胞質供与親として用い、正常細胞質を有するBrassica rapa植物を細胞質受容親として用いる非対称細胞融合を行うことを含む、正常細胞質を有するBrassica rapa植物と同等の生長性を有する、細胞質雄性不稔Brassica rapa植物、またはその後代の製造方法。
  25.  正常細胞質を有するBrassica rapa植物が、Brassica rapa植物の種間雑種植物またはそれに由来するものである、請求項24に記載の製造方法。
  26.  請求項1~20のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代を種子親とし、該植物と交配可能なBrassica rapa植物を花粉親として交配し、交配後の種子親から雑種第一代種子を採種することを含む、雑種第一代種子の製造方法。
  27.  請求項26のいずれか一項に記載の方法により製造された雑種第一代種子、または該種子から生育させた雑種第一代植物、その後代、またはそれらの植物体の一部。
  28.  請求項1~20のいずれか一項に記載の細胞質雄性不稔Brassica rapa植物、またはその後代に、任意のBrassica rapa植物を連続戻し交雑し、細胞質置換することを含む、細胞質雄性不稔性を発現するBrassica rapa植物の製造方法。


     
PCT/JP2020/016928 2019-04-17 2020-04-17 生長性が改良された細胞質雄性不稔Brassica rapa植物 WO2020213728A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202410237003.0A CN118109452A (zh) 2019-04-17 2020-04-17 生长性被改良的细胞质雄性不育芜菁植物
AU2020258736A AU2020258736A1 (en) 2019-04-17 2020-04-17 Cytoplasmic male sterile Brassica rapa plant having improved growth ability
US17/604,200 US20220322627A1 (en) 2019-04-17 2020-04-17 Cytoplasmic male sterile brassica rapa plant having improved growth ability
CN202080044203.4A CN113993373B (zh) 2019-04-17 2020-04-17 生长性被改良的细胞质雄性不育芜菁植物
JP2021514248A JPWO2020213728A1 (ja) 2019-04-17 2020-04-17
KR1020217035651A KR20210153071A (ko) 2019-04-17 2020-04-17 생장성이 개량된 세포질 웅성 불임 브라시카 라파(Brassica rapa) 식물
EP20791489.6A EP3957167A4 (en) 2019-04-17 2020-04-17 BRASSICA RAPA PLANT WITH CYTOPLASMIC MALE STERILITY WHOSE GROWTH IS ENHANCED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019078906 2019-04-17
JP2019-078906 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020213728A1 true WO2020213728A1 (ja) 2020-10-22

Family

ID=72837369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016928 WO2020213728A1 (ja) 2019-04-17 2020-04-17 生長性が改良された細胞質雄性不稔Brassica rapa植物

Country Status (7)

Country Link
US (1) US20220322627A1 (ja)
EP (1) EP3957167A4 (ja)
JP (1) JPWO2020213728A1 (ja)
KR (1) KR20210153071A (ja)
CN (2) CN113993373B (ja)
AU (1) AU2020258736A1 (ja)
WO (1) WO2020213728A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862391A (zh) * 2021-11-02 2021-12-31 北京市农林科学院 与白菜隐性核不育性状紧密连锁的snp分子标记及其应用
WO2022107839A1 (ja) * 2020-11-20 2022-05-27 株式会社サカタのタネ 細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法
WO2022122164A1 (en) * 2020-12-10 2022-06-16 Enza Zaden Beheer B.V. Chlorosis resistant cytoplasmic male sterile brassica plants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731307A (ja) 1993-07-14 1995-02-03 Sakata No Tane:Kk 雄性不稔植物の育種方法及び増殖方法
CN1232608A (zh) * 1999-03-29 1999-10-27 南京农业大学 不结球白菜非对称细胞融合方法及其获得的再生植株

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254802A (en) * 1987-12-17 1993-10-19 Sietske Hoekstra Male sterile brassica plants
US6046383A (en) * 1995-09-11 2000-04-04 Seminis Vegetable Seeds, Inc. Cytoplasmic male sterile Brassica oleracea plants which contain the polima CMS cytoplasm and are male sterile at high and low temperatures
KR100399333B1 (en) 2002-10-10 2003-09-26 Nong Woo Bio Co Ltd Novel genotype cms radish family plant, method for producing hybrid seeds using the same, and dna marker for selecting the nwb-cms radish family plant
JP5089764B2 (ja) 2007-04-06 2012-12-05 ドンブ ハンノン カンパニー リミテッド 新規な細胞質−遺伝子的雄性不稔(cgms)大根系統植物体を使用した雑種種子生産方法及び前記大根系統植物体選抜用dna標識因子
CN101044837B (zh) * 2007-04-30 2010-04-07 中国农业科学院油料作物研究所 利用野芥不育细胞质制备油菜及十字花科蔬菜杂种的方法
AU2009304572B2 (en) * 2008-10-17 2015-04-09 Advanta Seeds Pty Ltd Hybrid plant cell
CN105230486A (zh) * 2015-09-29 2016-01-13 华中农业大学 甘蓝型油菜菘油细胞质雄性不育系的选育方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731307A (ja) 1993-07-14 1995-02-03 Sakata No Tane:Kk 雄性不稔植物の育種方法及び増殖方法
CN1232608A (zh) * 1999-03-29 1999-10-27 南京农业大学 不结球白菜非对称细胞融合方法及其获得的再生植株

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Cytoplasmic Male Sterility and Breeding Technique", 1985, C. M. C. PUBLISHING CO., LTD
"Gene Bank", Database accession no. AB694744
DONG X. ET AL.: "Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes", PLANT SCIENCE, vol. 199, no. 200, 2013, pages 7 - 17, XP055750707, ISSN: 0168-9452, DOI: 10.1016/j.plantsci.2012.11.001 *
HATTORI G. ET AL.: "Comparative studies on chloroplast DNA in Ogura-type CMS lines derived from a cybrid (Brassica oleracea L. var. capitata) and a chimera (Brassica rapa L. var. peru viridis) and on a distinction of chloroplast DNA by PCR in Brassicaceae", PLANT BIOTECHNOLOGY, vol. 25, 2008, pages 177 - 182, XP055750705, ISSN: 1342-4580 *
HIROSHI YAMAGISHISHRIPAD R. BHAT: "Cytoplasmic male sterility in Brassicaceae crops", BREEDING SCIENCE, vol. 64, 2014, pages 38 - 47, XP055750711, DOI: 10.1270/jsbbs.64.38
HOU X-L. ET AL.: "Creation of a new germplasm of CMS non-heading Chinese cabbage", ACTA HORTICULTURAE, vol. 637, 2004, pages 75 - 81, XP055750702, ISSN: 0567-7572 *
JAP. J. GENET., vol. 50, 1975, pages 235
KEITA SUWABE, BREEDING RESEARCH (IKUSHUGAKU KENKYU, vol. 14, 2012, pages 114 - 120
MATSUMOTO, E, PLANT CELL REPORTS, vol. 9, no. 10, 1991
PLANTA, vol. 120, 1974, pages 215 - 227
PLANTA, vol. 151, 1981, pages 26 - 32
See also references of EP3957167A4
XI-LIN HOUSHOU-CHUN CAOYU-KE HE: "ISHS Acta Horticulturae", CREATION OF A NEW GERMPLASM OF CMS NON-HEADING CHINESE CABBAGE, vol. 637, 2004, pages 75 - 81
YAMAGISHI H. ET AL.: "Cytoplasmic male sterility in Brassicaceae crops", BREEDING SCIENCE, vol. 64, 2014, pages 38 - 47, XP055750711, ISSN: 1344-7610, DOI: 10.1270/jsbbs.64.38 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107839A1 (ja) * 2020-11-20 2022-05-27 株式会社サカタのタネ 細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法
WO2022122164A1 (en) * 2020-12-10 2022-06-16 Enza Zaden Beheer B.V. Chlorosis resistant cytoplasmic male sterile brassica plants
CN113862391A (zh) * 2021-11-02 2021-12-31 北京市农林科学院 与白菜隐性核不育性状紧密连锁的snp分子标记及其应用

Also Published As

Publication number Publication date
CN118109452A (zh) 2024-05-31
US20220322627A1 (en) 2022-10-13
CN113993373B (zh) 2024-03-22
CN113993373A (zh) 2022-01-28
EP3957167A1 (en) 2022-02-23
AU2020258736A1 (en) 2021-12-16
JPWO2020213728A1 (ja) 2020-10-22
KR20210153071A (ko) 2021-12-16
EP3957167A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
JP7370333B2 (ja) Tbrfv抵抗性トマト植物
JP4139429B2 (ja) 細胞質雑種Lactuca属植物およびその作出方法
WO2008084329A2 (en) Novel rucola plants with cytoplasmic male sterility (cms)
WO2020213728A1 (ja) 生長性が改良された細胞質雄性不稔Brassica rapa植物
ES2941684T3 (es) Plantas del género Diplotaxis portadoras de una androesterilidad citoplasmática
Arikita et al. Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii
Zhu et al. Introgression of clubroot resistant gene into Brassica oleracea L. from Brassica rapa based on homoeologous exchange
CN115460911A (zh) 用于改进的小孢子胚胎发生和产生加倍单倍体小孢子来源的胚的方法
Kim et al. Isolation of protoplasts, and culture and regeneration into plants in Alstroemeria
CN104839015B (zh) 玉米质‑核互作雄性不育转基因受体的培育方法及该受体在遗传转化和后代扩繁中的应用
Bagheri et al. Production of haploid embryos and plants in Iranian melon (Cucumis melo L.) through irradiated pollen-induced parthenogenesis.
WO2022107839A1 (ja) 細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法
WO2020213727A1 (ja) 低温生長性が改良された細胞質雄性不稔Lactuca属植物
AU2009304572B2 (en) Hybrid plant cell
Xiao et al. Gene transferability from transgenic Brassica napus L. to various subspecies and varieties of Brassica rapa
Brar et al. Application of biotechnology in hybrid rice
US11672216B2 (en) Methods for promoting production of viable seeds from apomictic guayule plants
JP5419196B2 (ja) 雄性不稔ネギ属植物及びそれに由来する細胞ならびにその作製方法
Lian et al. Plant regeneration of B. juncea through plant tissue and protoplast culture
SIEMENS II. 1 Somatic Hybridization Between Arabidopsis and Brassica J. SIEMENS and MD SACRISTÁN
Siemens et al. II. 1 Somatic Hybridization Between Arabidopsis and Brassica
Suprunova et al. Production and analysis of interspecific hybrids among four species of the genus Capsicum
Zhang et al. Regenerative Plantlets with the Improved Agronomic Characteristics by Anther Culture of Tetraploid Potato (Solanum Tuberosum L.)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217035651

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020791489

Country of ref document: EP

Effective date: 20211117

ENP Entry into the national phase

Ref document number: 2020258736

Country of ref document: AU

Date of ref document: 20200417

Kind code of ref document: A