WO2020213727A1 - 低温生長性が改良された細胞質雄性不稔Lactuca属植物 - Google Patents

低温生長性が改良された細胞質雄性不稔Lactuca属植物 Download PDF

Info

Publication number
WO2020213727A1
WO2020213727A1 PCT/JP2020/016927 JP2020016927W WO2020213727A1 WO 2020213727 A1 WO2020213727 A1 WO 2020213727A1 JP 2020016927 W JP2020016927 W JP 2020016927W WO 2020213727 A1 WO2020213727 A1 WO 2020213727A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
lactuca
genus
cytoplasmic
cytoplasmic male
Prior art date
Application number
PCT/JP2020/016927
Other languages
English (en)
French (fr)
Inventor
慎吾 堀内
鈴木 隆夫
敦 泉田
田中 康夫
Original Assignee
株式会社サカタのタネ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サカタのタネ filed Critical 株式会社サカタのタネ
Priority to EP20790756.9A priority Critical patent/EP3957166A4/en
Priority to JP2021514247A priority patent/JPWO2020213727A1/ja
Priority to BR112021020652A priority patent/BR112021020652A2/pt
Priority to CN202080044296.0A priority patent/CN114599223A/zh
Priority to KR1020217035647A priority patent/KR20210153070A/ko
Priority to AU2020259923A priority patent/AU2020259923A1/en
Priority to US17/604,175 priority patent/US20220204986A1/en
Priority to CA3137173A priority patent/CA3137173A1/en
Priority to MX2021012535A priority patent/MX2021012535A/es
Publication of WO2020213727A1 publication Critical patent/WO2020213727A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/14Asteraceae or Compositae, e.g. safflower, sunflower, artichoke or lettuce
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/14Asteraceae or Compositae, e.g. safflower, sunflower, artichoke or lettuce
    • A01H6/1472Lactuca sativa [lettuce]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/022Genic fertility modification, e.g. apomixis
    • A01H1/023Male sterility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/121Plant growth habits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • A01H1/1225Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold or salt resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/12Leaves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility

Definitions

  • the present invention relates to a cytoplasmic male sterile Lactuca plant with improved low temperature growth.
  • Plant varieties include fixed varieties and F1 hybrid varieties (hereinafter referred to as "F1"), and F1 varieties are widespread among major crops.
  • F1 varieties have great advantages such as vigorous growth due to heterosis, fast growth, and high yield.
  • F1 varieties can be expected to improve resistance to pests and environmental adaptability such as cold resistance and heat resistance due to vigorous growth.
  • genotypes of the F1 varieties are heterozygous but have the same genotype, the phenotype shows extremely high uniformity. Therefore, the marketability of the product is enhanced.
  • useful traits controlled by dominant genes can be accumulated in parents of F1 varieties, rapid breeding becomes possible.
  • parents When collecting F1 varieties, parents generally use self-fertilized (inbreeding) lines, and seed parents and pollen parents are selected from combinations that have a large effect of heterosis.
  • CMS cytoplasmic male sterility
  • Non-Patent Document 1 For example, in maize, F1 varieties introduced with T-type male sterile cytoplasm were bred, but in 1970, T-race of sesame leaf blight appeared, and T-type male sterile cytoplasm is specific to this pathogen. Because he was ill with corn, he was hit hard. For this reason, the use of T-type male sterile cytoplasm was immediately discontinued, and there was no choice but to revert to the conventional artificial sterilization method (Non-Patent Document 1).
  • Non-Patent Document 1 CMS in petunia has been known for a long time, and its causative gene, S-pcf, is widely used as a research material.
  • F1 varieties using this CMS cause delay in flowering, arrest of flower bud development, etc., and are therefore rarely used at present (Non-Patent Document 1).
  • Ogura CMS is the most commonly used CMS for Japanese radish.
  • the fertility recovery gene is present in the species, there is a problem that it is difficult to introduce CMS depending on the breeding line.
  • a new NWB-CMS with different CMS factors was developed, and the introduction rate of CMS was improved.
  • Patent Document 3 Furthermore, in Japanese radish, a small amount of sterile pollen was produced, and a novel CMS with improved efficiency of attracting pollinator insects was also developed.
  • the CMS may be accompanied by poor traits or may cause fertility recovery, and the use of the CMS may be difficult or limited. ..
  • the conventional CMS Lactuca genus plant described in Patent Document 1 has very excellent traits except that the low temperature growth may be reduced. Therefore, it was considered that the improvement of the problematic trait of low temperature growth using this CMS Lactuca plant as a material is a shortcut for development. However, since no effective method for improving the poor traits of CMS has been reported so far including all plants, it is considered that it is very difficult to develop CMS lettuce with improved low temperature growth. It was.
  • the present invention provides a CMS Lactuca plant having a low temperature growth property and a low temperature growth property using the CMS Lactuca plant, in view of the fact that the low temperature growth property of the conventional CMS Lactuca plant is lowered. It is an object of the present invention to provide a method for producing F1 seeds of a plant of the genus Lactuca having the above.
  • asymmetric return fusion asymmetric cell fusion
  • cytoplasmic male-sterile Lactuca genus plant of ⁇ 1> which has DNA derived from the mitochondrial genome of a Helianthus plant in the mitochondrial genome, or its progeny.
  • cytoplasmic male-sterile Lactuca plant of ⁇ 1> or ⁇ 2>, or its progeny obtained by performing asymmetric cell fusion using a plant of the genus Lactuca having a normal cytoplasm as a cytoplasmic receptor parent multiple times.
  • ⁇ 4> The above ⁇ 1> to ⁇ 3> obtained by performing asymmetric cell fusion using an existing cytoplasmic male sterile Lactuca plant as a cytoplasmic donor and a normal cytoplasmic Lactuca plant as a cytoplasmic acceptor. Any of the cytoplasmic male sterile plants of the genus Lactuca, or progeny.
  • Cyclic male sterile plant of the genus Lactuca is derived from lettuce (Lactuca sativa L.) or an interspecific hybrid plant of a plant of the genus Lactuca, any of the above ⁇ 1> to ⁇ 5>. Sterile Lactuca plant, or its progeny.
  • cytoplasmic male-sterile Lactuca plant having the mitochondrial genome of the plant identified by accession number FERM BP-22373, or a progeny.
  • ⁇ 9> A part of the cytoplasmic male sterile Lactuca genus plant or a progeny plant according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 10> The seed of the cytoplasmic male sterile Lactuca genus plant or its progeny according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 11> Mitochondria contained in the cytoplasmic male-sterile Lactuca plant according to any one of ⁇ 1> to ⁇ 8>, or its progeny, a part of the plant body of ⁇ 9>, or the seed of ⁇ 10>. genome.
  • the plant or progeny obtained by asymmetric cell fusion is a cytoplasmic male sterile Lactuca plant, which is used as a cytoplasmic donor and is used as a cytoplasmic donor.
  • one of the plants used for the first asymmetric cell fusion described above is a Lactuca plant having a normal cytoplasm, which comprises using this as a cytoplasmic acceptor to perform one or more asymmetric cell fusions.
  • Asymmetric return fusion method is used.
  • ⁇ 13> A method for improving the mitochondrial genome in the cytoplasm of a plant of the genus Lactuca by the method of ⁇ 12>.
  • ⁇ 14> Equivalent to Lactuca spp. With normal cytoplasm, including asymmetric cell fusion using existing cytoplasmic male sterile Lactuca spp. As cytoplasmic donor and Lactuca spp. With normal cytoplasm as cytoplasmic acceptor. A method for producing a cytoplasmic male sterile plant of the genus Lactuca, or a progeny thereof, which has low temperature growth. ⁇ 15> The method of ⁇ 14> above, wherein the cytoplasmic male sterile Lactuca plant is derived from lettuce (Lactuca sativa L.) or an interspecific hybrid plant of a Lactuca plant.
  • cytoplasmic male sterile Lactuca genus plant according to any one of ⁇ 1> to ⁇ 8> or its progeny is used as a seed parent, and a Lactuca genus plant capable of mating with the plant is mated as a pollen parent, and after mating.
  • a method for producing a F1 hybrid seed which comprises collecting a F1 hybrid seed from a seed parent.
  • the pollen parent is lettuce (Lactuca sativa L.) or an interspecific hybrid plant of a plant of the genus Lactuca.
  • ⁇ 19> The usefulness comprising continuously backcrossing a cytoplasmic male sterile plant of the genus Lactuca having any of the above ⁇ 1> to ⁇ 8>, or a plant of the genus Lactuca having a useful trait, and replacing the cytoplasm.
  • ⁇ 20> The method of ⁇ 19> above, wherein the plant of the genus Lactuca having a useful trait is derived from lettuce (Lactuca sativa L.).
  • the present invention it is possible to provide an improved CMS Lactuca genus plant with improved low temperature growth.
  • the improved CMS Lactuca genus plant according to the present invention it is possible to efficiently collect F1 seeds of the Lactuca genus plant having low temperature growth.
  • asymmetric return fusion method of the present invention it is possible to improve the cytoplasm, particularly the mitochondrial genome.
  • the figure shows the germination test of "Thermy” (A) having a normal cytoplasm and "Thermy” (B) having a conventional CMS cytoplasm 17 days after sowing in a greenhouse environment with a night temperature of 0 ° C and a day temperature of 20 ° C. The result is shown.
  • the figure shows the 17th day after sowing of "V lettuce” (A) having normal cytoplasm and "V lettuce” (B) having conventional CMS cytoplasm in a greenhouse environment where the night temperature is set to 0 ° C and the day temperature is set to 20 ° C.
  • the germination test results are shown.
  • the figure shows "V lettuce” (A) having normal cytoplasm and "V lettuce” having conventional CMS cytoplasm when the artificial meteorological instrument is set to the optimum temperature conditions for growth (night temperature 20 ° C, day temperature 20 ° C, 12-hour lighting).
  • the germination test result 16 days after sowing of "V lettuce” (B) is shown.
  • the figure shows "V lettuce” (A) having normal cytoplasm and “V” having conventional CMS cytoplasm when the artificial meteorological instrument is set to low temperature conditions (night temperature 5 ° C, day temperature 20 ° C, 12 hours light period).
  • the germination test result of 17 days after sowing of "lettuce” (B) is shown.
  • the figure shows the 17th day after sowing of "V lettuce” (A) having a normal cytoplasm and "V lettuce” (B) having an improved CMS cytoplasm in a greenhouse environment where the night temperature is set to 0 ° C and the day temperature is set to 20 ° C.
  • the germination test results are shown.
  • the figure shows 17 days after sowing of "M8-039" (A) having a normal cytoplasm and "M8-039” (B) having an improved CMS cytoplasm in a greenhouse environment with a night temperature of 0 ° C and a day temperature of 20 ° C.
  • the results of the eye germination test are shown.
  • the figure shows the germination test of "Steady” (A) having normal cytoplasm and "Steady” (B) having improved CMS cytoplasm 17 days after sowing in a greenhouse environment with a night temperature of 0 ° C and a day temperature of 20 ° C. The result is shown.
  • the figure shows "Steady” (A) with normal cytoplasm and "Steady” (B) with improved CMS cytoplasm in a low temperature environment of an artificial meteorological instrument (night temperature 5 ° C, day temperature 16 ° C, 12 hours light period).
  • the germination test result on the 17th day after sowing is shown.
  • the figure shows the state when BC7 generations of "Steady” (A) and "BF2MS1S” (B) having normal cytoplasm were planted in a field (Azumino City, Nagano Prefecture) and grown until the heading stage.
  • the present invention relates to cytoplasmic male sterility Lactuca plants or progeny with improved low temperature growth as compared to the past. As described above, this can be expressed as a cytoplasmic male sterile Lactuca plant having a low temperature growth equivalent to that of a Lactuca plant having a normal cytoplasm, or a progeny.
  • low temperature growth means the growth of seedlings under low temperature conditions.
  • low temperature means a state in which Lactuca plants are originally lower than the appropriate temperature conditions for growth, and the average temperature of the day is low, and only a part of the day ( For example, the case where the temperature becomes low (at night) is also included.
  • the low temperature may be, for example, when the day temperature is 20 ° C., the night temperature is lower than the day temperature, for example, the night temperature is 5 to 0 ° C.
  • Low temperature growth is quantitative by cultivating the target plant under the same low temperature conditions, weighing and comparing the above-ground part of the seedling, and comparing it with the result of cultivating under appropriate temperature conditions. Can be evaluated.
  • normal cytoplasm is typically used to mean that the cytoplasm of a plant exhibiting male sterility, that is, the male sterility cytoplasm, is normal without showing sterility. ..
  • “equivalent” means the value of Lactuca plants having normal cytoplasm when the low temperature growth is measured by the weight of the above-ground part of the seedling.
  • the measured value in the target plant is within a range that can fluctuate within 25% (preferably within 20%, more preferably within 15%, still more preferably within 10%). Therefore, for example, when the measured value of the target plant is 90% of the value of the normal plant with respect to the value of the above-ground part weight of the seedling of "Lactuca genus plant having normal cytoplasm", the above-mentioned Corresponds to a fluctuation of 10%. Equivalence does not exclude cases that exceed the low temperature growth of "Lactuca plants with normal cytoplasm".
  • progeny includes progeny using a maintenance line of a cytoplasmic male sterility plant, as well as a cytoplasmic male sterility plant according to the present invention and a plant of the genus Lactuca capable of hybridizing with the plant. Hybrids obtained by crossing with are also included. Therefore, for the "progeny", for example, by mating a cytoplasmic male sterile Lactuca plant according to the present invention as a seed parent (female parent) and a Lactuca plant capable of mating with the plant as a pollen parent (male parent). What is obtained is also included.
  • the "progeny” also includes, for example, a plant produced by cell fusion of a cytoplasmic male sterile Lactuca genus plant according to the present invention and a plant capable of fusing the Lactuca genus plant, and an interspecies hybrid plant.
  • Lactuca plants are Lactuca sativa L., L. serriola, L. aculeate, L. scarioloides, L. azerbaijanica, L. georgica, L. drageana, L. altaica, L. saligna, L. virosa, It is preferably L. tatarica, L. indica, or L. debilis, or an interspecific hybrid plant thereof, and among them, an interspecific hybrid of L. sativa L. or Lactuca genus plant, which is a cultivated species of Lactuca genus plant. Plants are preferred, more preferably L. sativa L.
  • the cytoplasmic male sterile Lactuca plant or its progeny of the present invention has DNA in the mitochondrial genome derived from the mitochondrial genome of the Helianthus plant.
  • Plant of the genus Helianthus is a cultivated variety of sunflower among the plants of the genus Helianthus, Helianthus annuus L.
  • Preferable is a cytoplasmic replacement line of rigidus, H. salicifolius, H. anomalus, H. bolanderi, H. exilis, H. maximiliani, H. neglectus, H. praecox, or H. annuus L. with cytoplasm derived from H. tuberosus. ..
  • asymmetric cell fusion means that one of the nuclear genomes of the isolated protoplasts used for cell fusion is inactivated in advance before being fused, and then cell fusion is performed using the nuclear genome.
  • a cell that inactivates the nuclear genome at the time of fusion and donates the cytoplasm to the fused cell by cell fusion is called a cytoplasm donor.
  • a cytoplasmic accepting parent is a substance that maintains the nuclear genome without inactivating it during fusion and accepts the cytoplasm from the cytoplasmic donor.
  • one of the plants used for the first asymmetric cell fusion is cytoplasmic while the plant or its progeny obtained by the asymmetric cell fusion is used as the cytoplasm donor parent. It is used as a receptor parent to perform further asymmetric cell fusion at least once (preferably once). That is, in the asymmetric return fusion, the asymmetric cell fusion is performed twice or more, including the first time.
  • the cytoplasmic male sterile Lactuca plant of the present invention is subjected to asymmetric cell fusion using a Lactuca plant having a normal cytoplasm as a cytoplasmic acceptor a plurality of times, that is, two or more times. Obtainable.
  • the cytoplasmic male sterility plant of the present invention uses an existing cytoplasmic male sterility plant of the genus Lactuca as a cytoplasmic donor, and a plant of the genus Lactuca having a normal cytoplasm is used as a cytoplasm. It can be obtained by performing asymmetric cell fusion used as a accepting parent.
  • the existing cytoplasmic male-sterile Lactuca plant means a cytoplasmic male-sterile Lactuca plant before being improved in the present invention, that is, a conventional cytoplasmic male-sterile Lactuca plant.
  • the existing cytoplasmic male sterile Lactuca plant has room for improvement in low temperature growth, that is, the low temperature growth is reduced as compared with the Lactuca plant having normal cytoplasm. Means.
  • the cytoplasmic male sterility plant of the present invention is a cytoplasmic male sterility plant having DNA derived from the mitochondrial genome of the Helianthus plant in the mitochondrial genome. , Or its successor, It can be obtained by performing asymmetric cell fusion multiple times using a plant of the genus Lactuca having a normal cytoplasm as a cytoplasmic accepting parent, or a plant of the genus Lactuca having a normal cytoplasm using an existing cytoplasmic male sterile Lactuca genus plant as a cytoplasmic donor parent. Is obtained by performing asymmetric cell fusion using as a cytoplasmic receptor parent.
  • the cytoplasmic male sterile Lactuca plant according to the present invention is a Lactuca plant having the mitochondrial genome of the plant specified by Accession No. FERM BP-22373 (described later) or subsequently. It is a generation, more preferably a plant of the genus Lactuca specified by accession number FERM BP-22373, or a progeny.
  • an asymmetric return fusion method in a plant comprises performing one or more asymmetric cell fusions using one of the plant or progeny obtained by asymmetric cell fusion and the plant used for the first asymmetric cell fusion described above.
  • the plant obtained by the above-mentioned asymmetric cell fusion or its progeny is a cytoplasmic male sterile Lactuca genus plant, which is used as a cytoplasmic donor and used for the first asymmetric cell fusion.
  • One is a plant of the genus Lactuca having a normal cytoplasm, which is used as a cytoplasmic receptor parent to perform asymmetric cell fusion.
  • a method for improving the mitochondrial genome in the cytoplasm of a plant is provided by the above-mentioned asymmetric return fusion method.
  • the cytoplasmic hybrid Lactuca plant or its protoplast "part of a plant” includes, and is specific, one or more cells of the plant or cytoplasm from one or more cells.
  • the improved cytoplasmic male sterile Lactuca plant according to the present invention can be produced, for example, according to the following procedure. (1) Preparation of protoplasts (i) Isolation of protoplasts from plants with normal cytoplasm (ii) Isolation of protoplasts from cytoplasmic male sterile plants (2) Fusion treatment of protoplasts (3) Culture of fused hybrid cells (4) Regeneration of plants from callus (5) Selection of cytoplasmic hybrid plants (6) Selection of excellent lines (7) Continuous backcrossing of excellent lines (8) Utilization of cytoplasmic male sterile plants and production of F1 seeds
  • production method can also be rephrased as the "production method”. That is, the terms “production” and “manufacturing” here are used interchangeably.
  • the plants of the genus Lactuca used as cytoplasmic recipients are Lactuca sativa L., L. serriola, L. aculeate, L. scarioloides, L. azerbaijanica, L. georgica, L. dregeana, L. altaica, L. saligna, L. virosa, L. tatarica, L. indica, or L. debilis, or their interspecific hybrid plants Of these, L. sativa L., which is a cultivated species of a plant belonging to the genus Lactuca, is preferable.
  • mesophyll tissue having high yield and high mitotic activity
  • other tissues such as hypocotyl, stem and callus may also be used as materials. ..
  • the method for isolating the protoplast may be a commonly used method known in the art (for example, the method described in Matsumoto, E, Plant cell reports, 1991. vol9 (10), etc.) and is not particularly limited.
  • the following shows procedures as specific examples, but the present invention is not necessarily bound by them.
  • the cell tissue of a plant of the genus Lactuca is shredded, and the protoplast is isolated by enzymatic treatment using an enzyme solution for protoplast isolation.
  • This solution is an inorganic salt buffer solution mainly containing a cell wall degrading enzyme and an osmoregulator.
  • the cell wall degrading enzyme is not particularly limited as long as it can be used for decomposing the cell wall of a plant, and examples thereof include cellulase, hemicellulase, and pectinase.
  • a combination of cellulase Y-C and macerozyme R-10 is preferable.
  • osmoregulator general sugar alcohols such as mannitol, sorbitol, glucose and the like can be used, mannitol is preferable, and mannitol having a concentration of 0.3M to 0.7M is particularly preferable.
  • an inorganic salt to the enzyme solution in order to stabilize the protoplast membrane, and for example, it is preferable to add a CPW salt (Cocking and Peberdy, 1974) having the composition shown in Table 1 below. is there.
  • the enzyme treatment is preferably a standing treatment at 25 to 30 ° C. for 8 to 20 hours.
  • Protoplasts isolated by enzyme treatment are filtered through a nylon mesh with a pore size of 30 to 100 ⁇ m, centrifuged to collect protoplasts, and the enzyme solution is removed. The protoplasts are then suspended in the wash solution to wash the protoplasts.
  • a commonly used CPW salt solution to which sugar alcohols are added as an osmotic pressure adjusting agent can be used.
  • the inactivation treatment can be carried out by suspending protoplasts in a CPW salt solution or the like in which an iodine compound such as iodoacetic acid or iodoacetamide is dissolved.
  • an iodine compound such as iodoacetic acid or iodoacetamide is dissolved.
  • the suspension of protoplasts also contains fragments of conduits and cells, it is preferable to further purify the protoplasts by a density gradient centrifugation method or the like.
  • the reagent used for purification include saccharides and synthetic colloids.
  • the use of a sucrose solution is preferable, and the use of a sucrose solution of 15% to 20% is particularly preferable.
  • the cell density is measured by a hemocytometer, and the liquid volume is adjusted with a CPW salt solution so that the cell density is suitable for cell fusion.
  • the cell density of protoplast is preferably 1 ⁇ 10 5 to 1 ⁇ 10 7 cells / ml, and the use of CPW salt solution is preferable for adjusting the liquid volume.
  • the CMS Lactuca plant used as an isolated cytoplasmic donor of the protoplast of the conventional CMS Lactuca plant is not particularly limited as long as it has cytoplasmic male sterility, but has a stable CMS. Plants of the genus Lactuca are preferred. Specifically, for example, as the cytoplasm donor, it is preferable to use the conventional CMS Lactuca plant (accession number FERM BP-10647) described in Patent Document 1.
  • Isolation of the protoplasts of conventional CMS Lactuca plants can be performed, for example, according to the same method as the above-mentioned isolation of protoplasts of Lactuca plants.
  • an isolated conventional CMS Lactuca plant protoplast in which the nuclear gene is inactivated by radiation treatment.
  • the radiation to be irradiated for the radiation treatment include X-rays, ⁇ -rays, ultraviolet rays, and the like, but the radiation is not particularly limited as long as the nuclear gene can be inactivated.
  • the irradiation dose is preferably as low as possible within the range in which the nuclear gene can be inactivated. For example, in the case of soft X-ray irradiation in the present invention, an irradiation amount of 100 Gy to 900 Gy is preferable.
  • both types of protoplasts obtained above are mixed and cell fusion is performed.
  • the fusion method conventional methods, for example, known electric fusion method (Planta, 151, 26-32, 1981), PEG (polyethylene glycol) method (Planta, 120, 215-227, 1974), dextran method (Jap) . J. Genet., 50, 235, 1975), etc., but are not particularly limited.
  • the PEG method is preferably used.
  • the cells obtained by the fusion treatment are preferably cultured in a medium suitable for culturing protoplasts derived from plants of the genus Lactuca.
  • a medium suitable for culturing protoplasts derived from plants of the genus Lactuca Various methods are known as a method for culturing protoplasts derived from plants of the genus Lactuca, and the method is not limited, but in the present invention, it is preferable to use a method modified from the method of Patent Document 1.
  • Example 1 of Patent Document 1 asymmetric cell fusion is performed by a combination of a Helianthus protoplast and a Lactuca plant protoplast.
  • asymmetric cell fusion of a combination of plant protoplasts of the genus Lactuca is obtained. Therefore, the fusion cells can be more preferably cultured by examining the optimum type and concentration of the plant growth regulator. It will be possible. Specific examples of such optimum conditions include plant growth regulators NAA ( ⁇ -Naphthaleneacetic Acid), 4-CPPU (N- (2-Chloro-4-pyridyl) -N'-phenylurea), and TDZ ( By properly combining Thidiazuron), fused cells can be efficiently cultured.
  • NAA ⁇ -Naphthaleneacetic Acid
  • 4-CPPU N- (2-Chloro-4-pyridyl) -N'-phenylurea
  • TDZ By properly combining Thidiazuron), fused cells can be efficiently cultured.
  • Regenerative fusion cells of plants from callus are cultured, and when cell division is started and callus can be visually confirmed, the callus is transplanted into a redifferentiation medium and redifferentiated.
  • a redifferentiation medium a conventional medium can be used, and although the reaction differs depending on the state of the plant of the genus Lactuca and the callus used as the material, for example, an MS medium containing 0.3 to 1.0 mg / l 4-CPPU is used. It is suitable to use.
  • the regenerated shoots are transplanted to a rooting medium, for example, a 1/2 concentration MS medium to root and regenerate the plant.
  • the regenerated plants are acclimatized and grown in the greenhouse.
  • the marker that can be used here is not particularly limited as long as it is a marker that can specifically amplify only the mitochondrial DNA sequence derived from the conventional CMS Lactuca genus plant.
  • the cytoplasmic hybrid plant can be efficiently selected by performing PCR analysis using a marker capable of specifically amplifying the mitochondrial DNA sequence.
  • the selection of cytoplasmic hybrid plants can be carried out with reference to the method of Patent Document 1 as appropriate, if necessary.
  • the above confirmation by the PCR method is preferably performed at the callus stage, but it may be performed at another stage, for example, an acclimatized plant. Furthermore, it is desirable to select diploids by performing a ploidy test by measuring the DNA content by flow cytometry or observing the chromosomes, and to eliminate the higher-order polyploids. Since recombination of the mitochondrial genome by asymmetric cell fusion occurs frequently and randomly, it is desirable to produce 300 or more diploid cytoplasmic hybrid plants.
  • sowing is carried out under low-temperature conditions, and it is desirable to set night temperature 0 to 5 ° C and day temperature 15 to 20 ° C as temperature conditions. ..
  • the low-temperature growth is compared with the produced CMS line, and individuals showing the same or higher low-temperature growth are selected.
  • an individual showing the same or higher low temperature growth cannot be obtained, it is desirable to select an individual having a relatively high low temperature growth and use it again as a cytoplasm donor parent of asymmetric cell fusion.
  • the process proceeds to the next step of continuous backcrossing.
  • Non-Patent Document 2 suggests that the cytoplasm requires continuous backcrossing for 5 or more generations before it reaches a homoplasmic state. Therefore, in order to produce a CMS line having low temperature growth, it is desirable to repeat selection and backcrossing using low temperature growth as an index for 5 generations or more until the low temperature growth becomes stable.
  • an improved CMS line that uses that line for actual breeding that is, cytoplasmic male sterile Lactuca with improved low-temperature growth
  • cytoplasmic male sterile Lactuca with improved low-temperature growth Select as a plant
  • Lactuca plants that is, Lactuca plants having useful traits
  • CMS can be easily converted to CMS. That is, by using the improved CMS line deposited in the present invention, any plant of the genus Lactuca that can be mated can be made into a good CMS plant without using the asymmetric return fusion technique that requires skill.
  • Example 1 Creation of improved CMS Lactuca plant (1) Preparation of protoplasts (i) Isolation of protoplasts of plants of the genus Lactuca having normal cytoplasm As a plant of the genus Lactuca having normal cytoplasm, lettuce variety "Steady" (available from Turta Seed Co., Ltd.) was used. First, the sterilized seeds were placed on an MS medium containing 10 g / l of sucrose and 8 g / l of agar, and cultured at 20 ° C. for 16 hours under illumination for 1 month.
  • the enzyme solution containing leaf tissue was filtered through a 92 ⁇ m nylon mesh to remove cell residues.
  • the obtained protoplast suspension was transferred to a centrifuge tube and centrifuged at 800 rpm for 5 minutes.
  • the obtained protoplasts obtained by removing the supernatant were suspended in 5 ml of a CPW salt solution containing 15 mM iodoacetamide, and incubated at 25 ° C. for 15 minutes. After incubation, the iodoacetamide-treated protoplast suspension was centrifuged at 800 rpm for 5 minutes, and the supernatant was removed. 10 ml of CPW salt solution was added to the protoplast suspension, and the operation of centrifuging at 800 rpm for 5 minutes to remove the supernatant was repeated 3 times to wash the protoplast.
  • the washed protoplast suspension was centrifuged at 800 rpm for 5 minutes, the supernatant was removed, and 2 ml of CPW salt solution was added to suspend the protoplast.
  • 5 ml of a CPW salt solution containing 20% sucrose was added to a new centrifuge tube, the suspension of the above protoplast was layered on it, and centrifugation was performed at 800 rpm for 5 minutes.
  • the cell debris sank to the bottom of the centrifuge tube and the purified protoplasts floated into the upper CPW salt solution layer and were transferred to a new centrifuge tube with a Pasteur pipette. A small amount of the suspension was taken, the cell density of protoplast was determined using a hemocytometer, and CPW solution was added to prepare 1 ⁇ 10 6 cells / ml.
  • the sterilized seeds were placed on an MS medium containing 10 g / l of sucrose and 8 g / l of agar, and cultured at 20 ° C. for 16 hours under illumination for 1 month. Approximately 1 g of the developed true leaf was collected, chopped to a size of approximately 2 mm, and then immersed in 10 ml of a CPW salt solution containing 0.4% cellulase Y-C, 0.4% macerozyme R-10, and mannitol. The mixture was allowed to stand at 25 ° C. for 16 hours.
  • the enzyme solution containing leaf tissue was filtered through a 92 ⁇ m nylon mesh to remove cell residues.
  • the protoplast was transferred to a plastic petri dish with a Pasteur pipette and irradiated with 900 Gy of soft X-rays.
  • the obtained protoplast suspension was transferred to a centrifuge tube, centrifuged at 800 rpm for 5 minutes, the supernatant was removed, and 2 ml of CPW salt solution was added to suspend the protoplast.
  • 5 ml of a CPW salt solution containing 20% sucrose was added to a new centrifuge tube, the suspension of the above protoplast was layered on it, and centrifugation was performed at 800 rpm for 5 minutes.
  • the cell debris sank to the bottom of the centrifuge tube and the purified protoplasts floated into the upper CPW salt solution layer and were transferred to a new centrifuge tube with a Pasteur pipette.
  • a small amount of the suspension was taken, the cell density of protoplast was determined using a hemocytometer, and a CPW salt solution was added to prepare 1 ⁇ 10 6 cells / ml.
  • CPW salt solution After 1 minute, 3.5 ml of CPW salt solution was added dropwise around the protoplast mixture. After another 2 minutes, 3.5 ml of CPW salt solution was added dropwise around the protoplast mixture. After 5 minutes, the dropped liquid was gently sucked up and removed from the edge of the petri dish, and 20 ml of CPW salt solution was added from the edge of the petri dish. The operation of washing with this CPW salt solution was repeated 3 times at 5-minute intervals.
  • the medium containing the fused hybrid cells was transferred together with the gel into 10 ml of the lettuce protoplast culture medium in which the sucrose concentration was modified to 0.15 M. Twenty days after the start of culturing, the callus can be visually confirmed. Therefore, the cultivated callus is mixed with a lettuce protoplast culture medium containing 0.2 M sucrose and 0.3% gellan gum (solid medium, pH 5.8). ) Was transplanted.
  • Cytoplasmic hybrid plants were transplanted to vermiculite, acclimatized, and cultivated in a greenhouse.
  • PCR was performed using the extracted whole genomic DNA as a template and a combination of primers atp6-F and atp6-R.
  • heat denaturation at 94 ° C. for 1 minute, annealing at 60 ° C. for 2 minutes, and extension reaction at 72 ° C. for 2 minutes were repeated for 35 cycles.
  • the PCR product was electrophoresed on a 1.8% agarose gel, immersed in an ethidium bromide solution, and then photographed under UV irradiation to confirm the presence or absence of an amplified product of the expected size (209 bp), and amplification was confirmed. Individuals were selected.
  • Example 2 Detailed breeding process of the improved CMS line
  • the CMS line "BF2MS1S" produced in Example 1 was crossed with lettuce having normal cytoplasm (cultivar “Steady"), and 156 grains of BC1 (backcross progeny) were crossed.
  • the seeds of 1st generation) were obtained.
  • the obtained BC1 seeds, 156 seeds, were sown in a 288-hole tray and raised in a greenhouse set at a night temperature of 0 ° C. and a day temperature of 20 ° C.
  • the seedlings of BC1 showed high low temperature growth as a whole, but there was some variation in germination. Twenty-four lines with excellent low-temperature growth were selected from 156 germinated individuals of BC1 seeds, and steady backcrossing was performed to obtain BC2 seeds.
  • BC2 seedlings showed high low temperature growth overall. Germination was improved over BC1 seedlings, although there was some variation. From the germinated individuals of 480 BC2 seeds, 38 lines having excellent low temperature growth were selected and backcrossed with steady to obtain BC3 seeds.
  • BC7 seeds of the obtained BC7 seeds were sown in a 288-hole tray and raised in a greenhouse under the same conditions.
  • the seedlings of BC7 showed high low temperature growth, and no variation in germination was observed. From the germinated individuals of 96 BC7 seeds, one line with excellent low temperature growth was subjected to steady backcrossing to obtain BC8 seeds.
  • BC8 seeds of the obtained BC8 seeds were sown in a 288-hole tray and raised in a greenhouse under the same conditions. Since the seedlings of BC8 had high low-temperature growth and no variation in germination was observed, it was considered that the cytoplasm was homoplasmicized and stable. From 96 germinated individuals of BC8 seeds, one line with excellent low temperature growth was subjected to steady backcrossing to obtain BC9 seeds.
  • Example 3 Confirmation of characteristics of improved CMS lettuce by germination test
  • a germination test of lettuce having various normal cytoplasms and CMS cytoplasms was performed. Since lettuce may have different seed quality and germination ability depending on the seeding environment, all the lines used in this example were seeded in the same environment. In addition, since lettuce seeds may be dormant, all germination tests of this example were carried out after the cell tray after sowing was refrigerated in a refrigerator at 4 ° C. for 2 days to ensure breakthrough of dormancy. ..
  • 1216-2-T1 is a progeny obtained by crossing "Thermy” (Sakata Seed Corporation) with the CMS line "1216-2”, and is the seed of "1216-T1".
  • Thermy Sakata Seed Corporation
  • Patent Document 1 accession number FERM BP-1042
  • FIG. 1 shows the results of germination tests 17 days after sowing of "Thermy” and "1216-T1". It was confirmed that "1216-T1" had a very poor germination alignment and was visually inferior in low temperature growth as compared with "Thermy”.
  • FIG. 2 shows the results of the germination test on the 17th day after sowing of "V lettuce” and "50125-3-V1". It was confirmed that "50125-3-V1" had poor germination alignment and was visually inferior in low temperature growth as compared with "V lettuce”.
  • the germination test was also conducted in an artificial environment using an artificial meteorological instrument, which is not affected by the natural environment.
  • a germination test of the conventional CMS lettuce "50125-3-V1" described in Patent Document 1 under suitable growth temperature conditions was carried out using an artificial meteorological instrument.
  • the setting of the artificial meteorological instrument was set to lettuce germination, suitable temperature for growth, constant temperature of 20 ° C., and lighting for 12 hours.
  • FIG. 3 shows the results of the germination test on the 16th day after sowing of "V lettuce” and "50125-3-V1" when the artificial meteorological instrument was set to the optimum temperature conditions for growth. “50125-3-V1” under the optimum temperature condition showed a growth property that was not inferior to that of “V lettuce” visually.
  • a germination test was conducted by artificially creating low temperature conditions using an artificial meteorological instrument.
  • the artificial weather equipment was set to a night temperature of 5 ° C., a daytime temperature of 20 ° C., and 12-hour lighting. Since it was not possible to set the night temperature to 0 ° C due to the performance of the artificial meteorological equipment, the lower limit was set to 5 ° C.
  • FIG. 4 shows the results of the germination test on the 17th day after sowing of "V lettuce” and "50125-3-V1" when the artificial meteorological instrument was set to low temperature conditions. It was confirmed that "50125-3-V1" had poor germination alignment and was visually inferior in low temperature growth as compared with "V lettuce”.
  • Patent Document 1 showed higher growth than "V lettuce” having a normal cytoplasm under appropriate temperature conditions, but under conditions where the night temperature was low, the growth was high. Was found to decrease. That is, at the time of filing of Patent Document 1, the decrease in growth of conventional CMS Lactuca plants under low temperature conditions was not paid attention to and was not clear. As a matter of course, Patent Document 1 does not describe or suggest this point.
  • BF2MS4V an improved CMS line "BF2MS4V” was obtained in the same manner as in Example 1 except that "V lettuce” was used as a plant of the genus Lactuca having a normal cytoplasm.
  • "BF2MS4V” was obtained by using "50125-3-V1" as a cytoplasmic donor parent when performing asymmetric cell fusion and using "V lettuce” as a cytoplasmic receptor parent.
  • the improved CMS strain "BF2MS4V” produced according to Example 1 was produced by asymmetric cell fusion with "50125-3-V1" as the cytoplasmic donor parent, so that the nuclear genome is the same as that of "V lettuce".
  • FIG. 5 shows the results of the germination test on the 17th day after sowing of "V lettuce” and "BF2MS4V” in a greenhouse environment where the night temperature was set to 0 ° C and the day temperature was set to 20 ° C. "BF2MS4V” visually showed the same germination alignment and low temperature growth as "V lettuce”.
  • BF2MS2M an improved CMS line "BF2MS2M” was obtained in the same manner as in Example 1 except that the breeding line "M8-039" (Sakata Seed Corporation) was used as a plant of the genus Lactuca having a normal cytoplasm. It was. "BF2MS2M” was obtained by using "50125-3-V1" as a cytoplasmic donor parent and "M8-039" as a cytoplasmic receptor parent when performing asymmetric cell fusion.
  • FIG. 6 shows the results of the germination test on the 17th day after sowing of the breeding lines "M8-039" and "BF2MS2M” in a greenhouse environment where the night temperature was set to 0 ° C and the day temperature was set to 20 ° C.
  • the cytoplasm can be improved by asymmetric return fusion even if the nuclear genomes are different.
  • FIG. 7 shows the results of the germination test on the 17th day after sowing of "Steady” and "BF2MS1S" in a greenhouse environment where the night temperature was set to 0 ° C and the day temperature was set to 20 ° C.
  • "50125-3-V1” was produced as a cytoplasmic donor by asymmetric cell fusion, and as a cytoplasmic acceptor when performing asymmetric cell fusion, " It uses "steady”.
  • the germination of "steady” was exceeded, and the low temperature growth was also considered to be the same.
  • a germination test was conducted using an artificial meteorological instrument.
  • the artificial meteorological instrument was set to a night temperature of 5 ° C., a daytime temperature of 20 ° C., and lighting for 12 hours.
  • the reason why the night temperature was not set to 0 ° C as in the greenhouse setting is that the lower limit temperature of the artificial meteorological equipment was 5 ° C.
  • FIG. 8 shows the results of the germination test on the 17th day after sowing of "Steady” and "BF2MS1S” using an artificial meteorological instrument. Visually, the low temperature growth of "Steady” and “BF2MS1S” was equivalent.
  • BC7 of “BF2MS1S” was planted in a field (Azumino City, Nagano Prefecture), and the traits during the heading period were investigated.
  • Example 4 In order to analyze the cytoplasmic type of the improved CMS lettuce "BF2MS1S" produced in Example 1, 44 types of primer sets shown in Table 4 are set based on the nucleotide sequence information of the known sunflower mitochondrial genome (Gene Bank registration number KF815390). Designed. When the primer can amplify the intergenic region, the marker is preferentially designed by targeting the site, and the other regions have a physical distance between the markers of 5,000 to 10,000 bp. Designed.
  • test materials include "V lettuce” having a normal cytoplasm, CMS sunflower “IB5", CMS lettuce “1216-T1” and “50125-3-V1” described in Patent Document 1, and the present invention.
  • the improved CMS lettuce “BF2MS1S” produced by the invention was used.
  • PCR Whole-genome DNA was extracted from each test material and used as a template, and PCR was performed using the primer sets shown in Table 4. For PCR, heat denaturation at 94 ° C. for 1 minute, annealing at 60 ° C. for 2 minutes, and extension reaction at 72 ° C. for 2 minutes were repeated for 35 cycles. If no polymorphism was detected between "V lettuce” with normal cytoplasm and CMS sunflower "IB5", the PCR product was treated with the restriction enzymes listed in Table 4 for PCR-RFLP analysis. .. These PCR products were electrophoresed on a 1.8% agarose gel, immersed in an ethidium bromide solution, and photographed under UV irradiation to investigate the presence or absence of PCR products and polymorphisms.
  • BF2MS1S low-temperature growth of "BF2MS1S”
  • most of the other mitochondrial genomic regions are replaced with lettuce type while leaving the sunflower-derived genomic region involved in CMS by return fusion by asymmetric cell fusion. It was considered that the incompatibility between the nuclear genome and the mitochondrial genome was eliminated, and the low temperature growth was improved while maintaining the CMS trait.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本明細書は、正常細胞質を有するLactuca属植物と同等の低温生長性を有する、細胞質雄性不稔Lactuca属植物、またはその後代を開示する。本発明の態様によれば、従来のCMS Lactuca属植物にみられる低温における生長性の低下する点を改善し、低温生長性を有するCMS Lactuca属植物を提供することができる。

Description

低温生長性が改良された細胞質雄性不稔Lactuca属植物 関連出願の参照
 本願は、先行する日本国特許出願である特願2019-78905号(出願日:2019年4月17日)に基づくものであって、その優先権の利益を主張するものであり、その開示内容全体は参照することによりここに組み込まれる。
 本発明は、低温生長性を改良した細胞質雄性不稔Lactuca属植物に関する。
 植物品種には、固定種と雑種第一代(以下、「F1」と記す)品種があり、主要作物においてはF1品種が普及している。F1品種は、雑種強勢(ヘテロシス)により生育が旺盛で、生育が速く、収量性が高まるなど大きな利点がある。さらにF1品種は、生育が旺盛になることにより、病害虫への耐性や、耐寒・耐暑性などの環境適応性の向上も期待できる。
 またF1品種の遺伝子型はヘテロ性でありながら同一の遺伝子型であるため、表現型は極めて高い均一性を示す。このため、生産物の市場性が高まる。さらにF1品種の両親に優性遺伝子に支配されている有用形質を集積できるため、迅速な育種が可能となる。
 以上のような優位性があることから、F1品種は、主要作物において栽培品種の主流を占めるようになった。
 F1品種の採種を行う場合、一般に両親は、自殖(近交)系統が用いられ、雑種強勢の効果が大きい組み合わせ等の中で、種子親と花粉親が選定される。
 種子親は、自家受精を防ぐため除雄を行う必要があるが、人手による除雄は、極めて多大な労力が必要となる。そこで、遺伝的な雄性不稔性である細胞質雄性不稔(Cytoplasmic Male Sterility(以下において、「CMS」と記す))系統を種子親に用いれば、人手による除雄の作業は、不要となり、F1種子を経済的かつ大量に生産することができる。CMSを利用したF1種子の生産は、ヒマワリ、テンサイ、ジャガイモ、コムギ、ニンジン、タマネギ、ネギ、キャベツ、ブロッコリー、ダイコン、およびハクサイなどで商業的な生産システムが確立されている。
 Lactuca属植物において、近縁にCMSを有する植物種は、存在しなかった。そのため、極めて遠縁関係にあるヒマワリのCMSを素材とし、非対称細胞融合技術を用いて、CMSをLactuca属植物に導入することにより、世界初となるCMS Lactuca属植物が開発された(特許文献1)。なお、この従来のCMS Lactuca属植物は、国際寄託されている。従来のCMS Lactuca属植物は、雄性不稔性の安定性が非常に高く、人手による除雄が不要となり、効率的なF1種子の採種が可能となった。
 CMSを利用するF1育種において、雄性不稔性を発現させる細胞質は、雄性不稔性以外の形質にできるだけ影響を及ぼさないことが重要となる。
 例えば、トウモロコシでは、T型雄性不稔細胞質を導入したF1品種が育成されたが、1970年に、ごま葉枯病菌のTレースが出現し、T型雄性不稔細胞質は、この病原菌に特異的に罹病性であったため、大きな打撃を受けた。このため、T型雄性不稔細胞質の利用は、直ちに中止され、従来の人工除雄法に逆戻りせざるを得なかった(非特許文献1)。
 また、ペチュニアにおけるCMSは、古くから知られており、その原因遺伝子であるS-pcfが研究材料として、数多く利用されている。しかしながら、このCMSを利用したF1品種は、開花遅れや花蕾の発達停止等を引き起こすため、現在ではほとんど利用されていない(非特許文献1)。
 ダイコンのCMSでは、オグラCMSが最も一般的に利用されている。しかしながら、種内に稔性回復遺伝子が存在することから、育種の系統によっては、CMSの導入が困難となる問題点があった。その後、ダイコンでは、CMSの因子が異なる新しいNWB-CMSが開発され、CMSの導入率が向上した。(特許文献2)。さらに、ダイコンでは、少量の不稔花粉が生産され、花粉媒介昆虫の誘引効率を改善させた新規なCMSも開発された(特許文献3)。これらの新規なダイコンCMSは、ダイコンの野生種を素材として、連続戻し交雑法により開発された。
 これらの例のように、CMSが古くから発見されていても、そのCMSが不良形質を伴う場合や、稔性回復を引き起こす場合があり、CMSの利用が困難あるいは利用が限定される場合がある。
 しかしながら、CMSの利用価値は、やはり非常に高いため、既存のCMSの利用が困難である場合には、CMSの新規素材が探索され、上記の例のように欠点を改良したCMSが開発されている。
 前述の特許文献1に記載の従来のCMS Lactuca属植物(系統名「50125-3-V1」)の適温条件(20℃)における発芽後の生長性は、正常細胞質を有するLactuca属植物と同等であった。ところが、特許文献1の記載当時には、明らかとなっていなかったが、従来のCMS Lactuca属植物は、その後の研究により、低温生長性が低下しうることが判明した。発芽後の生長性の優劣は、後の苗の品質にも大きく影響するため、非常に重要な農業形質となる。したがって、低温生長性を改良したCMSレタスが開発できれば、その適用範囲が一層大きく広がり、産業上の有用性を大きく高めることができる。
 特許文献1に記載の従来のCMS Lactuca属植物は、低温生長性が低下しうるという点を除いては、非常に優れた形質を有している。このため、このCMS Lactuca属植物を素材として、低温生長性の問題形質を改良することが開発の近道であると考えられた。
 しかしながら、CMSの不良形質を改良する有効な方法は、すべての植物を含めてもこれまでに報告例がなかったため、低温生長性を改良したCMSレタスの開発は、非常に困難であると考えられた。
国際公開公報WO2007/049730号パンフレット 日本国特許第3964368号 日本国特許第5089764号
細胞質雄性不稔と育種技術、1985年 株式会社シーエムシー出版発行 C. RAMBAUD, A. BELLAMY, A. DUBREUCQ, J.-C. BOURQUIN, and J. VASSEUR (1997) Plant breeding Volume 116, Issue 5 p481-486"Molecular analysis of the fourth progeny of plants derived from cytoplasmic male sterile chicory cybrid"
 本発明は、上記したような従来のCMS Lactuca属植物における低温生長性が低下する点に鑑みて、低温生長性を有するCMS Lactuca属植物の提供および、当該CMS Lactuca属植物を利用した低温生長性を有するLactuca属植物のF1種子の生産方法を提供することをその目的とする。
 本発明者らは今般、鋭意検討を行った結果、従来のCMS Lactuca属植物を細胞質供与親とし、正常細胞質を有するLactuca属植物を細胞質受容親として、非対称細胞融合(以下、「非対称戻し融合」ということがある)を行うことによって、細胞質、特にミトコンドリアゲノムの改良が可能となり、低温生長性を有するCMS Lactuca属植物を作出し、当該CMS Lactuca属植物を利用して、低温生長性を有するLactuca属植物のF1種子が効率的に得られることを見出した。
 本発明はこれらの知見に基づくものである。
 すなわち、本発明によれば、以下の発明が提供される。
<1> 正常細胞質を有するLactuca属植物と同等の低温生長性を有する、細胞質雄性不稔Lactuca属植物、またはその後代。
<2> Helianthus属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する、前記<1>の細胞質雄性不稔Lactuca属植物、またはその後代。
<3> 正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を複数回行うことにより得られる、前記<1>または<2>の細胞質雄性不稔Lactuca属植物、またはその後代。
<4> 既存の細胞質雄性不稔Lactuca属植物を細胞質供与親として用い、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、前記<1>~<3>のいずれかの細胞質雄性不稔Lactuca属植物、またはその後代。
<5> Helianthus属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔Lactuca属植物、またはその後代であって、
 正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を複数回行うことにより得られるか、または
 既存の細胞質雄性不稔Lactuca属植物を細胞質供与親として用い、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、細胞質雄性不稔Lactuca属植物、またはその後代。
<6> 細胞質雄性不稔Lactuca属植物が、レタス(Lactuca sativa L.)、またはLactuca属植物の種間交雑植物に由来するものである、前記<1>~<5>のいずれかの細胞質雄性不稔Lactuca属植物、またはその後代。
<7> 受託番号FERM BP-22373で特定される植物のミトコンドリアゲノムを有する、細胞質雄性不稔Lactuca属植物、またはその後代。
<8> 受託番号FERM BP-22373で特定される、細胞質雄性不稔Lactuca属植物、またはその後代。
<9> 前記<1>~<8>のいずれかの細胞質雄性不稔Lactuca属植物またはその後代の植物体の一部。
<10> 前記<1>~<8>のいずれかの細胞質雄性不稔Lactuca属植物またはその後代の種子。
<11> 前記<1>~<8>のいずれかの細胞質雄性不稔Lactuca属植物、またはその後代、前記<9>の植物体の一部、または前記<10>の種子に含まれる、ミトコンドリアゲノム。
<12> 非対称細胞融合により得られた植物またはその後代が、細胞質雄性不稔Lactuca属植物であって、これを細胞質供与親として用い、かつ、
 前記した初回の非対称細胞融合に使用した植物の一方が正常細胞質を有するLactuca属植物であって、これを細胞質受容親として用いて、非対称細胞融合を1回または複数回行うことを含む、植物における非対称戻し融合方法。
<13> 前記<12>の方法により、Lactuca属植物の細胞質内のミトコンドリアゲノムを改良する方法。
<14> 既存の細胞質雄性不稔Lactuca属植物を細胞質供与親として用い、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を行うことを含む、正常細胞質を有するLactuca属植物と同等の低温生長性を有する、細胞質雄性不稔Lactuca属植物、またはその後代の製造方法。
<15> 細胞質雄性不稔Lactuca属植物が、レタス(Lactuca sativa L.)、またはLactuca属植物の種間交雑植物に由来するものである、前記<14>の方法。
<16> 前記<1>~<8>のいずれかの細胞質雄性不稔Lactuca属植物、またはその後代を種子親とし、該植物と交配可能なLactuca属植物を花粉親として交配し、交配後の種子親から雑種第一代種子を採種することを含む、雑種第一代種子の製造方法。
<17> 花粉親が、レタス(Lactuca sativa L.)、またはLactuca属植物の種間交雑植物である、前記<16>の方法。
<18> 前記<16>または<17>の方法により作出された雑種第一代種子、または該種子から生育させた雑種第一代植物、その後代、もしくはそれらの植物体の一部。
<19> 前記<1>~<8>のいずれかの細胞質雄性不稔Lactuca属植物、またはその後代に、有用形質を有するLactuca属植物を連続戻し交雑し、細胞質置換することを含む、前記有用形質を有し、細胞質雄性不稔性を発現するLactuca属植物の製造方法。
<20> 有用形質を有するLactuca属植物が、レタス(Lactuca sativa L.)に由来するものである、前記<19>の方法。
 本発明によれば、低温生長性が改善された改良型のCMS Lactuca属植物を提供することができる。本発明による改良型のCMS Lactuca属植物を利用することにより、低温生長性を有するLactuca属植物のF1種子を効率的に採種することが可能となる。
 また本発明の非対称戻し融合方法によれば、細胞質、特にミトコンドリアゲノムの改良が可能となる。
図は、夜温0℃、昼温20℃設定の温室環境下における、正常細胞質を有する「テルミー」(A)と従来CMS細胞質を有する「テルミー」(B)の播種後17日目の発芽試験結果を示す。 図は、夜温0℃、昼温20℃設定の温室環境下における、正常細胞質を有する「Vレタス」(A)、従来CMS細胞質を有する「Vレタス」(B)の播種後17日目の発芽試験結果を示す。 図は、人工気象器を生育の適温条件(夜温20℃、昼温20℃、12時間照明)に設定した場合の、正常細胞質を有する「Vレタス」(A)と従来CMS細胞質を有する「Vレタス」(B)の播種後16日目の発芽試験結果を示す。 図は、人工気象器を低温条件(夜温5℃、昼温20℃、12時間明期)に設定した場合の、正常細胞質を有する「Vレタス」(A)と従来CMS細胞質を有する「Vレタス」(B)の播種後17日目の発芽試験結果を示す。 図は、夜温0℃、昼温20℃設定の温室環境下における、正常細胞質を有する「Vレタス」(A)と改良CMS細胞質を有する「Vレタス」(B)の播種後17日目の発芽試験結果を示す。 図は、夜温0℃、昼温20℃設定の温室環境下における、正常細胞質を有する「M8-039」(A)と改良CMS細胞質を有する「M8-039」(B)の播種後17日目の発芽試験結果を示す。 図は、夜温0℃、昼温20℃設定の温室環境下における、正常細胞質を有する「ステディ」(A)と改良CMS細胞質を有する「ステディ」(B)の播種後17日目の発芽試験結果を示す。 図は、人工気象器(夜温5℃、昼温16℃、12時間明期)低温環境下における、正常細胞質を有する「ステディ」(A)と改良CMS細胞質を有する「ステディ」(B)の播種後17日目の発芽試験結果を示す。 図は、正常細胞質を有する「ステディ」(A)と「BF2MS1S」(B)のBC7世代を圃場(長野県安曇野市)に定植し、結球期まで育成させたときの様子を示す。
 以下、本発明について詳細に説明する。
低温生長性が改善された細胞質雄性不稔Lactuca属植物およびその後代
 本発明は、従来に比べて低温生長性が改善された細胞質雄性不稔Lactuca属植物またはその後代に関する。これは、前記したように、正常細胞質を有するLactuca属植物と同等の低温生長性を有する、細胞質雄性不稔Lactuca属植物、またはその後代と表現することができる。
 本明細書において、「低温生長性」とは、低温条件下における実生の生長性を意味する。ここで低温とは、Lactuca属植物が本来、生長する上で適切な温度条件よりも低い状態をいい、一日の平均気温として低い場合のほか、一日の中の一部の時間帯のみ(例えば、夜間)低温となる場合も包含される。具体的には、低温は、例えば、昼温20℃である場合に、夜温が昼温よりも低い、例えば、夜温5~0℃となるような場合が挙げられる。
 低温生長性は、対象とする植物を同一の低温条件下にて栽培し、実生の地上部の重量を計量し比較する一方、適切な温度条件下で栽培した結果と比較することによって、定量的に評価することができる。
 本発明においては、典型的には、「正常細胞質」は、雄性不稔性を示す植物の細胞質、すなわち雄性不稔細胞質に対して、不稔性を示さず正常であるという意味で使用される。
 また「正常細胞質を有するLactuca属植物と同等の低温生長性」という場合における「同等」とは、低温生長性を実生の地上部の重量で計量した場合に、正常細胞質を有するLactuca属植物の値に比べて、対象とする植物における計量値が、25%以内(好ましくは20%以内、より好ましくは15%以内、さらに好ましくは10%以内)で変動しうる範囲に入る場合をいう。したがって、例えば「正常細胞質を有するLactuca属植物」の実生の地上部重量の値に対して、対象とする植物の計量値が、正常な植物の値の90%の値である場合には、前記の変動が10%であるに相当する。同等は、「正常細胞質を有するLactuca属植物」の低温生長性を超える場合を排除しない。
 本明細書において、「後代」とは、細胞質雄性不稔Lactuca属植物の維持系統を用いた後代を含む他、本発明による細胞質雄性不稔Lactuca属植物と、該植物と交配可能なLactuca属植物とを交配させて得られる交雑種も包含される。したがって、「後代」には、例えば、本発明による細胞質雄性不稔Lactuca属植物を種子親(雌親)とし、該植物と交配可能なLactuca属植物を花粉親(雄親)として交配することによって得られるものも含まれる。また、「後代」には、例えば本発明による細胞質雄性不稔Lactuca属植物と、該Lactuca属植物と融合可能な植物との細胞融合による植物や、種属間交雑植物も含まれる。
 ここで「Lactuca属植物」は、Lactuca sativa L.、L. serriola、L. aculeate、L. scarioloides、L. azerbaijanica、L. georgica、L. dregeana、L. altaica、L. saligna、L. virosa、L. tatarica、L. indica、もしくはL. debilis、またはそれらの種間交雑植物であることが好ましく、なかでも、Lactuca属植物の栽培種であるL. sativa L.またはLactuca属植物の種間交雑植物が好ましく、より好ましくはL. sativa L.である。
 本発明の好ましい態様によれば、本発明の細胞質雄性不稔Lactuca属植物またはその後代は、Helianthus属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する。
 ここで、「Helianthus属植物」は、Helianthus属植物のなかでもヒマワリの栽培品種であるHelianthus annuus L.あるいは、H. petiolaris、H. argophyllus、H. debilis、H. decapetalus、H. giganteus、H. rigidus、H. salicifolius、H. anomalus、H. bolanderi、H. exilis、H. maximiliani、H. neglectus、H. praecox、もしくはH. tuberosus由来の細胞質を有するH. annuus L.の細胞質置換系統が好ましい。
 本明細書において、非対称細胞融合とは、細胞融合に用いる単離したプロトプラストの一方の核ゲノムを融合させる前に予め不活性化させた後、それを用いて細胞融合を行うことをいう。この非対称細胞融合において、融合に際して核ゲノムを不活性化して、細胞融合によってその細胞質を融合細胞に供与するものを、細胞質供与親という。また、融合に際して、核ゲノムを不活性化させることなく、維持し、前記細胞質供与親からの細胞質を受け入れるものを、細胞質受容親という。
 またここで、非対称戻し融合(または非対称戻し細胞融合)とは、非対称細胞融合により得られた植物またはその後代を細胞質供与親として用いる一方で、初回の非対称細胞融合に使用した植物の一方を細胞質受容親として用いて、さらなる非対称細胞融合を1回以上(好ましくは1回)行うことをいう。すなわち、非対称戻し融合では、初回を含めれば、非対称細胞融合を2回以上行う。
 本発明の細胞質雄性不稔Lactuca属植物を得る場合には、非対称細胞融合において、細胞質受容親として、正常細胞質を有するLactuca属植物を用いることが望ましい。したがって、本発明の好ましい態様によれば、本発明の細胞質雄性不稔Lactuca属植物は、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を複数回、すなわち2回以上行うことにより得ることができる。あるいは、本発明の別の好ましい態様によれば、本発明の細胞質雄性不稔Lactuca属植物は、既存の細胞質雄性不稔Lactuca属植物を細胞質供与親として用い、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を行うことにより得ることができる。ここで、既存の細胞質雄性不稔Lactuca属植物とは、本発明において改良される前の細胞質雄性不稔Lactuca属植物、すなわち従来の細胞質雄性不稔Lactuca属植物を意味する。本発明では好ましくは、既存の細胞質雄性不稔Lactuca属植物は、低温生長性に改善する余地のあるもの、すなわち、低温生長性が、正常細胞質を有するLactuca属植物に比べて低下しているものを意味する。
 よって本発明の別の態様によれば、本発明による細胞質雄性不稔Lactuca属植物、またはその後代は、Helianthus属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔Lactuca属植物、またはその後代であって、
 正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を複数回行うことにより得られるか、または
 既存の細胞質雄性不稔Lactuca属植物を細胞質供与親として用い、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られるものである。
 本発明のより好ましい態様によれば、本発明による細胞質雄性不稔Lactuca属植物、またはその後代は、受託番号FERM BP-22373(後述)で特定される植物のミトコンドリアゲノムを有するLactuca属植物またはその後代であり、さらに好ましくは、受託番号FERM BP-22373で特定されるLactuca属植物、またはその後代である。
 本発明の別の態様によれば、植物における非対称戻し融合方法が提供される。この非対称戻し融合方法は、非対称細胞融合により得られた植物またはその後代と、前記した初回の非対称細胞融合に使用した植物の一方を用いる非対称細胞融合を1回または複数回行うことを含む。ここで好ましくは、前記した非対称細胞融合により得られた植物またはその後代は、細胞質雄性不稔Lactuca属植物であって、これを細胞質供与親として用い、かつ、初回の非対称細胞融合に使用した植物の一方が正常細胞質を有するLactuca属植物であって、これを細胞質受容親として用いて、非対称細胞融合を行う。
 本発明のさらに別の態様によれば、前記した非対称戻し融合方法により、植物の細胞質内のミトコンドリアゲノムを改良する方法が提供される。
 本明細書において、細胞質雑種Lactuca属植物またはその後代の「植物体の一部」とは、当該植物体の1個以上の細胞または1個以上の細胞からの細胞質を含むものであり、具体的には花、葉、茎、根等の器官または組織、或いは、これらの器官または組織からの細胞(細胞から調製されたプロトプラストを含む)もしくは細胞質、或いは前記細胞もしくは細胞質の集合体を意味する。
低温生長性が改善された細胞質雄性不稔Lactuca属植物の作出方法
 本発明による改良型の細胞質雄性不稔Lactuca属植物は、例えば、以下の手順に従って作出することができる。
 (1)プロトプラストの調製
  (i)正常細胞質を有する植物のプロトプラストの単離
  (ii)細胞質雄性不稔植物のプロトプラストの単離
 (2)プロトプラストの融合処理
 (3)融合雑種細胞の培養
 (4)カルスからの植物体の再生
 (5)細胞質雑種植物の選抜
 (6)優良系統の選抜
 (7)優良系統の連続戻し交雑
 (8)細胞質雄性不稔植物の利用とF1種子の生産
 なお本明細書においては、「製造方法」は「作出方法」とも言い換えることができる 。すなわち、ここでいう「作出」と「製造」との用語は同等の意味で使用される。
 これら各工程は、より具体的には以下のとおりである。
 (1)プロトプラストの調製
  (i) 正常細胞質を有するLactuca属植物のプロトプラストの単離
 本発明において、細胞質受容親(レシピエント)として用いるLactuca属植物は、Lactuca sativa L.、L. serriola、L. aculeate、L. scarioloides、L. azerbaijanica、L. georgica、L. dregeana、L. altaica、L. saligna、L. virosa、L. tatarica、L. indica、もしくはL. debilis、またはそれらの種間交雑植物であることが好ましく、なかでも、Lactuca属植物の栽培種であるL. sativa L.が好ましい。
 プロトプラストを得るために使用する細胞組織としては、収量性が高く、分裂活性が高い葉肉組織を供試することが望ましいが、胚軸や茎、カルスなどの他の組織も材料として用いてもよい。
 プロトプラストを単離する方法は、当該技術分野において公知である通常用いられる方法(例えば、Matsumoto,E, Plant cell reports, 1991. vol9(10)等に記載の方法)で良く、特に制限されない。以下は具体例としての手順を示すが本発明は必ずしもそれらに拘束されるものではない。
 まず、Lactuca属植物の細胞組織を細切し、プロトプラスト単離用酵素溶液を用いて、酵素処理することによってプロトプラストを単離する。
 この溶液は主に細胞壁分解酵素、浸透圧調整剤を含む無機塩緩衝液である。細胞壁分解酵素としては、植物の細胞壁の分解に使用できるものであれば特に制限されないが、例えば、セルラーゼ、ヘミセルラーゼ、ペクチナーゼ等が挙げられる。本発明では、セルラーゼY-CとマセロザイムR-10の組み合わせが好ましい。浸透圧調整剤としては、一般的な糖アルコール類、例えば、マンニトール、ソルビトール、グルコース等を用いることができ、マンニトールが好ましく、0.3M~0.7Mの濃度のマンニトールが特に好ましい。さらに、酵素溶液には、プロトプラストの膜の安定化のために、無機塩を添加することが望ましく、例えば、下記表1に記載の組成のCPW塩(Cocking and Peberdy, 1974)を添加すると好適である。酵素処理は、25~30℃で8~20時間静置処理すると好適である。
Figure JPOXMLDOC01-appb-T000001
 
 酵素処理により単離したプロトプラストを30~100μmの孔径のナイロンメッシュで濾過し、遠心分離してプロトプラストを集めて酵素液を除く。次にプロトプラストを洗浄液に懸濁し、プロトプラストを洗浄する。洗浄液としては、一般的に用いられるCPW塩溶液に浸透圧調整剤として糖アルコール類を添加したものを用いることができる。
 次に、Lactuca属植物プロトプラストの単独での分裂を防ぐために不活化処理を行うことが望ましい。不活化処理は、ヨード酢酸、ヨードアセトアミド等のヨード化合物を溶解したCPW塩溶液などにプロトプラストを懸濁させることで行うことができる。本発明ではヨードアセトアミドを5mM~30mMの濃度に調整したCPW溶液に懸濁し5~20分間処理を行うと好適である。
 次に遠心分離を利用してCPW塩溶液での洗浄操作を1~3回繰り返すことが好ましい。プロトプラストの懸濁液には、導管や細胞の断片も混入するため、さらに密度勾配遠心分離法等により、プロトプラストを精製することが好ましい。精製に用いる試薬には、糖類、合成コロイド等が挙げられるが、本発明ではショ糖液の利用が好適であり、15%~20%のショ糖液の利用が特に好適である。プロトプラストの精製後、血球計算盤によって細胞密度を計測し、細胞融合に適した細胞密度になるようにCPW塩溶液によって液量を調整する。プロトプラストの細胞密度は、1×10~1×10細胞/mlが好ましく、液量の調整にはCPW塩溶液の利用が好ましい。
  (ii) 従来のCMS Lactuca属植物のプロトプラストの単離
 細胞質供与親(ドナー)として用いるCMS Lactuca属植物は、細胞質雄性不稔性を有するものであれば特に制限されないが、安定的なCMSを有するLactuca属植物が好ましい。具体的には、例えば、細胞質供与親としては、特許文献1に記載の従来のCMS Lactuca属植物(受託番号FERM BP-10647)を使用することが好ましい。
 従来のCMS Lactuca属植物のプロトプラストの単離は、例えば、上述したLactuca属植物のプロトプラストの単離と同様の方法に従って行うことができる。
 単離した、従来のCMS Lactuca属植物プロトプラストは、放射線処理により核遺伝子を不活化したものを用いることが望ましい。
 放射線処理のために照射する放射線としては、X線、γ線、紫外線等が挙げられるが、核遺伝子を不活化できれば、特に限定されるものではない。照射線量は核遺伝子を不活化できる範囲で、できる限り低照射量で行うことが好ましい。例えば、本発明での軟X線の照射の場合100Gy~900Gyの照射量が好ましい。
 (2) プロトプラストの融合処理
 次に、前記で得られた両種のプロトプラストを混合し、細胞融合を行う。
 融合方法としては、慣用の方法、例えば、公知の電気融合法(Planta, 151, 26-32, 1981)、PEG(ポリエチレングリコール)法(Planta, 120, 215-227, 1974)、デキストラン法(Jap. J. Genet., 50, 235, 1975)などが挙げられるが、特に限定されない。本発明では好ましくは、PEG法を用いる。
 (3) 融合雑種細胞の培養
 融合処理して得られた細胞は、Lactuca属植物由来のプロトプラストの培養に好適な培地で培養することが好ましい。
 Lactuca属植物由来のプロトプラストの培養方法としては様々な方法が知られており、限定されないが、本発明では、特許文献1の方法を改変した方法を用いることが好ましい。
 特許文献1の実施例1では、Helianthus属プロトプラストとLactuca属植物プロトプラストの組み合わせによって非対称細胞融合を行っている。一方、本発明ではLactuca属植物プロトプラスト同士の組み合わせの非対称細胞融合となるため、その融合細胞の培養は、最適な植物生長調節物質の種類と濃度を検討することにより、より好適に培養することが可能となる。
 このような最適な条件としては、具体的には、植物生長調節物質NAA(α-Naphthaleneacetic Acid),4-CPPU(N-(2-Chloro-4-pyridyl)-N’-phenylurea),TDZ(Thidiazuron)を適切に組み合わせることによって、効率的に融合細胞を培養することができる。
 (4) カルスからの植物体の再生
 融合細胞の培養を行い、細胞分裂が開始され、カルスが目視で確認できるようになった段階で、カルスを再分化培地に移植し再分化させる。
 再分化培地は、慣用のものが使用でき、材料とするLactuca属植物やカルスの状態により反応の差はあるが、例えば0.3~1.0mg/lの4-CPPUを含むMS培地などを用いると好適である。再生したシュートは発根培地、例えば1/2濃度のMS培地などに移植して発根させ、植物体を再生させる。再生した植物体は、順化して温室内で育成する。
 (5) 細胞質雑種植物の選抜
 上記の手順で再生した植物体、ならびに材料に使用した従来のCMS Lactuca属植物および正常細胞質を有するLactuca属植物の葉からDNAを抽出する。細胞質雑種植物を効率的に選抜するためには、従来のCMS Lactuca属植物と正常細胞質を有するLactuca属植物を区別できるミトコンドリアDNA配列を特異的に増幅できるマーカーを用いて、PCR法によって検出することが好ましい。
 ここで使用可能なマーカーは、従来のCMS Lactuca属植物に由来するミトコンドリアDNA配列のみを特異的に増幅できるマーカーであれば、特に制限されない。本発明では、上述のように特許文献1に記載の従来のCMS Lactuca属植物(受託番号FERM BP-10647)を細胞質提供親として使用することが望ましく、その場合には、ヒマワリ由来のatp6遺伝子を特異的に増幅できるマーカーを用いて、PCR法によって検出することができる。
 細胞質雑種植物は、上記ミトコンドリアDNA配列を特異的に増幅できるマーカーを用いて、PCR分析を行うことによって、細胞質雑種植物を効率的に選抜できる。
 なお、細胞質雑種植物の選抜については、必要により、特許文献1の手法を適宜参考にして実施することができる。
 以上のPCR法による確認は、カルスの段階で行うことが望ましいが、他の段階、例えば順化した植物体で行っても良い。また更にフローサイトメトリーでのDNA含量の測定や染色体の観察などにより、倍数性の検定も行って2倍体を選抜し、高次倍数体を排除しておくことが望ましい。非対称細胞融合によるミトコンドリアゲノムの組換えは、高頻度かつ、ランダム(random)に生じるため、300個体以上の2倍体の細胞質雑種植物を作出することが望ましい。
 (6) 優良系統の選抜
 得られた細胞質雑種植物を育成し開花させ、雄性不稔形質を有し、その他の器官が形態的な異常を伴わない系統を選抜する。選抜した雄性不稔個体に、正常細胞質のLactuca属植物の花粉を交配し、後代種子を採種する。
 なお、優良系統の選抜については、必要により、特許文献1の手法を適宜参考にして実施することができる。
 次に、低温生長性の優れる系統を選抜するため、低温条件下において、播種を行うが、温度条件としては、夜温0~5℃、昼温15~20℃の条件を設定することが望ましい。正常細胞質のLactuca属植物をコントロールとして、作出したCMS系統との低温生長性の比較を行い、同等以上の低温生長性を示す個体を選抜する。
 同等以上の低温生長性を示す個体が得られない場合には、相対的に低温生長性の高い個体を選び、再び非対称細胞融合の細胞質提供親として使用することが望ましい。正常細胞質のLactuca属植物と同等以上の低温生長性を有する個体が得られた場合には、次の連続戻し交雑の工程へ進む。
 (7) 優良系統の連続戻し交雑
 細胞融合により得られた細胞質雑種植物は、ヘテロプラズミーな状態となるため、戻し交雑後代であっても形質にばらつきが生じることが多い。したがって、細胞質雑種の後代は、細胞レベルで性質が異なる可能性があり、優良CMS系統の選抜は、個体ごとに行うことが望ましい。前述の非特許文献2では、細胞質は、ホモプラズミーな状態となるまでには、5世代以上の連続戻し交雑が必要であることが示唆されている。
 したがって、低温生長性を有するCMS系統を作出するためには、低温生長性が安定するまで、低温生長性を指標とした選抜と戻し交雑を5世代以上繰り返すことが望ましい。
 低温条件下において、系統内での低温生長性が安定するCMS系統が得られたら、その系統を実際の育種に利用する改良CMS系統(すなわち、低温生長性が改善された細胞質雄性不稔Lactuca属植物)として選定する。
 (8) 細胞質雄性不稔植物の利用とF1種子の生産
 F1種子の採種を行う場合、一般に両親系統は、自殖(近交)系統が用いられる。その両親系統は、種子親と花粉親が定められ、両親系統間で人工的に交配を行う必要がある。したがって、種子親の自殖を防ぐため、除雄が必要となるが、Lactuca属植物においては、花の構造から人為的な除雄は難しいため、CMSの利用が望ましい。
 改良CMS系統の雄性不稔性は、細胞質遺伝するため、任意の優良なLactuca属植物を花粉親、改良CMS系統を種子親として、連続戻し交雑することにより、核置換を行い、任意の優良なLactuca属植物(すなわち、有用形質を有するLactuca属植物)を容易にCMS化することができる。すなわち、本発明で寄託される改良CMS系統を使用すれば、熟練した技術を要する非対称戻し融合技術を使用することなく、交配可能なあらゆるLactuca属植物を、優良なCMS植物にすることができる。
 連続戻し交雑により、CMS化された任意の優良なLactuca属植物を種子親として、任意の花粉親との間で、手交配、または虫による交配を行えば、低温生長性を有するLactuca属植物のF1種子を効率的に得ることができる。
 上記の手順でレタスをF1品種化することにより、低温生長性を有しつつ、優良形質を付与したレタス品種の迅速な育種が可能となり、生産物の均一性や環境適応性などに優れた市場性の高いレタス品種の作出が可能となる。
 以下の実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1: 改良CMS Lactuca属植物の作出
(1)プロトプラストの調製
 (i) 正常細胞質を有するLactuca属植物のプロトプラストの単離
 正常細胞質を有するLactuca属植物として、レタス品種「ステディ」(ツルタ種苗株式会社より入手可能)を使用した。
 まず、滅菌した種子をショ糖10g/l、寒天8g/lを添加したMS培地に置床し、20℃、16時間照明下で1か月間培養した。展開した本葉を約1g採取し、約2mmの大きさに細切した後に、0.4%セルラーゼY-C,0.4%マセロザイムR-10,マンニトールを含むCPW塩溶液10mlに浸漬し、25℃、16時間静置した。
 葉組織を含む酵素液を92μmのナイロンメッシュで濾過し、細胞残渣を除去した。得られたプロトプラスト懸濁液を遠沈管に移し、800rpmで5分間の遠心分離を行った。上澄みを除去して得られたプロトプラストを15mMのヨードアセトアミドを含むCPW塩溶液5mlに懸濁し、25℃で15分間インキュベートした。インキュベート後、ヨードアセトアミド処理したプロトプラスト懸濁液を800rpmで5分間の遠心分離を行った後、上澄みを除去した。プロトプラスト懸濁液にCPW塩溶液10mlを加え、800rpmで5分間の遠心分離を行って上澄みを除去する操作を3回繰り返して、プロトプラストを洗浄した。
 洗浄されたプロトプラスト懸濁液を800rpmで5分間の遠心分離を行い、上澄みを除去して2mlのCPW塩溶液を加えてプロトプラストを懸濁させた。新しい遠沈管に20%のショ糖を添加したCPW塩溶液5mlを加えて、その上に上記プロトプラストの懸濁液を重層させ、800rpmで5分間の遠心分離を行った。細胞残渣は、遠沈管の底に沈み、精製されたプロトプラストが、上層のCPW塩溶液層中に浮上するのでパスツールピペットで新しい遠沈管に移した。懸濁液を少量取り血球計算板を用いてプロトプラストの細胞密度を求め、CPW液を加えて1×10個/mlに調製した。
 (ii) 従来のCMSレタスのプロトプラストの単離
 従来のCMSレタスとして、特許文献1に記載の系統名「50125-3-V1」(受託番号FERM BP-10647)を使用した。
 なおここで「50125-3-V1」はCMSレタス系統「50125-3」に「Vレタス」(カネコ種苗株式会社より入手可能)を交配して得た後代であり、「50125-3-V1」の種子は2006年7月31日付けで独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1丁目1番地1中央第6)に国際寄託されている(寄託者が付した識別のための表示SSC-LET-06-001、受託番号FERM BP-10647)(特許文献1)。
 まず、滅菌した種子をショ糖10g/l、寒天8g/lを添加したMS培地に置床し、20℃、16時間照明下で1か月間培養した。展開した本葉約1gを採取し、約2mmの大きさに細切した後に、0.4%セルラーゼY-C,0.4%マセロザイムR-10,マンニトールを含むCPW塩溶液10mlに浸漬し、25℃、16時間静置した。
 葉組織を含む酵素液を92μmのナイロンメッシュで濾過し、細胞残渣を除去した。パスツールピペットでプロトプラストをプラスチックシャーレに移し、軟X線を900Gy照射した。
 得られたプロトプラスト懸濁液を遠沈管に移し、800rpmで5分間の遠心分離を行い、上澄みを除去して2mlのCPW塩溶液を加えてプロトプラストを懸濁させた。新しい遠沈管に20%のショ糖を添加したCPW塩溶液5mlを加え、その上に上記プロトプラストの懸濁液を重層させ、800rpmで5分間の遠心分離を行った。細胞残渣は、遠沈管の底に沈み、精製されたプロトプラストが、上層のCPW塩溶液層中に浮上するのでパスツールピペットで新しい遠沈管に移した。懸濁液を少量取り血球計算板を用いてプロトプラストの細胞密度を求め、CPW塩溶液を加えて1×10個/mlに調製した。
(2)プロトプラストの融合処理
 ヨードアセトアミド処理したレタスプロトプラスト懸濁液と軟X線照射した従来のCMSレタスプロトプラスト懸濁液を1:3の比率で混合し、9cmシャーレの底面中央に混合液を2ml滴下した。30分間静置後、PEG溶液(ポリエチレングリコール#6000(nacalai tesque Inc.) 500g/l,CaCl・2HO 1,500mg/l,KHPO 100mg/l、pH5.5)3mlをプロトプラスト混合液の周辺に滴下した。
 1分後CPW塩溶液3.5mlをプロトプラスト混合液の周辺に滴下した。さらに2分後 CPW塩溶液3.5mlをプロトプラスト混合液の周辺に滴下した。5分後シャーレの縁から、滴下した液を静かに吸い上げて除去し、CPW塩溶液20mlをシャーレの縁から加えた。このCPW塩溶液での洗浄の操作を5分間隔で3回繰り返した。
(3)融合雑種細胞の培養
 洗浄液を除去後、コハク酸二ナトリウム六水和物 2.7g/l,カザミノ酸0.5g/l,NAA 0.1mg/l,4-CPPU 1.0mg/l,TDZ 0.1mg/l,および0.3Mショ糖を含み、NHNOを200mg/lに低減させた1/2濃度のMS培地(以下、レタスプロトプラスト培養用培地という)10ml(pH5.8)を添加し、25℃暗所において培養した。
 培養開始から3日後、4倍濃度のレタスプロトプラスト培養用培地(0.3Mショ糖濃度)5mlと0.6%ゲランガムを含む0.3Mショ糖溶液5ml(pH5.8)を混合することにより、半固体化状態のゲル培地を調製し、この中で培養を継続した。
 培養開始10日後に、ショ糖濃度を0.15Mに改変したレタスプロトプラスト培養用培地10ml中に、融合雑種細胞の含まれた培地10mlをゲルとともに移した。培養開始20日後には、カルスが肉眼で確認できるようになるので、培養されたカルスを、0.2Mショ糖、0.3%ゲランガムを含んだレタスプロトプラスト培養用培地(固体培地,pH5.8)に移植した。
(4)カルスからの植物体の再生
 培養開始30日後、カルスが2mm程度の大きさになったときに、4-CPPU 0.3mg/l,1.0%ショ糖,0.8%寒天を含むMS培地(pH5.8)に移植した。
 培養開始40~60日後、カルスから再分化したシュートを、1.0%ショ糖,0.8%寒天を含む1/2MS培地(pH5.8)へ移植することにより発根させ、約300個体以上の細胞質雑種植物を再生させた。
 細胞質雑種植物は、バーミキュライトに移植して順化を行い、温室内で栽培した。
(5)従来のCMSレタスに特異的なミトコンドリア遺伝子を有する細胞質雑種植物の選抜
 PCR法により従来のCMSレタス特異的なDNAを検出するため、公知の塩基配列情報(Gene Bank 登録番号 X82387.1)よりatp6遺伝子に特異的なプライマーを設計した(表2)。
 抽出した全ゲノムDNAを鋳型とし、プライマーatp6-Fとatp6-Rの組み合わせを用いてPCRを行った。PCRは、熱変性94℃ 1分、アニーリング60℃ 2分、伸長反応72℃ 2分を35サイクル繰り返した。
 PCR産物は、1.8%アガロースゲルで電気泳動し、エチジウムブロマイド溶液に浸漬後、UV照射下で写真撮影を行い予想されるサイズ(209bp)の増幅産物の有無を確認し、増幅が確認された個体を選抜した。
 以上のようにして、低温生長性が改善されたCMS系統「BF2MS1S」を得た。
Figure JPOXMLDOC01-appb-T000002
 
実施例2: 改良CMS系統の詳細な育成過程
 実施例1によって作出されたCMS系統「BF2MS1S」に、正常細胞質を有するレタス(品種「ステディ」)を交配し、156粒のBC1(戻し交雑後代第1代)の種子を得た。得られたBC1種子1系統156粒を288穴トレーに播種し、夜温0℃、昼温20℃に設定した温室で育苗した。BC1の実生は、全体的に高い低温生長性を示したが、発芽にややばらつきがみられた。BC1種子156粒の発芽個体の中から、低温生長性の優れた24系統を選抜し、ステディの戻し交雑を行い、BC2の種子を得た。
 得られたBC2種子24系統各20粒を200穴トレーに播種し、同条件の温室で育苗した。BC2の実生は、全体的に高い低温生長性を示した。発芽は、ややばらつきがみられたものの、BC1の実生よりも改善された。BC2種子480粒の発芽個体の中から、低温生長性の優れた38系統を選抜し、ステディの戻し交雑を行い、BC3の種子を得た。
 得られたBC3種子38系統各20粒を200穴トレーに播種し、同条件の温室で育苗した。BC3の実生は、全体的に高い低温生長性を示し、発芽のばらつきもほとんどみられなかった。BC3種子760粒の発芽個体の中から、低温生長性の優れた49系統を選抜し、ステディの戻し交雑を行い、BC4の種子を得た。
 得られたBC4種子49系統各20粒を200穴トレーに播種し、同条件の温室で育苗した。BC4の実生は、全体的に高い低温生長性を示し、発芽のばらつきもほとんどみられなかった。すなわち、世代が進むにつれて、細胞質がホモプラズミー化され、個体ごとの低温生長性の差が小さくなったと考えられた。BC4種子980粒の発芽個体の中から、低温生長性の優れた4系統を選抜し、ステディの戻し交雑を行い、BC5の種子を得た。
得られたBC5種子4系統各96粒を288穴トレーに播種し、同条件の温室で育苗した。BC5の実生は、高い低温生長性を示し、発芽のばらつきもほとんどみられなかった。BC5種子384粒の発芽個体の中から、低温生長性の優れた5系統を選抜し、ステディの戻し交雑を行い、BC6の種子を得た。
 得られたBC6種子5系統各96粒を288穴トレーに播種し、同条件の温室で育苗した。BC6の実生は高い低温生長性を示し、発芽のばらつきも全く見られなかった。細胞質は、ホモプラズミー化されたと考えられたため、これ以降の複数系統の選抜は必要ないと判断した。BC6種子480粒の発芽個体の中から、低温生長性の優れた1系統を選抜し、ステディの戻し交雑を行い、BC7の種子を得た。
 得られたBC7種子1系統96粒を288穴トレーに播種し、同条件の温室で育苗した。BC7の実生は高い低温生長性を示し、発芽のばらつきも全く見られなかった。BC7種子96粒の発芽個体の中から低温生長性の優れた1系統に対してステディの戻し交雑を行い、BC8の種子を得た。
 得られたBC8種子1系統96粒を288穴トレーに播種し、同条件の温室で育苗した。BC8の実生は低温生長性が高く、発芽のばらつきも全く見られなかったため、細胞質はホモプラズミー化して安定していると考えられた。BC8種子96粒の発芽個体の中から低温生長性の優れた1系統に対してステディの戻し交雑を行い、BC9の種子を得た。
 なお、BC9の種子から育成した「BF2MS1S」に「ステディ」を交配して得た後代の「BF2MS1S」系統のBC10種子は、2019年2月1日付けで独立行政法人 製品評価技術基盤機構 特許生物寄託センター(千葉県木更津市かずさ鎌足2-5-8 120号室)に国際寄託(原寄託)されている(寄託者が付した識別のための表示:SSC-LET-19-001、受託番号: FERM BP-22373)。
実施例3: 発芽試験による改良CMSレタスの特性の確認
 実施例1によって作出された改良CMS系統の有用性を確認するため、各種正常細胞質、CMS細胞質を有するレタスの発芽試験を行った。
 レタスは、採種環境により、種子品質、発芽能力に差を生じる可能性があるため、本実施例で使用するすべての系統は、同一環境下で採種した。また、レタスの種子は休眠する可能性があるため、本実施例のすべての発芽試験は、播種後のセルトレーを4℃の冷蔵庫で2日間冷蔵し、確実な休眠打破を行った上で実施した。
 まず、特許文献1に記載の従来のCMSレタスである系統「1216-2-T1」(受託番号FERM BP-10421)と、系統「50125-3-V1」の戻し交雑後代の低温生長性を確認した。
 なおここで、「1216-2-T1」は、CMS系統「1216-2」に「テルミー」(株式会社サカタのタネ)を交配して得た後代であり、「1216-2-T1」の種子は2005年9月29日付けで独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1丁目1番地1中央第6)に国際寄託されている(寄託者が付した識別のための表示SSC-LET-05-001、受託番号FERM BP-10421)(特許文献1)。
 正常細胞質を有する「テルミー」と特許文献1に記載のCMSレタスである「1216-2-T1」、正常細胞質を有する「Vレタス」と特許文献1に記載のCMSレタスである「50125-3-V1」を128穴のセルトレーに各64粒を播種した。播種したセルトレーを、夜温0℃、昼温20℃に設定した温室(静岡県掛川市)で管理した。
 図1は、「テルミー」と「1216-2-T1」の播種後17日目の発芽試験の結果を示す。
 「1216-2-T1」は、「テルミー」と比較して、発芽の揃いが非常に悪く、目視で低温生長性が劣っていることが確認された。
 定量的な評価を行うため、各系統の実生の地上部を地際で切り取り、その株あたりの重量の比較を行った。
 結果は表3に示される通りであった。
 表3のNo.1およびNo.2に示されたように、「1216-2-T1」の地上部の株あたりの重量は、「テルミー」の地上部の株あたりの重量に対して、重量比が25%となった。
 「1216-2-T1」の核ゲノムは、「テルミー」と同一であるため、「1216-2-T1」の低温による生長性の低下は、CMS細胞質の影響であると考えられた。
 図2は、「Vレタス」と「50125-3-V1」の播種後17日目の発芽試験の結果を示す。
 「50125-3-V1」は、「Vレタス」と比較して、発芽の揃いが悪く、目視で低温生長性が劣っていることが確認された。
 定量的な評価を行うため、各系統の実生の地上部を地際で切り取り、その株あたりの重量の比較を行った。
 結果は表3に示される通りであった。
 表3のNo.3およびNo.4に示されたように、「50125-3-V1」の地上部の株あたりの重量は、「Vレタス」の地上部の株あたりの重量に対して、重量比が55%となった。
 「50125-3-V1」の核ゲノムは、「Vレタス」と同一であるため、「50125-3-V1」の低温による生長性の低下は、従来CMS細胞質の影響であると考えられた。
 以上のように、低温条件下の温室での発芽試験では、従来のCMSレタスでは、低温生長性が低下していることが確認された。
 しかし、温室での試験は、自然環境の影響を受けやすいことが考えられたため、自然環境の影響を受けない、人工気象器を用いた人工環境下においても同様に発芽試験を行った。
 まず、特許文献1に記載の従来のCMSレタスである「50125-3-V1」の生育適温条件下での発芽試験を、人工気象器を用いて行った。人工気象器の設定は、レタスの発芽、生育適温である、温度20℃一定、12時間照明に設定した。
 図3は、人工気象器を生育適温条件に設定した場合の、「Vレタス」と「50125-3-V1」の播種後16日目の発芽試験の結果を示す。
 適温条件下での「50125-3-V1」は、「Vレタス」と比較して、目視では全く見劣りしない生長性を示した。
 定量的な評価を行うため、各系統の実生の地上部を地際で切り取り、その株あたりの重量の比較を行った。
 結果は表3に示される通りであった。
 表3のNo.5およびNo.6に示されたように、「50125-3-V1」の地上部の株あたりの重量は、「Vレタス」の地上部の株あたりの重量に対して、重量比が116%となり、適温条件下では、正常細胞質を有する「Vレタス」を若干上回る生長性を示した。
 次に、人工気象器を用いて、低温条件を人工的に作り出し、発芽試験を行った。
 人工気象器の設定は、夜温5℃、昼温20℃、12時間照明に設定した。夜温は、人工気象器の性能上、0℃設定が不可能であったため、下限の5℃設定とした。
 図4は、人工気象器を低温条件に設定した場合の、「Vレタス」と「50125-3-V1」の播種後17日目の発芽試験の結果を示す。
 「50125-3-V1」は、「Vレタス」と比較して、発芽の揃いが悪く、目視で低温生長性が劣っていることが確認された。
 定量的な評価を行うため、各系統の実生の地上部を地際で切り取り、その株あたりの重量の比較を行った。
 結果は表3に示される通りであった。
 表3のNo.7およびNo.8に示されたように、「50125-3-V1」の地上部の株あたりの重量は、「Vレタス」の地上部の株あたりの重量に対して、重量比が66%となった。「50125-3-V1」の低温による生長性の低下は、人工気象器で作り出した低温条件下においても、再現できることが確認できた。また、人工気象器を使用した試験では、昼温は生育適温の20℃であることから、夜温が低温条件となるだけで低温による生長性の低下が引き起こされることが明らかとなった。
 以上のように、特許文献1で開示されたCMSレタスは、適温条件下では、正常細胞質を有する「Vレタス」よりも高い生長性を示したが、夜温が低温となる条件では、生長性が低下することが明らかとなった。すなわち、特許文献1の出願当時は、従来のCMS Lactuca属植物の低温条件下における生長性の低下は、何ら着目されておらず、明らかとなっていなかった。当然ながら、特許文献1にもこの点は何ら記載も示唆もされていない。
 次に、正常細胞質を有するLactuca属植物として「Vレタス」を使用した以外は、実施例1と同様にして、改良CMS系統「BF2MS4V」を得た。
 「BF2MS4V」は、非対称細胞融合を行う際の細胞質供与親として「50125-3-V1」を使用し、細胞質受容親として「Vレタス」を使用して得られたものである。
 実施例1にしたがって作出された改良CMS系統である「BF2MS4V」は、「50125-3-V1」を細胞質供与親として非対称細胞融合により作出したため、核ゲノムは「Vレタス」と同一である。
 図5は、夜温0℃、昼温20℃設定の温室環境下における、「Vレタス」と「BF2MS4V」の播種後17日目の発芽試験の結果を示す。
 「BF2MS4V」は、目視では「Vレタス」と同等の発芽の揃いと低温生長性を示した。
 定量的な評価を行うため、各系統の実生の地上部を地際で切り取り、その株あたりの重量の比較を行った。
 結果は表3に示される通りであった。
 表3のNo.3およびNo.9に示されたように、「BF2MS4V」の地上部の株あたりの重量は、「Vレタス」の地上部の株あたりの重量に対して、重量比が90%となった。「BF2MS4V」の低温条件下での地上部の株あたり重量は、正常細胞質の場合と比較して、10%程度劣ったが、表3のNo.4とNo.9の比較から、「BF2MS4V」は、特許文献1のCMSレタスである「50125-3-V1」に対しては、地上部の株あたりの重量比が165%に向上した。
 この結果から、低温による生長性が低下するなどの劣悪形質を伴うCMSレタスは、正常細胞質を有するレタスと連続的な非対称細胞融合を行うことにより、CMS細胞質を改良できることが明らかとなった。
 次に、正常細胞質を有するLactuca属植物として、育種系統である「M8-039」(株式会社サカタのタネ)を使用した以外は、実施例1と同様にして、改良CMS系統「BF2MS2M」を得た。
 「BF2MS2M」は、非対称細胞融合を行う際の細胞質供与親として「50125-3-V1」を使用し、細胞質受容親として「M8-039」を使用して得られたものである。
 図6は、夜温0℃、昼温20℃設定の温室環境下における、育種系統である「M8-039」と「BF2MS2M」の播種後17日目の発芽試験の結果を示す。
 図に示されるように、「BF2MS2M」は、目視では「M8-039」と同等の低温生長性を示した。
 定量的な評価を行うため、各系統の実生の地上部を地際で切り取り、その株あたりの重量の比較を行った。
 結果は表3に示される通りであった。
 表3のNo.10およびNo.11に示されたように、「BF2MS2M」の地上部の株あたりの重量は、「M8-039」の地上部の株あたりの重量に対して、重量比が93%となった。地上部の株あたりの重量の差は、正常細胞質の場合と比較して、7%の減少に留まっており、特許文献1のCMSレタスである「1216-2-T1」の75%の減少、「50125-3-V1」の45%の減少と比較して、大幅にCMS細胞質が改良されていると考えられた。
 したがって、核ゲノムが異なった場合でも、非対称戻し融合による細胞質の改良が可能であることが確認できた。
 次に、図7は、夜温0℃、昼温20℃設定の温室環境下における、「ステディ」と「BF2MS1S」の播種後17日目の発芽試験の結果を示す。
 「BF2MS1S」の育成過程は、実施例1で詳細に示したように、「50125-3-V1」を細胞質供与親として非対称細胞融合によって作出し、非対称細胞融合を行う際の細胞質受容親として「ステディ」を使用したものである。
 目視では「ステディ」の発芽の揃いを上回り、低温生長性も同等であると見受けられた。
 定量的な評価を行うため、各系統の実生の地上部を地際で切り取り、その株あたりの重量の比較を行った。
 結果は表3に示される通りであった。
 表3のNo.12およびNo.13に示されたように、「BF2MS1S」の地上部の株あたりの重量は、「ステディ」の地上部の株あたりの重量に対して、重量比が101%となった。
 また、「BF2MS1S」の細胞質の特性を人工環境下でも確認するため、人工気象器を使用して、発芽試験を行った。人工気象器は、夜温5℃、昼温20℃、12時間照明に設定した。夜温を温室の設定と同様に0℃としなかったのは、人工気象器の設定下限温度が5℃であったためである。
 図8は、人工気象器を使用した「ステディ」と「BF2MS1S」の播種後17日目の発芽試験の結果を示す。
 目視では「ステディ」と「BF2MS1S」の低温生長性は、同等であった。
 定量的な評価を行うため、各系統の実生の地上部を地際で切り取り、その株あたりの重量の比較を行った。
 結果は表3に示される通りであった。
 表3のNo.14およびNo.15に示されたように、「BF2MS1S」の地上部の株あたりの重量は、「ステディ」に対する重量に対して、重量比が106%となり、人工環境下においても「BF2MS1S」の低温生長性は、正常細胞質を有する「ステディ」に比較して、同等以上の低温生長性を示した。
 「BF2MS1S」は、正常細胞質を有する「ステディ」と核ゲノムが同一であることから、「BF2MS1S」の細胞質は、低温生長性に関して正常細胞質と同等以上の能力を有することが確認できた。
 実施例2に記載したように、「BF2MS1S」は、連続戻し交雑を進め、BC7を育成した。
 「BF2MS1S」のBC7を圃場(長野県安曇野市)に定植し、結球期の形質の調査を行った。
 結果は図9に示される通りであった。
 正常細胞質の「ステディ」との形態的な差は認められず、「BF2MS1S」が極めて優良なCMSであることを確認した。また、BC7を経るまでに稔性回復を引き起こす個体は出現せず、CMSの性質は極めて安定的であることを確認した。
Figure JPOXMLDOC01-appb-T000003
 
実施例4
 実施例1で作出された改良CMSレタス「BF2MS1S」の細胞質型を分析するため、公知のヒマワリミトコンドリアゲノムの塩基配列情報(Gene Bank 登録番号 KF815390)に基づいて、表4に示す44種のプライマーセットを設計した。
 プライマーは、遺伝子間領域を増幅できる場合には、優先的にその部位をターゲットとしてマーカーを設計し、その他の領域は、マーカー間の物理的距離が5,000~10,000bp間隔となるように設計を行った。
 供試材料としては、正常細胞質を有する「Vレタス」、CMSヒマワリ「IB5」、特許文献1に記載のCMSレタスである「1216-2-T1」および「50125-3-V1」、並びに、本発明により作出された改良CMSレタス「BF2MS1S」を用いた。
 各供試材料から、全ゲノムDNAを抽出して鋳型とし、表4に記載のプライマーセットを用いてPCRを行った。PCRは、熱変性94℃ 1分、アニーリング60℃ 2分、伸長反応72℃ 2分を35サイクル繰り返した。
 正常細胞質を有する「Vレタス」とCMSヒマワリ「IB5」の間で、多型が検出されない場合には、PCR-RFLP分析を行うため、そのPCR産物を表4に記載された制限酵素により処理した。それらのPCR産物は、1.8%アガロースゲルで電気泳動後、エチジウムブロマイド溶液に浸漬し、UV照射下で写真撮影を行って、PCR産物の有無および多型を調査した。
 PCR法およびPCR-RFLP法を用いた、細胞質の分析結果を表5に示した。表5中の“Ha”はH. annuus型、“Ls”はL. sativa型、“Hetero”は両種のヘテロ型であることを示す。“0”は当該マーカーでの検出がないことを示す。
 ヒマワリ型の多型が検出されたのは、44種のプライマーセット中、「1216-2-T1」では24セット(ヘテロ含む)、「50125-3-V1」では10セット、「BF2MS1S」では3セットであった。
 この結果から、CMSレタスのヒマワリ由来のミトコンドリアのゲノム領域は、非対称細胞融合による戻し融合を行う度に、割合が減少し、「BF2MS1S」では大部分のミトコンドリアゲノムがレタス由来のミトコンドリアゲノムに組み換わっていることが確認された。
 以上のように、「BF2MS1S」の低温生長性の改良は、非対称細胞融合による戻し融合によって、CMSに関与するヒマワリ由来のゲノム領域を残しつつ、その他のミトコンドリアゲノム領域の大部分がレタス型に置換されたことにより、核ゲノムとミトコンドリアゲノムの不親和性が解消され、CMSの形質を維持したまま、低温生長性が改良されたと考えられた。
 ただし、表5の結果は細胞質雄性不稔性を発現する個体の分析結果の一例を示したものであり、低温生長性が改良されたCMSレタスが必ずしもこのようなミトコンドリアゲノムの構造のみを示すとは限らない。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
(表中の記号の説明)
Ha: H. annuus型
Ls: L. sativa型
Hetero: 両種のヘテロ型
0: 当該マーカーでの検出なし
 

Claims (20)

  1.  正常細胞質を有するLactuca属植物と同等の低温生長性を有する、細胞質雄性不稔Lactuca属植物、またはその後代。
  2.  Helianthus属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する、請求項1に記載の細胞質雄性不稔Lactuca属植物、またはその後代。
  3.  正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を複数回行うことにより得られる、請求項1または2に記載の細胞質雄性不稔Lactuca属植物、またはその後代。
  4.  既存の細胞質雄性不稔Lactuca属植物を細胞質供与親として用い、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、請求項1~3のいずれか一項に記載の細胞質雄性不稔Lactuca属植物、またはその後代。
  5.  Helianthus属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔Lactuca属植物、またはその後代であって、
     正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を複数回行うことにより得られるか、または
     既存の細胞質雄性不稔Lactuca属植物を細胞質供与親として用い、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を行うことにより得られる、細胞質雄性不稔Lactuca属植物、またはその後代。
  6.  細胞質雄性不稔Lactuca属植物が、レタス(Lactuca sativa L.)、またはLactuca属植物の種間交雑植物に由来するものである、請求項1~5のいずれか一項に記載の細胞質雄性不稔Lactuca属植物、またはその後代。
  7.  受託番号FERM BP-22373で特定される植物のミトコンドリアゲノムを有する、細胞質雄性不稔Lactuca属植物、またはその後代。
  8.  受託番号FERM BP-22373で特定される、細胞質雄性不稔Lactuca属植物、またはその後代。
  9.  請求項1~8のいずれか一項に記載の細胞質雄性不稔Lactuca属植物またはその後代の植物体の一部。
  10.  請求項1~8のいずれか一項に記載の細胞質雄性不稔Lactuca属植物またはその後代の種子。
  11.  請求項1~8のいずれか一項に記載の細胞質雄性不稔Lactuca属植物、またはその後代、請求項9に記載の植物体の一部、または請求項10に記載の種子に含まれる、ミトコンドリアゲノム。
  12.  非対称細胞融合により得られた植物またはその後代が、細胞質雄性不稔Lactuca属植物であって、これを細胞質供与親として用い、かつ、
     前記した初回の非対称細胞融合に使用した植物の一方が正常細胞質を有するLactuca属植物であって、これを細胞質受容親として用いて、非対称細胞融合を1回または複数回行うことを含む、植物における非対称戻し融合方法。
  13.  請求項12に記載の方法により、Lactuca属植物の細胞質内のミトコンドリアゲノムを改良する方法。
  14.  既存の細胞質雄性不稔Lactuca属植物を細胞質供与親として用い、正常細胞質を有するLactuca属植物を細胞質受容親として用いる非対称細胞融合を行うことを含む、正常細胞質を有するLactuca属植物と同等の低温生長性を有する、細胞質雄性不稔Lactuca属植物、またはその後代の製造方法。
  15.  細胞質雄性不稔Lactuca属植物が、レタス(Lactuca sativa L.)、またはLactuca属植物の種間交雑植物に由来するものである、請求項14に記載の方法。
  16.  請求項1~8のいずれか一項に記載の細胞質雄性不稔Lactuca属植物、またはその後代を種子親とし、該植物と交配可能なLactuca属植物を花粉親として交配し、交配後の種子親から雑種第一代種子を採種することを含む、雑種第一代種子の製造方法。
  17.  花粉親が、レタス(Lactuca sativa L.)、またはLactuca属植物の種間交雑植物である、請求項16に記載の方法。
  18.  請求項16または17に記載の方法により作出された雑種第一代種子、または該種子から生育させた雑種第一代植物、その後代、もしくはそれらの植物体の一部。
  19.  請求項1~8のいずれか一項に記載の細胞質雄性不稔Lactuca属植物、またはその後代に、有用形質を有するLactuca属植物を連続戻し交雑し、細胞質置換することを含む、前記有用形質を有し、細胞質雄性不稔性を発現するLactuca属植物の製造方法。
  20.  有用形質を有するLactuca属植物が、レタス(Lactuca sativa L.)に由来するものである、請求項19に記載の方法。
     


     
PCT/JP2020/016927 2019-04-17 2020-04-17 低温生長性が改良された細胞質雄性不稔Lactuca属植物 WO2020213727A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP20790756.9A EP3957166A4 (en) 2019-04-17 2020-04-17 PLANT OF THE LETTUCE GENUS WITH CYTOPLASMIC MALE STERILITY WHOSE GROWTH AT LOW TEMPERATURES IS IMPROVED
JP2021514247A JPWO2020213727A1 (ja) 2019-04-17 2020-04-17
BR112021020652A BR112021020652A2 (pt) 2019-04-17 2020-04-17 Planta estéril masculina citoplásmica do gênero lactuca ou a progênie da mesma, parte de um corpo de planta, semente, genoma mitocondrial, métodos para retrofusão assimétrica, para melhorar o genoma mitocondrial, para produzir uma planta estéril masculina citoplásmica do gênero lactuca, para produzir uma primeira semente híbrida filial e para produzir uma planta do gênero lactuca, e, primeira semente híbrida filial
CN202080044296.0A CN114599223A (zh) 2019-04-17 2020-04-17 低温生长性被改良的细胞质雄性不育莴苣属植物
KR1020217035647A KR20210153070A (ko) 2019-04-17 2020-04-17 저온 생장성이 개량된 세포질 웅성 불임 락투카(Lactuca)속 식물
AU2020259923A AU2020259923A1 (en) 2019-04-17 2020-04-17 Cytoplasmic male sterile plant of genus Lactuca having improved low temperature growth ability
US17/604,175 US20220204986A1 (en) 2019-04-17 2020-04-17 Cytoplasmic male sterile plant of genus lactuca having improved low temperature growth ability
CA3137173A CA3137173A1 (en) 2019-04-17 2020-04-17 Cytoplasmic male sterile plant of genus lactuca having improved low temperature growth ability
MX2021012535A MX2021012535A (es) 2019-04-17 2020-04-17 Planta con esterilidad masculina citoplasmática del género lactuca que tiene capacidad de crecimiento a baja temperatura mejorada.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019078905 2019-04-17
JP2019-078905 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020213727A1 true WO2020213727A1 (ja) 2020-10-22

Family

ID=72837341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016927 WO2020213727A1 (ja) 2019-04-17 2020-04-17 低温生長性が改良された細胞質雄性不稔Lactuca属植物

Country Status (12)

Country Link
US (1) US20220204986A1 (ja)
EP (1) EP3957166A4 (ja)
JP (1) JPWO2020213727A1 (ja)
KR (1) KR20210153070A (ja)
CN (1) CN114599223A (ja)
AU (1) AU2020259923A1 (ja)
BR (1) BR112021020652A2 (ja)
CA (1) CA3137173A1 (ja)
CL (1) CL2021002700A1 (ja)
MX (1) MX2021012535A (ja)
TW (1) TW202107981A (ja)
WO (1) WO2020213727A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049730A1 (ja) * 2005-10-26 2007-05-03 Sakata Seed Corporation 細胞質雑種Lactuca属植物およびその作出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731307A (ja) * 1993-07-14 1995-02-03 Sakata No Tane:Kk 雄性不稔植物の育種方法及び増殖方法
EP0771523B2 (en) * 1995-11-02 2006-06-07 Enza Zaden Beheer B.V. A cytoplasmic male sterile vegetable plant cell of the compositae family and also a method for obtaining such a plant
KR100399333B1 (en) 2002-10-10 2003-09-26 Nong Woo Bio Co Ltd Novel genotype cms radish family plant, method for producing hybrid seeds using the same, and dna marker for selecting the nwb-cms radish family plant
FR2913304A1 (fr) * 2007-03-05 2008-09-12 Vilmorin Sa Production de graines lactuca sativa hybrides
KR100885075B1 (ko) 2007-04-06 2009-02-25 주식회사 동부하이텍 신규한 세포질-유전자적 웅성 불임(cgms)무 계통식물체를 이용한 잡종 종자 생산 방법 및 상기 무 계통식물체 선발용 dna 표지 인자
CN101084735A (zh) * 2007-07-06 2007-12-12 陈振志 紫色苣荬菜的育种方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049730A1 (ja) * 2005-10-26 2007-05-03 Sakata Seed Corporation 細胞質雑種Lactuca属植物およびその作出方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Cytoplasmic male sterility and breeding technology", 1985, CMC PUBLISHING CO.
"Gene Bank", Database accession no. X82387.1
C. RAMBAUD, A. BELLAMY, A. DUBREUCQ, J.-C. BOURQUIN, J. VASSEUR: "Molecular analysis of the fourth progeny of plants derived from cytoplasmic male sterile chicory cybrid", PLANT BREEDING, vol. 116, 1997, pages 481 - 486
JAP. J. GENET., vol. 50, 1975, pages 235
MATSUMOTO, E, PLANT CELL REPORTS, vol. 9, no. 10, 1991
PLANTA, vol. 120, 1974, pages 215 - 227
PLANTA, vol. 151, 1981, pages 26 - 32
See also references of EP3957166A4

Also Published As

Publication number Publication date
CN114599223A (zh) 2022-06-07
CA3137173A1 (en) 2020-10-22
AU2020259923A1 (en) 2021-12-16
EP3957166A4 (en) 2022-06-15
CL2021002700A1 (es) 2022-07-15
EP3957166A1 (en) 2022-02-23
BR112021020652A2 (pt) 2021-12-07
MX2021012535A (es) 2022-01-06
TW202107981A (zh) 2021-03-01
JPWO2020213727A1 (ja) 2020-10-22
US20220204986A1 (en) 2022-06-30
KR20210153070A (ko) 2021-12-16

Similar Documents

Publication Publication Date Title
Dambier et al. Somatic hybridization for citrus rootstock breeding: an effective tool to solve some important issues of the Mediterranean citrus industry
JP4139429B2 (ja) 細胞質雑種Lactuca属植物およびその作出方法
JP7370333B2 (ja) Tbrfv抵抗性トマト植物
WO2020213728A1 (ja) 生長性が改良された細胞質雄性不稔Brassica rapa植物
Grosser et al. Production of mandarin+ pummelo somatic hybrid citrus rootstocks with potential for improved tolerance/resistance to sting nematode
CN105331689B (zh) 小麦-长穗偃麦草抗白粉病易位系选育方法及其分子标记
WO2020213727A1 (ja) 低温生長性が改良された細胞質雄性不稔Lactuca属植物
CN104839015B (zh) 玉米质‑核互作雄性不育转基因受体的培育方法及该受体在遗传转化和后代扩繁中的应用
WO2022107839A1 (ja) 細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法
Brar et al. Application of biotechnology in hybrid rice
Wu Classic genetics and breeding of bioenergy related traits in switchgrass
US20230247952A1 (en) Methods for promoting production of viable seeds from apomictic guayule plants
CN118109452A (zh) 生长性被改良的细胞质雄性不育芜菁植物
Cai et al. Production and molecular characterization of two new Citrus somatic hybrids for scion improvement
Manzur et al. Evaluation of response to in vitro embryo rescue in Capsicum spp
WO2014079498A1 (en) Methods for providing cytoplasmic male sterile petroselinum crispum plants, cytoplasmic male sterile petroselinum crispum plants and seeds and plant parts thereof
Ghimire et al. Genetic Characteristics of Progeny of the Hybrids Between a Glufosinate Resistant Transgenic Rice and Weedy Rice (Oryza sativa L.)
NZ709007B2 (en) Methods for providing cytoplasmic male sterile petroselinum crispum plants, cytoplasmic male sterile petroselinum crispum plants and seeds and plant parts thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514247

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3137173

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021020652

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217035647

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020790756

Country of ref document: EP

Effective date: 20211117

ENP Entry into the national phase

Ref document number: 112021020652

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211014

ENP Entry into the national phase

Ref document number: 2020259923

Country of ref document: AU

Date of ref document: 20200417

Kind code of ref document: A