WO2022107839A1 - 細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法 - Google Patents

細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法 Download PDF

Info

Publication number
WO2022107839A1
WO2022107839A1 PCT/JP2021/042382 JP2021042382W WO2022107839A1 WO 2022107839 A1 WO2022107839 A1 WO 2022107839A1 JP 2021042382 W JP2021042382 W JP 2021042382W WO 2022107839 A1 WO2022107839 A1 WO 2022107839A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
petunia
cytoplasmic male
male sterile
hybrid
Prior art date
Application number
PCT/JP2021/042382
Other languages
English (en)
French (fr)
Inventor
慎吾 堀内
隆夫 鈴木
昭宏 鳥居
敦 泉田
Original Assignee
株式会社サカタのタネ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サカタのタネ filed Critical 株式会社サカタのタネ
Priority to CN202180077904.2A priority Critical patent/CN116648134A/zh
Priority to JP2022563820A priority patent/JPWO2022107839A1/ja
Priority to EP21894712.5A priority patent/EP4248738A1/en
Priority to US18/037,836 priority patent/US20240016111A1/en
Priority to IL303066A priority patent/IL303066A/en
Priority to CR20230267A priority patent/CR20230267A/es
Publication of WO2022107839A1 publication Critical patent/WO2022107839A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/021Methods of breeding using interspecific crosses, i.e. interspecies crosses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/022Genic fertility modification, e.g. apomixis
    • A01H1/023Male sterility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/823Nicotiana, e.g. tobacco
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/824Petunia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Definitions

  • the present invention relates to a cytoplasmic male sterile petunia plant, a hybrid plant with the cytoplasmic male sterile petunia plant, or a progeny thereof.
  • the present invention also relates to a method for producing them.
  • Petunia is a general term for horticultural species of the Solanaceae family and the genus Petunia, and about 16 species of the genus Petunia grow naturally in the Americas.
  • the cultivar Petunia is Petunia x hybrida, which is derived from the interspecific hybrids of Petunia axillaris and Petunia integrifolia.
  • Petunia has been cultivated in a variety of flower colors, diameters and grass shapes since breeding began in the United Kingdom in the 1830s, and is now one of the most important flower items for flower beds and pots worldwide. There is. (Non-Patent Document 1).
  • F1 F1 hybrid varieties
  • F1 varieties are widespread in major crops.
  • F1 varieties have great advantages such as vigorous growth due to heterosis, fast growth, and high yield.
  • F1 varieties can be expected to improve resistance to pests and environmental adaptability such as cold resistance and heat resistance due to vigorous growth.
  • the genotypes of F1 varieties are heterozygous but the same genotype, the phenotype shows extremely high uniformity. Therefore, the marketability of the product is enhanced. Furthermore, since useful traits controlled by dominant genes can be accumulated in parents of F1 cultivars, rapid breeding becomes possible.
  • parents When collecting F1 varieties, parents generally use self-fertilized (inbreeding) lines, and seed parents and pollen parents are selected from combinations that have a large effect of heterosis.
  • CMS cytoplasmic Male Sterility
  • the cytoplasmic male sterile line of petunia is based on H.L. Everett and W.H. Gabelman, with petunia (P. hybrida) as the pollen parent and wild species of unknown species (presumed as P. axillaris, P. integrifolia or P. parodii) as the seed parent. It is said to have been obtained by crossing.
  • This information suggests that the cytoplasmic male sterility line of petunia is an alloplasmic line, and that the combination of nucleus and cytoplasm resulted in cytoplasmic male sterility.
  • the CMS line caused by the petunia pcf gene (hereinafter referred to as "pcf-CMS") has many academic research cases of CMS, but in practical terms, flower bud development arrest, flower size reduction, and flowering It has been reported to be accompanied by various defective traits such as delay (Non-Patent Document 3). These defective traits depend on the genotype of the strain to be CMS-ized, and can be used by selecting a strain in which the expression of the defective trait is slight. However, the parent system that can be used is limited, and there are disadvantages such as the need for careful prototyping before the product is released.
  • the present invention is a novel cytoplasmic male sterile line in which the growth property in the seedlings does not decrease in view of the problem that the growth property in the existing "pcf-CMS" lineage decreases as described above, and is fertile.
  • the purpose is to provide a stable cytoplasmic male sterile line that does not cause recovery. It also aims to achieve diversification of the CMS cytoplasm. Furthermore, it is an object of the present invention to provide a method for producing F1 seeds of petunia using the novel cytoplasmic male sterile line.
  • the present inventors have now performed asymmetric cell fusion using Nicotiana suaveolens as a cytoplasmic donor and petunia having a normal cytoplasm as a cytoplasmic acceptor, thereby not reducing the growth of the seedlings, that is, the seedlings.
  • F1 seeds of petunia in which the growth in seedlings does not decrease can be obtained.
  • the obtained cytoplasmic male sterile petunia utilizes cytoplasm derived from a plant of the genus Petunia, and it is considered that the fertility recovery gene of the plant of the genus Petunia, which is conventionally known, does not function, and tobacco is contained in the plant of the genus Petunia. Since there is no cytoplasmic fertility recovery gene derived from the genus plant, it was considered that cytoplasmic male sterility was stable. Therefore, the present inventors have succeeded in obtaining a stable cytoplasmic male sterile line that does not cause fertility recovery. Furthermore, since it is different from the existing cytoplasmic male sterile line, diversification of CMS cytoplasm is also achieved. The present invention is based on these findings.
  • cytoplasmic male sterile Petunia plant having DNA derived from the mitochondrial genome of a tobacco genus plant in the mitochondrial genome, or a hybrid plant with the cytoplasmic male sterile Petunia plant, or a progeny thereof.
  • the tobacco genus plant is Nicotiana suaveolens, the cytoplasmic male sterile petunia plant of ⁇ 1>, or a hybrid plant with the cytoplasmic male sterile petunia plant, or a progeny thereof.
  • cytoplasmic male sterile petunia plant according to ⁇ 1> or ⁇ 2>, wherein the cytoplasmic male sterile petunia plant is derived from Petunia hybrida or an interspecific hybrid plant thereof, or the cytoplasm. Hybrid plants with male sterile petunia plants, or their progeny.
  • cytoplasmic male sterile Petunia plant is derived from a plant obtained by performing asymmetric cell fusion using a tobacco genus plant as a cytoplasmic donor. Cytoplasmic male sterile Petunia plants, or hybrid plants with the cytoplasmic male sterile Petunia plants, or their successors.
  • ⁇ 5> The cytoplasmic male of any one of ⁇ 1> to ⁇ 4> above, wherein the hybrid plant with the cytoplasmic male sterile petunia plant is derived from an intergeneric hybrid plant of the petunia genus plant and the Calibrachoa genus plant.
  • ⁇ 6> The cytoplasmic male-sterile petunia plant according to any one of ⁇ 1> to ⁇ 5> above, or the cytoplasmic male-sterile petunia plant containing the mitochondrial genome derived from the plant specified by accession number FERM BP-22398. Hybrid plants with, or their successors.
  • ⁇ 7> One or more primers selected from the group consisting of the primer set having the base sequences shown in SEQ ID NOs: 59 and 60 and the primers contained in the primer set having the base sequences shown in SEQ ID NOs: 67 and 68.
  • At least one of the mitochondrial DNA regions identified by the mitochondrial genomic marker used is a Cytoplasmic male sterile Petunia plant according to any one of ⁇ 1> to ⁇ 6>, or the cytoplasmic male sterility, which is of the Nicotiana suaveolens type. Hybrid plants with fertile petunia plants, or their successors.
  • cytoplasmic male sterile petunia plant according to any one of ⁇ 1> to ⁇ 7> or the cytoplasmic male sterile petunia plant having the mitochondrial genome of the plant specified by the accession number FERM BP-22398. Hybrid plants, or their successors.
  • a hybrid plant with a cytoplasmic male sterile Petunia plant or a cytoplasmic male sterile Petunia plant having the mitochondrial genome of the plant specified by the accession number FERM BP-22398 is used as the cytoplasmic donor and the normal cytoplasm is used.
  • ⁇ 11> A plant of the genus Cytoplasmic male sterile petunia according to any one of ⁇ 1> to ⁇ 10>, a hybrid plant with the plant of the genus Cytoplasmic male sterile petunia, or a part of a plant body thereof.
  • ⁇ 12> A plant of the genus Cytoplasmic male sterile petunia according to any one of ⁇ 1> to ⁇ 10>, or a hybrid plant with the plant of the genus Cytoplasmic male sterile petunia, or seeds thereof.
  • cytoplasmic male sterile petunia plant according to any one of ⁇ 1> to ⁇ 10>, or a hybrid plant with the cytoplasmic male sterile petunia plant, or a progeny thereof, the plant according to ⁇ 11>.
  • Cytoplasmic male sterile petunia which comprises a step of performing asymmetric cell fusion using a tobacco genus plant as a cytoplasmic donor and a petunia plant having a normal cytoplasm or a hybrid plant with a petunia genus plant as a cytoplasmic acceptor.
  • a cytoplasmic male sterile Petunia plant with an improved mitochondrial genome which comprises the step of performing asymmetric cell fusion using a Petunia plant having normal cytoplasm or a hybrid plant with a Petunia plant as a cytoplasmic acceptor, or said above.
  • cytoplasmic male sterile petunia plant is derived from Petunia hybrida or an interspecific hybrid plant thereof.
  • hybrid plant with the cytoplasmic male sterile petunia plant is derived from an intergeneric hybrid plant between the petunia plant and the Calibrachoa plant. ..
  • ⁇ 19> A hybrid plant with the cytoplasmic male sterile Petunia plant according to any one of ⁇ 1> to ⁇ 10>, or a hybrid plant with the cytoplasmic male sterile Petunia plant, or a progeny thereof as a seed parent and mated with the plant.
  • a method for producing a first-generation hybrid seed which comprises mating a possible Petunia plant and an intergeneric hybrid derived from the plant as a pollen parent, and collecting the first hybrid seed from the seed parent after the mating.
  • ⁇ 20> A hybrid primary seed produced by the method according to ⁇ 19>, or a hybrid primary plant grown from the seed, a progeny, or a part of a plant thereof.
  • a primer set comprising a primer having the base sequence shown in SEQ ID NO: 59 and a primer having the base sequence shown in SEQ ID NO: 60.
  • a primer set comprising a primer having the base sequence shown in SEQ ID NO: 67 and a primer having the base sequence shown in SEQ ID NO: 68.
  • cytoplasmic male sterile petunia plant in which the decrease in seedling growth seen in existing plants is not observed, that is, the seedling growth is improved.
  • novel cytoplasmic male sterile petunia plant according to the present invention it is possible to efficiently collect F1 seeds of petunia plants with improved seedling growth.
  • the existing pcf-CMS line uses a wild species of the genus Petunia of unknown species, and only this one type is used as the existing CMS line of Petunia.
  • Dependence on a single cytoplasm is of concern for genetic vulnerability, as is known in the case where maize F1 varieties utilizing T-type CMS were severely damaged by sesame leaf blight T-race. Therefore, diversification of CMS cytoplasm has been desired.
  • a new petunia cytoplasmic male sterility line different from the existing petunia cytoplasmic male sterility line is provided, "diversification of CMS cytoplasm" can be realized. This makes it possible to develop a wider variety of new varieties than before.
  • asymmetric return cell fusion method of the present invention it is possible to improve the cytoplasm of a plant of the genus Petunia and its intergeneric hybrid plant, particularly the mitochondrial genome.
  • the figure shows the flower morphology of the petunia novel cytoplasmic male sterile line "P4".
  • the figure shows the results of comparing the growth of seedlings between the continuous backcross progeny (BC3) (group on the left in the figure) of the petunia novel cytoplasmic male sterile line "P4" and its repetitive parent line (group on the right in the figure). show.
  • the progeny of continuous backcross of "P4" has a lower seedling growth rate than the parent line.
  • the figure shows a multiflora petunia parent line "Pt3" with a red flower color and a petunia novel cytoplasmic male sterile line "Q15" selected by continuous backcrossing with "Pt3" as a pollen parent (repeated parent). It is a photograph comparing.
  • the figure shows the morphology of the anthers of the normal cytoplasmic "Pt3", the cytoplasmic male sterile line "pcf-CMS" in which "Pt3" was continuously backcrossed (BC7), and "Q15", respectively, taken with a stereomicroscope. It is a photograph.
  • the figure shows "Pt3", a new CMS line "Q15" that has been backcrossed seven times (BC7) with “Pt3” as a repeat parent, and an existing CMS line "pcf-CMS". It is a photograph showing the difference in growth when seedlings are raised in an artificial weather room set to a day temperature of 22 ° C., a night temperature of 15 ° C., and 16-hour lighting. The figure is a photograph taken with a stereomicroscope of the anther morphology of each of the intergeneric hybrid plant having the same cytoplasm as the novel cytoplasmic male sterile line and the intergeneric hybrid plant having the normal cytoplasm.
  • the present invention relates to a cytoplasmic male sterile Petunia genus plant, a hybrid plant with the cytoplasmic male sterile Petunia genus plant, or a progeny thereof.
  • the cytoplasmic male sterile petunia plant according to the present invention, or a hybrid plant with the cytoplasmic male sterile petunia plant, or their progeny thereof has improved seedling growth as compared with the existing cytoplasmic male sterile petunia plant. It was done.
  • the cytoplasmic male sterile Petunia plant according to the present invention has DNA derived from the mitochondrial genome of a plant of the genus Tobacco in its mitochondrial genome.
  • the "Tobacco genus plant” that is, the Nicotiana genus plant can be utilized as a cytoplasmic donor in the present invention.
  • Plants of the genus Nicotiana are preferably N. suaveolens, N. debneyi, N. acuminata, N. longiflora, with Nicotiana suaveolens being more preferred.
  • Whether or not the cytoplasmic male sterile Petunia plant according to the present invention has DNA derived from the mitochondrial genome of a tobacco genus plant in its mitochondrial genome is determined by, for example, using a predetermined primer described later as an index in the Examples of the present application. It can be confirmed by the method described in.
  • the "petunia plant” in the cytoplasmic male sterile petunia plant according to the present invention is P. hybrida, P. axillaris, P. integrifolia, P. alpicola, P. altiplana, P. bajeensis, P. bonjardinensis, P. exserta. , P. guarapuavensis, P. helianthemoides, P. humifusa, P. inflata, P. interior, P. ledifolia, P. littoralis, P. mantiqueirensis, P. occidentalis, P. patagonica, P. pubescens, P. reitzii Examples include .riograndensis, P.
  • the "petunia genus plant” may be derived from an interspecific hybrid plant of a species belonging to the petunia genus plant. Among them, P. hybrida, which is a cultivated species of petunia, is preferable as the "petunia genus plant”.
  • interspecific hybrid plant refers to a plant obtained by interspecific hybrids, cell fusion, or grafting among species belonging to the genus Petunia as exemplified above.
  • the cytoplasmic male sterile Petunia plant is derived from Petunia hybrida or an interspecific hybrid plant of a Petunia plant.
  • hybrid plant with a plant of the genus Petunia means a plant derived from an intergeneric hybrid plant obtained by crossing a plant of the genus Petunia with a plant of a closely related genus.
  • closely related genus plants include plants of the genus Calibrachoa, Nierembergia serrata, and Brunfelsia latifolia.
  • Preferred closely related genera are Calibrachoa, Nierembergia, and more preferably Calibrachoa.
  • the hybrid of the cytoplasmic male sterile petunia plant is derived from the intergeneric hybrid plant of the petunia plant and the Calibrachoa plant, and can be obtained by cell fusion or grafting. Also includes plants that are hybridized.
  • the term "progeny of cytoplasmic male sterile petunia plant” refers to inheriting the cytoplasm obtained by mating the pollen of a petunia plant capable of mating with a cytoplasmic male sterile petunia plant by cytoplasmic inheritance. It means the next generation cytoplasmic male sterile petunia plant. Therefore, the progeny includes a progeny using a cytoplasmic male sterile Petunia plant having DNA derived from the mitochondrial genome of a tobacco genus plant in the mitochondrial genome, and a hybrid plant with the cytoplasmic male sterile Petunia plant.
  • the progeny used also includes hybrids obtained by crossing a cytoplasmic male sterile Petunia plant or a hybrid plant thereof according to the present invention with a Petunia plant capable of mating with the plant. Therefore, in the "progeny of cytoplasmic male sterile petunia plant", for example, the cytoplasmic male sterile petunia plant according to the present invention is used as a seed parent (female parent), and the petunia plant capable of mating with the plant is used as a pollen parent (pollen parent). It also includes those obtained by mating as a male parent).
  • the "progeny of cytoplasmic male sterile Petunia plant” includes, for example, a somatic cell hybrid plant or a grafted hybrid plant by cell fusion between the cytoplasmic male sterile Petunia plant according to the present invention and the Petunia plant. ..
  • asymmetric cell fusion refers to performing cell fusion using one of the isolated protoplasts used for cell fusion after disrupting it in advance before fusing it.
  • a cytoplasm donor a cell that destroys the nuclear genome during fusion and donates the cytoplasm to the fused cell by cell fusion.
  • a cytoplasm acceptor a substance that maintains the nuclear genome without destroying it at the time of fusion and accepts the cytoplasm from the cytoplasm donor parent.
  • asymmetric return cell fusion means that the plant obtained by asymmetric cell fusion or its progeny is used as a cytoplasmic donor, while one of the plants used for the initial asymmetric cell fusion is used as a cytoplasmic acceptor. It means that further asymmetric cell fusion is performed once or more (preferably once). That is, in asymmetric return cell fusion, asymmetric cell fusion is performed twice or more, including the first time.
  • normal cytoplasm is typically used in the sense that it is normal without showing sterility with respect to the cytoplasm of a plant exhibiting male sterility, that is, the male sterility cytoplasm. ..
  • cytoplasmic male sterile petunia plant of the present invention When obtaining the cytoplasmic male sterile petunia plant of the present invention, it is desirable to use a tobacco genus plant as a cytoplasm donor parent in asymmetric cell fusion. At this time, it is desirable to use a petunia plant having a normal cytoplasm as a cytoplasmic receptor parent.
  • the cytoplasmic male sterile Petunia plant is a primer having the nucleotide sequences shown in SEQ ID NOs: 59 and 60.
  • Mitochondrial DNA identified by a mitochondrial genomic marker using one or more primers selected from the set (Primer No. 30) and the primer set (Primer No. 34) having the nucleotide sequences shown in SEQ ID NOs: 67 and 68. At least one of the regions is of the Nicotiana suaveolens type.
  • the cytoplasmic male sterile Petunia plant, or a hybrid plant with the cytoplasmic male sterile Petunia plant, or their progeny thereof are primers SNc324k-3F, SNc325k-4R, SNc382k-1F, and SNc383k-4R (sequence).
  • At least one of the mitochondrial DNA regions identified by the mitochondrial genomic marker utilizing one or more primers selected from the primers having the nucleotide sequences shown in Nos. 59, 60, 67 and 68 is of the Nicotiana suaveolens type.
  • the cytoplasmic male sterile petunia plant according to the present invention may be referred to as Accession No. FERM BP-22398 (details are: It contains a plant-derived mitochondrial genome specified in (described later), and more preferably it is specified by accession number FERM BP-22398.
  • a cytoplasmic male sterile Petunia plant a hybrid plant with the cytoplasmic male sterile Petunia plant, or a progeny "part of a plant” thereof means one or more of the plants.
  • novel cytoplasmic male sterile petunia plant can be produced, for example, according to the following procedure. (1) Preparation of protoplasts (2) Asymmetric cell fusion (3) Culture of fused hybrid cells (4) Selection of cytoplasmic hybrid plants with cytoplasmic male sterility (5) Regeneration of plants from callus (6) Progeny Acquisition and selection of excellent strains
  • the "manufacturing method” can also be paraphrased as the "production method”. That is, the terms “production” and “manufacturing” used here have the same meaning.
  • P. hybrida which is a cultivated species of petunia, is preferable.
  • mesophyll tissue having high yield and high mitotic activity
  • other tissues such as hypocotyl, stem and callus may also be used as materials. ..
  • the method for isolating the protoplast may be a commonly used method known in the art (for example, the method described in Matsumoto, E, Plant cell reports, 1991. Vol9 (10), etc.) and is not particularly limited.
  • the following shows procedures as specific examples, but the present invention is not necessarily limited to them.
  • the cell tissue of a Petunia genus plant is shredded, and the protoplast is isolated by enzymatic treatment using an enzyme solution for protoplast isolation.
  • This solution is an inorganic salt buffer solution mainly containing a cell wall degrading enzyme and an osmoregulator.
  • the cell wall degrading enzyme is not particularly limited as long as it can be used for decomposing the cell wall of a plant, and examples thereof include cellulase, hemicellulase, and pectinase.
  • a combination of cellulase Y-C and macerozyme R-10 is preferable.
  • osmotic pressure adjusting agent general sugar alcohols such as mannitol, sorbitol, glucose and the like can be used, mannitol is preferable, and mannitol having a concentration of 0.3M to 0.7M is particularly preferable.
  • an inorganic salt to the enzyme solution in order to stabilize the protoplast membrane, and for example, it is preferable to add a CPW salt (Cocking and Peberdy, 1974) having the composition shown in Table 1 below. be.
  • the enzyme treatment is preferably a standing treatment at 25 to 30 ° C. for 8 to 20 hours.
  • Protoplasts isolated by enzyme treatment are filtered through a nylon mesh with a pore size of 30 to 100 ⁇ m, centrifuged to collect protoplasts, and the enzyme solution is removed. Next, the protoplast is suspended in a washing solution to wash the protoplast.
  • a cleaning liquid a commonly used CPW salt solution to which sugar alcohols are added as an osmotic pressure adjusting agent can be used.
  • the inactivation treatment can be carried out by suspending the protoplast in a CPW salt solution or the like in which an iodine compound such as iodoacetic acid or iodoacetamide is dissolved.
  • an iodine compound such as iodoacetic acid or iodoacetamide is dissolved.
  • the washing operation with the CPW salt solution 1 to 3 times using a centrifuge. Since the suspension of protoplasts also contains fragments of conduits and cells, it is preferable to further purify the protoplasts by a density gradient centrifugation method or the like.
  • the reagent used for purification examples include saccharides and synthetic colloids.
  • the use of a sucrose solution is preferable, and the use of a 15% to 20% sucrose solution is particularly preferable.
  • the cell density is measured by a blood cell calculator, and the liquid volume is adjusted with a CPW salt solution so that the cell density is suitable for cell fusion.
  • the cell density of the protoplast is preferably 1 ⁇ 10 5 to 1 ⁇ 10 7 cells / ml, and the use of a CPW salt solution is preferable for adjusting the liquid volume.
  • (Ii) Isolation of protoplasts of plants of the genus Nicotiana It is the plants of the genus Nicotiana that can be used as the cytoplasmic donor of the present invention.
  • the Nicotiana plants N. suaveolens, N. debneyi, N. acuminata, and N. longiflora are preferable, and N. suaveolens, which has an example of producing a cytoplasmic male sterile line of tobacco (N. tabacum), is particularly preferable.
  • Isolation of protoplasts of plants of the genus Nicotiana can be performed, for example, according to the same method as the above-mentioned isolation of protoplasts of plants of the genus Petunia.
  • the isolated protoplasts of the genus Nicotiana whose nuclei have been inactivated by radiation treatment are desirable to use.
  • the radiation to be irradiated for the radiation treatment include X-rays, ⁇ -rays, ultraviolet rays and the like, but the radiation is not particularly limited as long as it can destroy the nucleus.
  • the irradiation dose is preferably as low as possible within the range that can destroy the nucleus. For example, in the case of irradiation with soft X-rays in the present invention, an irradiation amount of 100 Gy to 900 Gy is preferable.
  • both types of protoplasts obtained above are mixed and cell fusion is performed.
  • a conventional method for example, a known electric fusion method (Planta, 151, 26-32, 1981), a PEG (polyethylene glycol) method (Planta, 120, 215-227, 1974), a dextran method (Jap) . J. Genet., 50, 235, 1975), etc., but are not particularly limited.
  • the PEG method is preferably used.
  • the cells obtained by the fusion treatment are preferably cultured in a medium suitable for culturing protoplasts derived from Petunia genus plants.
  • the method for culturing the protoplasts of plants of the genus Petunia is not particularly limited as long as it is appropriately modified based on the method for culturing the protoplasts of petunias, but in the present invention, NH 4 NO 3 is reduced to 200 mg / l1. It is preferable to use a / 2 concentration MS medium (Murashige, T. & Skoog, Physiol.Plant., 15,473-497, 1962) as a basic medium, and appropriately add plant growth-regulating substances, various additives, and the like.
  • MS medium Merashige, T. & Skoog, Physiol.Plant., 15,473-497, 1962
  • cytoplasmic hybrid plants with cytoplasmic male sterility
  • callus growth medium Conventional callus growth medium can be used, and the reaction varies depending on the genotype of the plant used as the material and the state of callus, but for example, 0.1 to 3.0 mg / l naphthalene acetate (NAA) and 0.1. It is preferable to use an MS medium containing ⁇ 3.0 mg / l tidiazulone (TDZ).
  • cytoplasmic hybrid individuals For selection of cytoplasmic hybrid individuals, it is preferable to extract DNA from callus and efficiently select it using a marker capable of specifically amplifying mitochondrial DNA of a plant belonging to the genus Nicotiana by the PCR method.
  • Regeneration of plants from callus Callus having mitochondrial DNA of selected Nicotiana genus plants is transplanted into a redifferentiation medium and redifferentiated.
  • a redifferentiation medium a conventional medium can be used, and the reaction varies depending on the genotype of the plant as a material and the state of callus, but for example, 0.1 to 1.0 mg / l NAA and 0.1 to 1. It is preferable to use an MS medium containing 0 mg / l of TDZ.
  • the regenerated shoots are transplanted into an MS medium containing 3% sucrose and 0.8% agar to root them, and the plants are regenerated.
  • the regenerated plants are acclimatized and grown in the greenhouse.
  • the obtained cytoplasmic hybrid plants may be fused with protoplasts of two or more petunia plants to form higher-order polyploids of tetraploid or higher. Higher-order polyploids are inferior in acquisition efficiency to progeny, and it takes time and effort to return to diploids. Therefore, test ploidy using a flow cytometer and use only diploid individuals. Is preferable.
  • the obtained cytoplasmic hybrid plant is cultivated in a greenhouse or the like to bloom, and an individual expressing male sterility is selected. Mating a petunia plant with normal cytoplasm as a pollen parent is confirmed to be cytoplasmic male sterility in the progeny.
  • Asymmetric return cell fusion improves the mitochondrial genome by performing asymmetric cell fusion using plants or progeny obtained by asymmetric cell fusion as cytoplasmic donors, while plants with normal cytoplasm are used as cytoplasmic acceptors. The method.
  • the causative gene of cytoplasmic male sterility is present in the mitochondrial genome.
  • the petunia novel cytoplasmic male sterility line obtained by the first asymmetric cell fusion is responsible for the expression of defective traits that are not involved in male sterility, in addition to the mitochondrial DNA of N. suaveolens that induces male sterility. It is also considered to have mitochondrial DNA of suaveolens.
  • the petunia novel cytoplasmic male sterile line obtained by the first asymmetric cell fusion was used as the cytoplasmic donor parent, and the Petunia genus plant having normal cytoplasm was used as the cytoplasmic acceptor, and asymmetric return cell fusion, that is, the second asymmetric cell fusion was performed. New mitochondrial genome recombination can occur.
  • asymmetric return cell fusion that is, the second asymmetric cell fusion was performed.
  • New mitochondrial genome recombination can occur.
  • the petunia novel cytoplasmic male sterile line obtained by the first asymmetric cell fusion in which the entire mitochondrial genome is approaching the petunia type as a material, it becomes easier to obtain a mitochondrial genome closer to the petunia type. , Selection of good cytoplasmic male sterile lines becomes efficient.
  • the obtained cytoplasmic hybrid plant will be in a heteroplasmic state immediately after the cell fusion, so it is necessary to select a good cytoplasmic male sterile line while performing continuous backcrossing. .. It is also possible to further improve the mitochondrial genome by repeating asymmetric return cell fusion more than once.
  • Example 1 Method for producing a novel cytoplasmic male sterile line of petunia (1) Preparation of protoplasts (i) Isolation of protoplasts of petunia plants having normal cytoplasm As petunia plants having normal cytoplasm, "Pt1" of the grandiflora system having a magenta flower color was used. Sterilized seeds of "Pt1" were placed on MS medium supplemented with 3% sucrose and 0.8% agar, and grown at 20 ° C. for 16 hours under illumination for about 1 month.
  • the enzyme solution containing leaf tissue was filtered through a 59 ⁇ m nylon mesh to remove cell residues.
  • the obtained protoplast suspension was transferred to a centrifuge tube and centrifuged at 800 rpm for 5 minutes.
  • the obtained protoplasts obtained by removing the supernatant were suspended in 5 ml of a CPW salt solution containing 15 mM iodoacetamide and incubated at 4 ° C. for 15 minutes. After incubation, the iodoacetamide-treated protoplast suspension was centrifuged at 800 rpm for 5 minutes, and the supernatant was removed. 10 ml of CPW salt solution was added to the protoplast suspension, and the operation of centrifuging at 800 rpm for 5 minutes to remove the supernatant was repeated 3 times to wash the protoplast.
  • the washed protoplast suspension was centrifuged at 800 rpm for 5 minutes, the supernatant was removed, and 2 ml of CPW salt solution was added to suspend the protoplast.
  • 5 ml of a CPW salt solution containing 20% sucrose was added to a new centrifuge tube, the suspension of the above protoplast was layered on it, and centrifugation was performed at 800 rpm for 5 minutes.
  • the cell debris sank to the bottom of the centrifuge tube and the purified protoplasts floated into the upper CPW salt solution layer and were transferred to a new centrifuge tube with a Pasteur pipette. A small amount of the suspension was taken, the cell density of the protoplast was determined using a hemocytometer, and CPW solution was added to prepare 1 ⁇ 10 6 cells / ml.
  • N. suaveolens which is an example of producing cytoplasmic male sterile plant of tobacco.
  • Tobacco seed N. suaveolens was provided by Japan Tobacco Inc. Leaf Tobacco Research Institute. Sterilized N. suaveolens seeds were placed on MS medium supplemented with 3% sucrose and 0.8% agar and grown at 20 ° C. for 16 hours under illumination for about 1 month.
  • the enzyme solution containing leaf tissue was filtered through a 59 ⁇ m nylon mesh to remove cell residues.
  • the protoplast was transferred to a plastic petri dish with a Pasteur pipette and irradiated with 900 Gy of soft X-rays.
  • the obtained protoplast suspension was transferred to a centrifuge tube, centrifuged at 800 rpm for 5 minutes, the supernatant was removed, and 2 ml of CPW salt solution was added to suspend the protoplast.
  • 5 ml of a CPW salt solution containing 20% sucrose was added to a new centrifuge tube, the suspension of the above protoplast was layered on it, and centrifugation was performed at 800 rpm for 5 minutes.
  • the cell debris sank to the bottom of the centrifuge tube and the purified protoplasts floated into the upper CPW salt solution layer and were transferred to a new centrifuge tube with a Pasteur pipette.
  • a small amount of the suspension was taken, the cell density of the protoplast was determined using a hemocytometer, and a CPW salt solution was added to prepare 1 ⁇ 10 6 cells / ml.
  • Protoplast fusion treatment A petunia plant protoplast suspension having normal cytoplasm treated with iodoacetamide and a Nicotiana plant protoplast suspension irradiated with soft X-rays were mixed at a ratio of 1: 3, and the bottom surface of a 9 cm canyon was mixed. 2 ml of the mixed solution was added dropwise to the center. After standing for 30 minutes, protoplast with 500 g / l PEG solution (polyethylene glycol # 6000 (nacalai tesque Inc.), 1,500 mg / l CaCl 2.2H 2 O, 100 mg / l KH 2 PO 4 , pH 5.5 ). It was dropped around the mixture.
  • CPW salt solution After 1 minute, 3.5 ml of CPW salt solution was added dropwise around the protoplast mixture. After another 2 minutes, 3.5 ml of CPW salt solution was added dropwise around the protoplast mixture. After 5 minutes, the dropped liquid was gently sucked up and removed from the edge of the petri dish, and 20 ml of CPW salt solution was added from the edge of the petri dish. The operation of washing with this CPW salt solution was repeated 3 times at 5-minute intervals.
  • callus became visible to the naked eye, so callus was found in MS containing callus growth medium (1 mg / l NAA, 1 mg / l TDZ, 3.0% sucrose, 0.8% agar). The medium was transplanted to pH 5.8).
  • FIG. 2 shows a remarkable example in which a decrease in the vigor of the seedlings was observed.
  • the progeny of continuous backcrossing (BC3) of the petunia novel cytoplasmic male sterile line "P4" may have a reduced seedling growth rate as compared with its repetitive parent line. confirmed.
  • Example 2 Method for improving the Petunia novel cytoplasmic male sterility line "P4"
  • Asymmetric cell fusion (asymmetric return cell fusion) was performed in the same manner.
  • the obtained callus was selected for cytoplasmic hybrids using a primer specific to the nad3 gene of tobacco as in Example 1. Cytoplasmic hybrid plants were transplanted into 9 cm pots and continued to raise seedlings, and male sterility was investigated after flowering. As a result, 14 cytoplasmic male sterile lines were obtained.
  • FIG. 4 shows the morphology of the anthers of the normal cytoplasmic “Pt3”, the cytoplasmic male sterile line “pcf-CMS” in which "Pt3" was continuously backcrossed (BC7), and “Q15”.
  • nucleotide sequence information of the mitochondrial genome of N. suaveolens is not disclosed, 16 mitochondrial genes are specifically selected using the entire nucleotide sequence information of N. tabacum of the same tobacco genus (GenBank registration number BA0000024). A primer to be amplified was designed, and the primer No. in Table 3 was used. 2 to 17 are shown. In addition, based on the nucleotide sequence information of the known petunia CMS causative gene (pcf), a primer that specifically amplifies the pcf gene was designed, and the primer No. in Table 3 was used. Shown in 18.
  • the spacer region between the atpA gene and the atpH gene was obtained by using the entire nucleotide sequence information (GenBank registration number Z00044) of the chloroplast genome of N. tabacum.
  • a primer for specifically amplifying was designed, and the primer No. in Table 3 was used. Shown in 19.
  • the PCR product was digested with the restriction enzyme TaqI, and RFLP due to the difference in restriction enzyme sites was detected to identify the origin of the chloroplast.
  • Table 4 shows the results of analysis of the cytoplasm of each line of N. suaveolens, "Pt3", “P4", “Q15”, and “pcf-CMS" using the newly designed primer set in Table 3. Indicated.
  • Petunia's novel cytoplasmic male sterile line "Q15" was introduced into 51 lines of various parent lines (BC1 to BC4), but no recovery of fertility was observed. Furthermore, no fertility recovery was observed in 91 combinations of F1 test cloths using these parent lines.
  • Example 3 Evaluation of seedling growth of petunia novel cytoplasmic male sterile line "Q15"
  • normal cytoplasm was used.
  • a comparative test was conducted on the growth of seedlings of the cytoplasmic replacement line with "Pt3" possessed by "Pt3” and “Pt3” of "Q15" and "pcf-CMS".
  • each line was sown in a 128-hole cell tray and cultivated in an artificial weather room set to a day temperature of 22 ° C., a night temperature of 15 ° C., and lighting for 16 hours.
  • a day temperature of 22 ° C. a day temperature of 22 ° C.
  • a night temperature 15 ° C.
  • lighting for 16 hours.
  • 30 days after sowing the above-ground part of the seedlings of each line was cut off at the ground and weighed per plant. The results are shown in Table 7.
  • FIG. 5 is a photograph showing the difference in growth of each line at that time.
  • Petunia's novel cytoplasmic male sterile line "Q15" were released on August 28, 2020 by the National Institute of Technology and Evaluation Patent Organism Deposit Center (2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture) 120. It has been internationally deposited (original deposit) in Room No.) (Indication for identification attached by the depositor: SSC-PET-20-001, Deposit number: FERM BP-22398).
  • Example 4 Introduction of Petunia novel cytoplasmic male sterility into intergeneric hybrid plants Petunia novel cytoplasmic male sterility using N. suaveolens produced in the present invention was introduced into a fertile intergeneric hybrid plant of Petunia (Petunia ⁇ ). In order to introduce it into Calibrachoa), continuous backcrossing was performed using a new cytoplasmic male sterile line of Petunia as a seed parent (single parent) and 7 lines of fertile intergeneric hybrid plants of Petunia as pollen parents (repeated parents). , Cytoplasmic replacement was performed.
  • the cytoplasm of the novel CMS line derived from N. suaveolens according to the present invention can be introduced into a closely related intergenus hybrid plant and develops cytoplasmic male sterility.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Organic Chemistry (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Husbandry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

タバコ属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔ペチュニア属植物、もしくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代が開示されている。この細胞質雄性不稔ペチュニア属植物は、幼苗の生長性が改善され、また稔性回復を引き起こさない安定した系統であり、さらにCMS細胞質の多様化を達成する。

Description

細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法
 本発明は、細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代に関する。本発明はまた、それらの製造方法に関する。
 ペチュニア(Petunia)は、ナス科、ペチュニア属の園芸種の総称であり、ペチュニア属はアメリカ大陸に約16種が自生している。園芸品種のペチュニアは、Petunia x hybridaであり、Petunia axillarisとPetunia integrifoliaの種間雑種に由来している。ペチュニアは、1830年代にイギリスで育種が始まって以来,多様な花色,花径や草姿の品種が育成され,現在では世界的な花壇用および鉢もの用の最重要花卉品目の一つとなっている。(非特許文献1)。
 一般的に、植物品種には、固定種と雑種第一代(以下、「F1」と記す)品種があり、主要作物においてはF1品種が普及している。F1品種は、雑種強勢(ヘテロシス)により生育が旺盛で、生育が速く、収量性が高まるなど大きな利点がある。さらにF1品種は、生育が旺盛になることにより、病害虫への耐性や、耐寒・耐暑性などの環境適応性の向上も期待できる。
 またF1品種の遺伝子型はヘテロ性でありながら同一の遺伝子型であるため、表現型は極めて高い均一性を示す。このため、生産物の市場性が高まる。さらにF1品種の両親に優性遺伝子に支配されている有用形質を集積できるため、迅速な育種が可能となる。
 以上のような優位性があることから、F1品種は、主要作物において栽培品種の主流を占めるようになった。
 F1品種の採種を行う場合、一般に両親は、自殖(近交)系統が用いられ、雑種強勢の効果が大きい組み合わせ等の中で、種子親と花粉親が選定される。
 種子親は、自家受精を防ぐため除雄を行う必要があるが、人手による除雄は、極めて多大な労力が必要となる。そこで、遺伝的な雄性不稔性である細胞質雄性不稔(Cytoplasmic Male Sterility(以下において、「CMS」と記す))系統を種子親に用いれば、人手による除雄の作業が不要となり、F1種子を経済的かつ大量に生産することができる。CMSを利用したF1種子の生産は、ヒマワリ、テンサイ、コムギ、ニンジン、タマネギ、ネギ、キャベツ、ブロッコリー、カリフラワー、ダイコン、およびハクサイなどで商業的な生産システムが確立されている。
 ペチュニアの細胞質雄性不稔系統は、H.L. Everett とW.H. Gabelmanによって、ペチュニア(P. hybrida)を花粉親、種不明の野生種(P. axillaris, P. integrifolia またはP. parodiiと推定)を種子親として交雑することによって得られたとされる。この情報から、ペチュニアの細胞質雄性不稔系統は、異種細胞質系統(Alloplasmic line)であり、核と細胞質の組み合わせが細胞質雄性不稔性をもたらしたと示唆されている。
 しかしながら、ペチュニアにおけるCMSの起源に関する記録は明らかではなく、CMSの起源は不明のままである。また、CMSをコードするミトコンドリアDNA(mtDNA)が、真の異種細胞質雄性不稔性ではなく、ある種の核ゲノムを別の種のミトコンドリアゲノムと組み合わせることによって誘導される再配列を通して生じた可能性が残されている。ペチュニアのCMSは、戻し交雑によってペチュニアに導入され、育種家に広まったが、これまでに使われたCMSは、1種類だけである。ペチュニアCMSの原因遺伝子は、1987年にYoungとHanson によって、配列決定されており、pcf遺伝子(Petunia CMS-associated Fused gene)と呼ばれている(非特許文献2)。
 ペチュニアのpcf遺伝子を原因とするCMS系統(以下において「pcf-CMS」と記す)は、学術的なCMSの研究事例は多いが、実用面では花蕾の発達停止、花のサイズの縮小、開花の遅延など様々な不良形質を伴うことが報告されている(非特許文献3)。これらの不良形質は、CMS化させる系統の遺伝子型に依存しており、不良形質の発現が軽微となる系統を選べば使用可能である。しかし、使用できる親系統が限られ、商品のリリース前に注意深い試作が必要となるなど不利な点がある。
 また、「pcf-CMS」系統の雄性不稔性は、単一優性または複数の稔性回復遺伝子により、稔性が回復することが知られており、系統によっては雄性不稔性の導入が困難な場合がある。さらに、雄性不稔性が安定しているように見える場合でも、「pcf-CMS」系統の雄性不稔性は、環境の変動によって稔性が回復することが知られている(非特許文献3)。
 以上のように、ペチュニアの「pcf-CMS」系統は、多くの難しい課題を抱えているため、「pcf-CMS」系統が使われている品種は、Farao Seeds社のGioconda、Capriシリーズなどに限られており、CMSの由来が異なる新しいCMS系統の開発が望まれている。
農業技術体系、花卉編、第8巻、1・2年草 ペチュニア類, pp.372-4 to 372-9, 農山漁村文化協会発行 J.D. Gillman et al, "Cytoplasmic Male Sterility and Fertility Restoration in Petunia", chapter 6, pp.107-129, Petunia, DOI (2009) M.L.K. Kaul, Male Sterility in Higher Plants, pp.809-810, Springer-Verlag, (1998)
 本発明者らは、既存のペチュニアの「pcf-CMS」系統の育種利用を検討したところ、従来知られている花蕾の発達停止、開花遅れなど様々な点に加えて、幼苗における生長性の低下が大きな問題の一つであったことが、判明した。
 また従来のpcf-CMS系統の雄性不稔性は、単因子優性または複数の稔性回復遺伝子により、稔性が回復することが知られている。
 さらに、既存のpcf-CMS系統は、種不明のペチュニア属の野生種が利用されており、既存のペチュニアのCMS系統としては、この1種類しか使われていない。単一の細胞質への依存は、T型CMSを利用したトウモロコシF1品種がゴマ葉枯病T-レースによって甚大な被害を被った事例で知られているように、遺伝的脆弱性が危惧される。このため、CMS細胞質の多様化が望まれていた。
 そこで本発明は、上記したような既存の「pcf-CMS」系統の幼苗における生長性が低下する問題点に鑑みて、幼苗における生長性が低下しない新規細胞質雄性不稔系統であって、稔性回復を引き起こさない安定した細胞質雄性不稔系統の提供を目的とする。またそれにより、CMS細胞質の多様化を達成することも目的とする。さらに本発明は、当該新規細胞質雄性不稔系統を利用したペチュニアのF1種子の製造方法を提供することを目的とする。
 本発明者らは今般、Nicotiana suaveolensを細胞質供与親とし、正常細胞質(Normal cytoplasm)を有するペチュニアを細胞質受容親として、非対称細胞融合を行うことによって、幼苗における生長性の低下しない、すなわち、幼苗の生長性が改善された新規細胞質雄性不稔ペチュニアを作出することに成功した。さらに、当該新規細胞質雄性不稔ペチュニアを利用することによって、幼苗における生長性の低下しないペチュニアのF1種子が得られることを見出した。また、得られた細胞質雄性不稔ペチュニアは、タバコ属植物由来の細胞質を利用しており、従来知られているペチュニア属植物の稔性回復遺伝子は機能しないと考えられ、ペチュニア属植物内にタバコ属植物由来の細胞質の稔性回復遺伝子も存在しないため、細胞質雄性不稔性が安定したものと考えられた。このため、本発明者等は、稔性回復を引き起こさない安定した細胞質雄性不稔性系統を得ることに成功した。さらに、既存の細胞質雄性不稔系統と異なるものであることから、CMS細胞質の多様化も達成される。
 本発明はこれらの知見に基づくものである。
 すなわち、本発明によれば、以下の発明が提供される。
 <1> タバコ属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <2> 前記タバコ属植物がNicotiana suaveolensである、前記<1>の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <3> 前記細胞質雄性不稔ペチュニア属植物が、Petunia hybrida又はその種間雑種植物に由来するものである、前記<1>又は<2>に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <4> 前記細胞質雄性不稔ペチュニア属植物が、タバコ属植物を細胞質供与親として用いる非対称細胞融合を行うことにより得られたものに由来するものである、前記<1>~<3>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <5> 前記細胞質雄性不稔ペチュニア属植物との雑種植物が、ペチュニア属植物とカリブラコア属植物の属間雑種植物に由来するものである、前記<1>~<4>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <6> 受託番号FERM BP-22398で特定される植物由来のミトコンドリアゲノムを含む、前記<1>~<5>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <7> 配列番号59及び60に示される塩基配列を有するプライマーセット、及び、配列番号67及び68に示される塩基配列を有するプライマーセットに含まれるプライマーからなる群より選択される1以上のプライマーを利用したミトコンドリアゲノムマーカーにより特定されるミトコンドリアDNA領域の少なくともいずれか1つが、Nicotiana suaveolens 型である、前記<1>~<6>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <8> 受託番号FERM BP-22398で特定される植物のミトコンドリアゲノムを有する、前記<1>~<7>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <9> 受託番号FERM BP-22398で特定される、前記<1>~<7>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <10> 受託番号FERM BP-22398で特定される植物のミトコンドリアゲノムを有する、細胞質雄性不稔ペチュニア属植物又は細胞質雄性不稔ペチュニア属植物との雑種植物を細胞質供与親として用い、かつ正常細胞質を有するペチュニア属植物又はペチュニア属植物との雑種植物を細胞質受容親として用いる非対称細胞融合により得られる、前記<1>~<9>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
 <11> 前記<1>~<10>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の植物体の一部。
 <12> 前記<1>~<10>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の種子。
 <13> 前記<1>~<10>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代、前記<11>に記載の植物体の一部、又は前記<12>に記載の種子に含まれる、ミトコンドリアゲノム。
 <14> タバコ属植物を細胞質供与親として用い、正常細胞質を有するペチュニア属植物又はペチュニア属植物との雑種植物を細胞質受容親として用いる非対称細胞融合を行う工程を含でなる、細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の製造方法。
 <15> タバコ属植物がNicotiana suaveolensである、前記<14>に記載の製造方法。
 <16> タバコ属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代を細胞質供与親として用い、正常細胞質を有するペチュニア属植物又はペチュニア属植物との雑種植物を細胞質受容親として用いる非対称細胞融合を行う工程を含んでなる、ミトコンドリアゲノムが改良された細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の製造方法。
 <17> 前記細胞質雄性不稔ペチュニア属植物が、Petunia hybrida 又はそれらの種間雑種植物に由来するものである、前記<14>~<16>のいずれかの製造方法。
 <18> 前記細胞質雄性不稔ペチュニア属植物との雑種植物が、ペチュニア属植物とカリブラコア属植物の属間雑種植物に由来するものである、前記<14>~<17>のいずれかの製造方法。
 <19> 前記<1>~<10>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代を種子親とし、該植物と交配可能なペチュニア属植物およびそれに由来する属間雑種を花粉親として交配し、交配後の種子親から雑種第一代種子を採種することを含んでなる、雑種第一代種子の製造方法。
 <20> 前記<19>に記載の方法により製造された雑種第一代種子、又は該種子から生育させた雑種第一代植物、その後代、又はそれらの植物体の一部。
 <21> 前記<1>~<10>のいずれかの細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代に、任意のペチュニア属植物およびそれに由来する属間雑種植物を連続戻し交雑し、細胞質置換することを含む、細胞質雄性不稔性を発現するペチュニア属植物およびそれに由来する属間雑種植物の製造方法。
 <22> 配列番号59に示される塩基配列を有するプライマーと、配列番号60に示される塩基配列を有するプライマーからなる、プライマーセット。
 <23> 配列番号67に示される塩基配列を有するプライマーと、配列番号68に示される塩基配列を有するプライマーからなる、プライマーセット。
 本発明によれば、既存のものに見られた幼苗の生長性の低下がみられない、すなわち幼苗の生長性が改善された細胞質雄性不稔ペチュニア属植物を提供することができる。本発明による新規の細胞質雄性不稔ペチュニア属植物を利用することにより、幼苗の生長性が改善されたペチュニア属植物のF1種子を効率的に採種することが可能となる。
 既存のpcf-CMS系統の雄性不稔性は、単因子優性または複数の稔性回復遺伝子により、稔性が回復することが知られているところ、本発明による細胞質雄性不稔系統は、タバコ属植物由来の細胞質を利用しているため、従来知られているペチュニア属植物の稔性回復遺伝子は機能しないと考えられ、ペチュニア属植物内にタバコ属植物由来の細胞質の稔性回復遺伝子も存在しない。このため、本発明によれば、稔性回復を引き起こさない安定した細胞質雄性不稔性系統を提供することができる。
 また既存のpcf-CMS系統は、種不明のペチュニア属の野生種が利用されており、既存のペチュニアのCMS系統としては、この1種類しか使われていない。単一の細胞質への依存は、T型CMSを利用したトウモロコシF1品種がゴマ葉枯病T-レースによって甚大な被害を被った事例で知られているように、遺伝的脆弱性が危惧される。このため、CMS細胞質の多様化が望まれていた。本発明によれば、既存のペチュニアの細胞質雄性不稔系統とは異なる新たなペチュニア細胞質雄性不稔系統が提供されるため、「CMS細胞質の多様化」を実現することができる。それにより、従来に比べてより多様な新たな品種の開発が可能となる。
 また本発明の非対称戻し細胞融合方法によれば、ペチュニア属植物、その属間雑種植物の細胞質、特にミトコンドリアゲノムの改良が可能となる。
図は、ペチュニア新規細胞質雄性不稔系統「P4」の花の形態を示す。 図は、ペチュニア新規細胞質雄性不稔系統「P4」の連続戻し交雑後代(BC3)(図左の群)と、その反復親系統(図右の群)との幼苗の生長性を比較した結果を示す。図において、「P4」の連続戻し交雑後代が親系統に比して幼苗の生長性が低下している。 図は、赤の花色を有するマルチフローラ系のペチュニア親系統「Pt3」と、「Pt3」を花粉親(反復親)として連続戻し交雑を行って選抜したペチュニア新規細胞質雄性不稔系統「Q15」とを比較した写真である。 図は、正常細胞質の「Pt3」と、「Pt3」を連続戻し交雑(BC7)した細胞質雄性不稔系統「pcf-CMS」と、「Q15」のそれぞれの葯の形態を、実体顕微鏡で撮影した写真である。 図は、「Pt3」と、「Pt3」を反復親として7回の連続戻し交雑(BC7)した新規CMS系統「Q15」と、既存のCMS系統である「pcf-CMS」とを使用して、昼温22℃、夜温15℃、及び16時間照明に設定した人工気象室内で育苗した場合の生長性の違いを示した写真である。 図は、新規細胞質雄性不稔系統と同一の細胞質を有する属間雑種植物と正常細胞質を有する属間雑種植物のそれぞれの葯の形態を、実体顕微鏡で撮影した写真である。
 以下、本発明について詳細に説明する。
新規の細胞質雄性不稔ペチュニア属植物、前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代
 本発明は、前記したように、タバコ属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔ペチュニア属植物、もしくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代に関する。本発明による細胞質雄性不稔ペチュニア属植物、もしくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代は、既存の細胞質雄性不稔ペチュニア属植物に比べて、幼苗の生長性が改善されたものである。
 本発明による細胞質雄性不稔ペチュニア属植物は、タバコ属植物のミトコンドリアゲノムに由来するDNAを、そのミトコンドリアゲノム内に有する。
 ここで、「タバコ属植物」、すなわち、Nicotiana属植物は、本発明において細胞質供与親として利用されうるものである。Nicotiana属植物は好ましくは、N. suaveolens、N. debneyi、N. acuminata、N. longifloraであり、Nicotiana suaveolensがより好ましい。
 本発明による細胞質雄性不稔ペチュニア属植物が、そのミトコンドリアゲノム内に、タバコ属植物のミトコンドリアゲノムに由来するDNAを有するか否かは、例えば、後述する所定のプライマーを指標にして、本願実施例に記載の方法により確認することができる。
 本発明による細胞質雄性不稔ペチュニア属植物における「ペチュニア属植物」とは、P. hybrida、P. axillaris、P. integrifolia、P. alpicola、P. altiplana、P. bajeensis、P. bonjardinensis、P. exserta、P. guarapuavensis、P. helianthemoides、P. humifusa、P. inflata、P. interior、P. ledifolia、P. littoralis、P. mantiqueirensis、P. occidentalis、P. patagonica、P. pubescens、P. reitzii、P. riograndensis、P. saxicola、P. scheideana、P. variabilis、P. villadianaが挙げられる。また「ペチュニア属植物」は、ペチュニア属植物に属する種の種間雑種植物に由来するものであってもよい。なかでも「ペチュニア属植物」は、ペチュニアの栽培種であるP. hybridaが好ましい。
 なおここで「種間雑種植物」とは、上記で例示したようなペチュニア属植物に属する種における異種間での種間雑種、若しくは細胞融合、又は接ぎ木により得られる植物をいう。
 よって、本発明の一つの好ましい態様によれば、細胞質雄性不稔ペチュニア属植物は、Petunia hybrida、又はペチュニア属植物の種間雑種植物に由来するものである。
 本願明細書において、「ペチュニア属植物との雑種植物」とは、ペチュニア属植物と、近縁の属植物との間での交雑により得られる属間雑種植物に由来するものを意味する。ここで、近縁の属植物としては、例えば、カリブラコア属、アマモドキ属、バンマツリ属の植物などが挙げられる。好ましい近縁の属としては、カリブラコア属、アマモドキ属であり、より好ましくは、カリブラコア属である。
 よって、本発明の一つの好ましい態様によれば、細胞質雄性不稔ペチュニア属植物の雑種は、ペチュニア属植物とカリブラコア属植物の属間雑種植物に由来するものであり、細胞融合、又は接ぎ木により得られる植物も包含する。
 本明細書において、「細胞質雄性不稔ペチュニア属植物の後代」とは、細胞質雄性不稔ペチュニア属植物に交配可能なペチュニア属植物の花粉を交配することによって得られる、当該細胞質を細胞質遺伝により引き継ぐ次代の細胞質雄性不稔ペチュニア属植物を意味する。よって、後代には、タバコ属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔ペチュニア属植物を用いた後代を含む他、前記細胞質雄性不稔ペチュニア属植物との雑種植物を用いた後代を含み、さらに本発明による細胞質雄性不稔ペチュニア属植物又はその雑種植物と、該植物と交配可能なペチュニア属植物とを交配させて得られる交雑種も包含される。したがって、「細胞質雄性不稔ペチュニア属植物の後代」には、例えば、本発明による細胞質雄性不稔ペチュニア属植物を種子親(雌親)とし、該植物と交配可能なペチュニア属植物を花粉親(雄親)として交配することによって得られるものも含まれる。また、「細胞質雄性不稔ペチュニア属植物の後代」には、例えば本発明による細胞質雄性不稔ペチュニア属植物と、該ペチュニア属植物との細胞融合による体細胞雑種植物、又は接ぎ木雑種植物も含まれる。
 本明細書において、「非対称細胞融合」とは、細胞融合に用いる単離したプロトプラストの一方の核ゲノムを融合させる前に予め破壊させた後、それを用いて細胞融合を行うことをいう。この非対称細胞融合において、融合に際して核ゲノムを破壊して、細胞融合によってその細胞質を融合細胞に供与するものを、細胞質供与親という。また、融合に際して、核ゲノムを破壊させることなく、維持し、前記細胞質供与親からの細胞質を受け入れるものを、細胞質受容親という。
 またここで、「非対称戻し細胞融合」とは、非対称細胞融合により得られた植物またはその後代を細胞質供与親として用いる一方で、初回の非対称細胞融合に使用した植物の一方を細胞質受容親として用いて、さらなる非対称細胞融合を1回以上(好ましくは1回)行うことをいう。すなわち、非対称戻し細胞融合では、初回を含めれば、非対称細胞融合を2回以上行う。
 本発明においては、典型的には、「正常細胞質」は、雄性不稔性を示す植物の細胞質、すなわち雄性不稔細胞質に対して、不稔性を示さず正常であるという意味で使用される。
 本発明の細胞質雄性不稔ペチュニア属植物を得る場合には、非対称細胞融合において、細胞質供与親として、タバコ属植物を用いることが望ましい。またこのとき、細胞質受容親として、正常細胞質を有するペチュニア属植物を用いることが望ましい。
 本発明の好ましい態様によれば、細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代は、配列番号59及び60に示される塩基配列を有するプライマーセット(プライマーNo.30)、及び、配列番号67及び68に示される塩基配列を有するプライマーセット(プライマーNo.34)から選択される1以上のプライマーを利用したミトコンドリアゲノムマーカーにより特定されるミトコンドリアDNA領域の少なくともいずれか1つが、Nicotiana suaveolens 型である。
 換言すると、細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代は、プライマーSNc324k-3F、SNc325k-4R、SNc382k-1F、及びSNc383k-4R(配列番号59、60、67及び68に示される塩基配列を有するプライマーから選択される1以上のプライマーを利用したミトコンドリアゲノムマーカーにより特定されるミトコンドリアDNA領域の少なくともいずれか1つが、Nicotiana suaveolens 型である。
 本発明のより好ましい態様によれば、本発明による細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代は、受託番号FERM BP-22398(詳細は後述)で特定される植物由来のミトコンドリアゲノムを含むものであり、さらに好ましくは、受託番号FERM BP-22398で特定されるものである。
 本明細書において、細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の「植物体の一部」とは、当該植物体の1個以上の細胞または1個以上の細胞からの細胞質を含むものであり、具体的には花、葉、茎、根等の器官または組織、或いは、これらの器官または組織からの細胞(細胞から調製されたプロトプラストを含む)もしくは細胞質、或いは前記細胞もしくは細胞質の集合体を意味する。
新規細胞質雄性不稔ペチュニア属植物の作出方法
 本発明による新規細胞質雄性不稔ペチュニア属植物は、例えば、以下の手順に従って作出することができる。
(1)プロトプラストの調製
(2)非対称細胞融合
(3)融合雑種細胞の培養
(4)細胞質雄性不稔性を有する細胞質雑種植物の選抜
(5)カルスからの植物体の再生
(6)後代の獲得と優良系統の選抜
 なお本明細書においては、「製造方法」は「作出方法」とも言い換えることができる。すなわち、ここでいう「作出」と「製造」との用語は同等の意味で使用される。
 これら各工程は、より具体的には以下のとおりである。
(1)プロトプラストの調製
 (i)ペチュニア属植物のプロトプラストの単離
 プロトプラストの調製に用いるペチュニア属植物は、P. hybrida、P. axillaris、P. integrifolia、P. alpicola、P. altiplana、P. bajeensis、P. bonjardinensis、P. exserta、P. guarapuavensis、P. helianthemoides、P. humifusa、P. inflata、P. interior、P. ledifolia、P. littoralis、P. mantiqueirensis、P. occidentalis、P. patagonica、P. pubescens、P. reitzii、P. riograndensis、P. saxicola、P. scheideana、P. variabilis、P. villadianaが挙げられるが、なかでもペチュニアの栽培種であるP. hybridaが好ましい。
 プロトプラストを得るために使用する細胞組織としては、収量性が高く、分裂活性が高い葉肉組織を供試することが望ましいが、胚軸や茎、カルスなどの他の組織も材料として用いてもよい。
 プロトプラストを単離する方法は、当該技術分野において公知である通常用いられる方法(例えば、Matsumoto,E, Plant cell reports, 1991. vol9(10)等に記載の方法)で良く、特に制限されない。以下は具体例としての手順を示すが本発明は必ずしもそれらに拘束されるものではない。
 まず、Petunia属植物の細胞組織を細切し、プロトプラスト単離用酵素溶液を用いて、酵素処理することによってプロトプラストを単離する。この溶液は主に細胞壁分解酵素、浸透圧調整剤を含む無機塩緩衝液である。細胞壁分解酵素としては、植物の細胞壁の分解に使用できるものであれば特に制限されないが、例えば、セルラーゼ、ヘミセルラーゼ、ペクチナーゼ等が挙げられる。本発明では、セルラーゼY-CとマセロザイムR-10の組み合わせが好ましい。
 浸透圧調整剤としては、一般的な糖アルコール類、例えば、マンニトール、ソルビトール、グルコース等を用いることができ、マンニトールが好ましく、0.3M~0.7Mの濃度のマンニトールが特に好ましい。さらに、酵素溶液には、プロトプラストの膜の安定化のために、無機塩を添加することが望ましく、例えば、下記表1に記載の組成のCPW塩(Cocking and Peberdy, 1974)を添加すると好適である。酵素処理は、25~30℃で8~20時間静置処理すると好適である。
Figure JPOXMLDOC01-appb-T000001
 酵素処理により単離したプロトプラストを30~100μmの孔径のナイロンメッシュで濾過し、遠心分離してプロトプラストを集めて酵素液を除く。次にプロトプラストを洗浄液に懸濁し、プロトプラストを洗浄する。洗浄液としては、一般的に用いられるCPW塩溶液に浸透圧調整剤として糖アルコール類を添加したものを用いることができる。
 次に、Petunia属植物プロトプラストの単独での分裂を防ぐために不活化処理を行うことが望ましい。不活化処理は、ヨード酢酸、ヨードアセトアミド等のヨード化合物を溶解したCPW塩溶液などにプロトプラストを懸濁させることで行うことができる。本発明ではヨードアセトアミドを5mM~30mMの濃度に調整したCPW塩溶液に懸濁し5~20分間処理を行うと好適である。
 次に遠心分離機を利用してCPW塩溶液での洗浄操作を1~3回繰り返すことが好ましい。プロトプラストの懸濁液には、導管や細胞の断片も混入するため、さらに密度勾配遠心分離法等により、プロトプラストを精製することが好ましい。
 精製に用いる試薬には、糖類、合成コロイド等が挙げられるが、本発明ではショ糖液の利用が好適であり、15%~20%のショ糖液の利用が特に好適である。プロトプラストの精製後、血球計算盤によって細胞密度を計測し、細胞融合に適した細胞密度になるようにCPW塩溶液によって液量を調整する。プロトプラストの細胞密度は、1×10~1×10細胞/mlが好ましく、液量の調整にはCPW塩溶液の利用が好ましい。
 (ii)Nicotiana属植物のプロトプラストの単離
 本発明の細胞質供与親として利用できるのは、Nicotiana属植物である。Nicotiana植物の中でもN. suaveolens、N. debneyi、N. acuminata、N. longifloraであることが好ましく、タバコ(N. tabacum)の細胞質雄性不稔系統作出例のあるN. suaveolensが特に好ましい。
 Nicotiana属植物のプロトプラストの単離は、例えば、上述したPetunia属植物のプロトプラストの単離と同様の方法に従って行うことができる。
 単離した、Nicotiana属植物のプロトプラストは、放射線処理により核を不活化したものを用いることが望ましい。放射線処理のために照射する放射線としては、X線、γ線、紫外線等が挙げられるが、核を破壊できれば、特に限定されるものではない。照射線量は核を破壊できる範囲で、できる限り低照射量で行うことが好ましい。例えば、本発明での軟X線の照射の場合100Gy~900Gyの照射量が好ましい。
(2) プロトプラストの融合処理
 次に、前記で得られた両種のプロトプラストを混合し、細胞融合を行う。
 融合方法としては、慣用の方法、例えば、公知の電気融合法(Planta, 151, 26-32, 1981)、PEG(ポリエチレングリコール)法(Planta, 120, 215-227, 1974)、デキストラン法(Jap. J. Genet., 50, 235, 1975)などが挙げられるが、特に限定されない。本発明では好ましくは、PEG法を用いる。
(3) 融合雑種細胞の培養
 融合処理して得られた細胞は、Petunia属植物由来のプロトプラストの培養に好適な培地で培養することが好ましい。Petunia属植物のプロトプラストの培養方法としては、ペチュニア類のプロトプラストの培養法に基づいて、適宜改変を行えば、特に限定されないが、本発明では、NHNOを200mg/lに低減させた1/2濃度のMS培地(Murashige, T. & Skoog, Physiol.Plant.,15,473-497, 1962)を基本培地とし、適宜、植物生長調整物質、各種添加物等を加えて、用いることが好ましい。
(4) 細胞質雄性不稔性を有する細胞質雑種植物の選抜
 融合細胞の培養を行い、細胞分裂が開始され、カルスが目視で確認できるようになった段階で、カルスをカルス増殖培地に移植する。カルス増殖培地は、慣用のものが使用でき、材料とする植物の遺伝子型やカルスの状態により反応の差はあるが、例えば0.1~3.0mg/l ナフタレン酢酸(NAA)および0.1~3.0mg/l チジアズロン(TDZ)を含むMS培地などを用いると好適である。
 細胞質雑種個体の選抜は、カルスからDNAを抽出し、Nicotiana属植物のミトコンドリアDNAをPCR法によって特異的に増幅できるマーカーを用いて効率的に選抜することが好ましい。
(5)カルスからの植物体の再生
 選抜されたNicotiana属植物のミトコンドリアDNAを有するカルスを再分化培地に移植し再分化させる。
 再分化培地は、慣用のものが使用でき、材料とする植物の遺伝子型やカルスの状態により反応の差はあるが、例えば0.1~1.0mg/lのNAAおよび0.1~1.0mg/lのTDZを含むMS培地などを用いると好適である。
 再生したシュートは、3%ショ糖、0.8%寒天を添加したMS培地などに移植して発根させ、植物体を再生させる。再生した植物体は、順化して温室内で育成する。
(6)後代の獲得と優良系統の選抜
 得られた細胞質雑種植物は、2つ以上のペチュニア属植物のプロトプラストが融合し、4倍体以上の高次倍数体となることがある。高次倍数体は、後代の獲得効率が劣り、2倍体に戻すまでに時間と労力を要するため、フローサイトメーターを利用して倍数性を検定し、2倍体の個体のみを利用することが好ましい。得られた細胞質雑種植物は、温室等で育成して開花させ、雄性不稔を発現する個体を選抜する。正常細胞質を有するペチュニア属植物を花粉親として交配し、後代で細胞質雄性不稔性であることを確認する。
 細胞融合により異種の細胞が融合した場合、それらのミトコンドリアは、融合と分裂を繰り返し、異種のミトコンドリアゲノム間で様々な組み換えを生じる。植物においては、1つの細胞に数百から数万のミトコンドリアが存在し、それぞれが組み換えを生じるため、細胞質雑種植物は、細胞融合直後からヘテロプラズミーな状態となる。ヘテロプラズミーな状態を解消し、細胞質雄性不稔の安定性とその他の形質を評価するためには、連続戻し交雑を7回以上行うことが望ましい。
新規細胞質雄性不稔ペチュニア属植物の改良方法
 得られた細胞質雄性不稔系統が不良形質を伴っていた場合には、非対称戻し細胞融合により、形質を改良することができる。非対称戻し細胞融合は、非対称細胞融合により得られた植物またはその後代を細胞質供与親として用いる一方で、正常細胞質を有する植物を細胞質受容親として用い、非対称細胞融合を行うことによってミトコンドリアゲノムを改良する方法である。
 一般的に細胞質雄性不稔の原因遺伝子は、ミトコンドリアゲノムに存在している。1回目の非対称細胞融合により得られたペチュニア新規細胞質雄性不稔系統は、雄性不稔を誘発するN. suaveolensのミトコンドリアDNAに加えて、雄性不稔に関与しない不良形質発現の原因となるN. suaveolensのミトコンドリアDNAも有していると考えられる。
 1回目の非対称細胞融合により得られたペチュニア新規細胞質雄性不稔系統を細胞質供与親、正常細胞質を有するペチュニア属植物を細胞質受容親として、非対称戻し細胞融合、すなわち2回目の非対称細胞融合を行い、新たなミトコンドリアゲノムの組み換えを生じさせることができる。この時、ミトコンドリアゲノム全体がペチュニア型に近づいている1回目の非対称細胞融合により得られたペチュニア新規細胞質雄性不稔系統を材料に用いることで、よりペチュニア型に近づいたミトコンドリアゲノムが得られやすくなり、優良な細胞質雄性不稔系統の選抜が効率的となる。
 得られた細胞質雑種植物は、1回目の非対称細胞融合と同様に、細胞融合直後からヘテロプラズミーな状態となるため、連続戻し交雑を行いつつ優良な細胞質雄性不稔系統を選抜する必要がある。非対称戻し細胞融合を2回以上繰り返すことにより、ミトコンドリアゲノムをさらに改良することも可能である。
 以下の実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1: ペチュニア新規細胞質雄性不稔系統の作出方法
(1)プロトプラストの調製
  (i) 正常細胞質を有するペチュニア属植物のプロトプラストの単離
 正常細胞質を有するペチュニア属植物として、赤紫色の花色を有し、グランディフローラ系の「Pt1」を使用した。「Pt1」の滅菌した種子を3%ショ糖、0.8%寒天を添加したMS培地に置床し、20℃、16時間照明下で約1か月間育成した。展開した本葉を約1g採取し、約2mmの幅で細切した後に、0.3% セルラーゼY-C,0.3% マセロザイムR-10,0.5M マンニトールを含むCPW塩溶液10mlに浸漬し、25℃、16時間静置した。
 葉組織を含む酵素液を59μmのナイロンメッシュで濾過し、細胞残渣を除去した。得られたプロトプラスト懸濁液を遠沈管に移し、800rpmで5分間の遠心分離を行った。上澄みを除去して得られたプロトプラストを15mMのヨードアセトアミドを含むCPW塩溶液5mlに懸濁し、4℃で15分間インキュベートした。インキュベート後、ヨードアセトアミド処理したプロトプラスト懸濁液を800rpmで5分間の遠心分離を行った後、上澄みを除去した。プロトプラスト懸濁液にCPW塩溶液10mlを加え、800rpmで5分間の遠心分離を行って上澄みを除去する操作を3回繰り返して、プロトプラストを洗浄した。
 洗浄されたプロトプラスト懸濁液を800rpmで5分間の遠心分離を行い、上澄みを除去して2mlのCPW塩溶液を加えてプロトプラストを懸濁させた。新しい遠沈管に20%ショ糖を添加したCPW塩溶液5mlを加えて、その上に上記プロトプラストの懸濁液を重層させ、800rpmで5分間の遠心分離を行った。細胞残渣は、遠沈管の底に沈み、精製されたプロトプラストが、上層のCPW塩溶液層中に浮上するのでパスツールピペットで新しい遠沈管に移した。懸濁液を少量取り血球計算板を用いてプロトプラストの細胞密度を求め、CPW液を加えて1×10個/mlに調製した。
  (ii) Nicotiana属植物のプロトプラストの単離
 Nicotiana属植物として、タバコの細胞質雄性不稔植物作出例のあるN. suaveolensを使用した。タバコ種子N. suaveolensは、日本たばこ産業株式会社葉たばこ研究所より提供された。
 滅菌したN. suaveolens種子を3%ショ糖、0.8%寒天を添加したMS培地に置床し、20℃、16時間照明下で約1か月間育成した。展開した本葉約1gを採取し、約2mmの大きさに細切した後に、0.3%セルラーゼY-C,0.3%マセロザイムR-10,マンニトールを含むCPW塩溶液10mlに浸漬し、25℃、16時間静置した。
 葉組織を含む酵素液を59μmのナイロンメッシュで濾過し、細胞残渣を除去した。パスツールピペットでプロトプラストをプラスチックシャーレに移し、軟X線を900Gy照射した。
 得られたプロトプラスト懸濁液を遠沈管に移し、800rpmで5分間の遠心分離を行い、上澄みを除去して2mlのCPW塩溶液を加えてプロトプラストを懸濁させた。新しい遠沈管に20%のショ糖を添加したCPW塩溶液5mlを加え、その上に上記プロトプラストの懸濁液を重層させ、800rpmで5分間の遠心分離を行った。細胞残渣は、遠沈管の底に沈み、精製されたプロトプラストが、上層のCPW塩溶液層中に浮上するのでパスツールピペットで新しい遠沈管に移した。懸濁液を少量取り血球計算板を用いてプロトプラストの細胞密度を求め、CPW塩溶液を加えて1×10個/mlに調製した。
(2)プロトプラストの融合処理
 ヨードアセトアミド処理した正常細胞質を有するペチュニア属植物プロトプラスト懸濁液と、軟X線照射したNicotiana属植物プロトプラスト懸濁液を1:3の比率で混合し、9cmシャーレの底面中央に混合液を2ml滴下した。30分間静置後、 500g/l PEG溶液(ポリエチレングリコール#6000(nacalai tesque Inc.)、1,500mg/l CaCl・2HO、100mg/l KHPO、pH5.5)3mlをプロトプラスト混合液の周辺に滴下した。
 1分後CPW塩溶液3.5mlをプロトプラスト混合液の周辺に滴下した。さらに2分後 CPW塩溶液3.5mlをプロトプラスト混合液の周辺に滴下した。5分後シャーレの縁から、滴下した液を静かに吸い上げて除去し、CPW塩溶液20mlをシャーレの縁から加えた。このCPW塩溶液での洗浄の操作を5分間隔で3回繰り返した。
(3)融合雑種細胞の培養
 洗浄液を除去後、0.5M マンニトール、150mg/l カザミノ酸、100mg/l L-グルタミン、0.1mg/l NAA、0.1mg/l 2,4-D(2,4-ジクロロフェノキシ酢酸)、0.1mg/l TDZ、および1%ショ糖を含み、NHNOを200mg/lに低減させた1/2濃度のMS培地10ml(pH5.8)を添加し、25℃暗所において培養した。
 培養開始から7日後、150mg/lカザミノ酸、100mg/lL-グルタミン、0.1mg/lNAA、0.1mg/l 2,4-D、0.1mg/l BAおよび1%ショ糖を含み、NHNOを200mg/lに低減させた1/2濃度のMS培地5ml(pH5.8)を添加し、マンニトール濃度を低下させて培養を継続した。
 培養開始から10日後、シャーレの底に付着した細胞をピンセットの先で、こするようにして剥がし、0.2Mマンニトール、4%ショ糖、0.6%ゲランガムを含む溶液7.5mlを添加し、混合することにより半固体化状態のゲル培地を形成させ培養を継続した。
  培養開始約1か月で、カルスが肉眼で確認できるようになったため、カルスをカルス増殖培地(1mg/l NAA、1mg/l TDZ、3.0%ショ糖、0.8%寒天を含むMS培地、pH5.8)に移植した。
(4) 細胞質雄性不稔性を有する細胞質雑種植物の選抜
 細胞質雑種植物を選抜するため、PCR法によりN. suaveolensに特異的なDNAを検出できる分子マーカーを設計した。N. suaveolensのミトコンドリアゲノムの塩基配列情報は、公開されていないため、同じタバコ属のN. tabacumの塩基配列情報(GenBank 登録番号 BA000042)を利用し、nad3遺伝子に特異的なプライマーを設計した(表2)。
 カルスが5mm以上の大きさに生育した段階で、カルスの一部をサンプリングし、DNAを抽出した。抽出した全ゲノムDNAを鋳型とし、プライマーNo.1の組み合わせを用いてPCRを行った。PCRは、熱変性94℃ 1分、アニーリング60℃ 2分、伸長反応72℃ 2分を35サイクル繰り返した。
 PCR産物は、1.8%アガロースゲルで電気泳動し、エチジウムブロマイド溶液に浸漬後、UV照射下で写真撮影を行い予想されるサイズ(456bp)のバンドを有する個体を選抜した。
Figure JPOXMLDOC01-appb-T000002
(5)カルスからの植物体の再生
 カルスが1cm程度の大きさになったときに、カルスを2mm程度のサイズに切り分け、再分化培地(0.1mg/l NAA、1.0mg/l TDZ、3.0% ショ糖、0.8% 寒天を含むMS培地、pH5.8)に移植した。
 カルスは、再分化培地へ移植後約1か月で、シュートの分化を開始した。分化したシュートを、3.0%ショ糖,0.8%寒天を含むMS培地(pH5.8)へ移植することにより発根した。細胞質雑種植物は、72穴セルトレーに移植して順化させた。細胞質雑種植物の倍数性をフローサイトメーターにより、検定したところ、二倍体または四倍体であり、異数体の発生は認められなかった。
(6)後代の獲得と優良系統の選抜
 細胞質雑種植物は、9cmポットに移植して育苗を続け、開花後に雄性不稔性を調査した。その結果、12系統の雄性不稔系統が得られた。
 雄性不稔性を発現した12系統を種子親(一回親)、正常細胞質を有しピンクの花色を有するマルチフローラ系のペチュニア親系統「Pt2」を花粉親(反復親)として連続戻し交雑を行った。
 7回の連続戻し交雑を実施し、細胞質雄性不稔性が安定し、雌性稔性が高く、正常な形態を示したペチュニア新規細胞質雄性不稔系統「P4」を選抜した(図1)。
 「P4」の葯は、完全に退化、褐変化しており、花粉は全く生産されなかった。「P4」は、「Pt2」の7回の連続戻し交雑を実施しており、ミトコンドリアゲノムは、ホモプラズミー化し細胞質は安定していると考えられた。
 次に「P4」をF1品種開発のための種子親として利用するため、様々な可稔の親系統(自殖系統)32系統を連続戻し交雑し、親系統の雄性不稔化を実施した。
 その結果、大部分の親系統の連続戻し交雑後代において、幼苗の生育力の低下が認められ、実用性に問題があることが判明した。幼苗の生育力の低下が認められた顕著な例を図2に示した。
 なお、図2に示されているように、ペチュニア新規細胞質雄性不稔系統「P4」の連続戻し交雑後代(BC3)は、その反復親系統に比較して、幼苗の生長性が低下することが確認された。
 「Pt2」の連続戻し交雑第7代(BC7)では、幼苗の生育力の低下は認められなかったため、育種親系統の核ゲノムの遺伝子型に依存して生育力の低下(核-細胞質の不親和性)が引き起こされると考えられた。このように、細胞質雄性不稔系統「P4」は、大部分の親系統の連続戻し交雑後代において、幼苗時の生長力が低下すると考えられ、育種利用するためには、ミトコンドリアゲノムの改良が必要であると考えられた。
実施例2: ペチュニア新規細胞質雄性不稔系統「P4」の改良方法
 1回目の非対称細胞融合により得られたペチュニア新規細胞質雄性不稔系統「P4」のミトコンドリアゲノムを改良するため、1回目の非対称細胞融合により得られた「P4」を細胞質供与親とする一方、正常細胞質を有するペチュニア属植物であり、赤の花色を有するマルチフローラ系の親系統「Pt3」を細胞質受容親として、実施例1と同様の方法で、非対称細胞融合(非対称戻し細胞融合)を行った。
 「Pt3」は、「P4」に連続戻し交雑した場合に、幼苗での生育力の低下が認められる系統であるため、非対称戻し細胞融合により得られた系統の幼苗期の生育力の比較により、目的の細胞質雄性不稔系統を選抜することが可能である。
 得られたカルスは、実施例1と同様にタバコのnad3遺伝子に特異的なプライマーを用いて、細胞質雑種の選抜を行った。
 細胞質雑種植物は、9cmポットに移植して育苗を続け、開花後に雄性不稔性を調査した。その結果、14系統の細胞質雄性不稔系統が得られた。
 雄性不稔性を発現した14系統を種子親(一回親)、正常細胞質を有し、赤の花色を有するマルチフローラ系のペチュニア属植物「Pt3」(細胞質受容親と同じ)を花粉親(反復親)として連続戻し交雑を行った。
 7回の連続戻し交雑を実施し、細胞質雄性不稔性が安定し、雌性稔性が高く、正常な形態を示したペチュニア新規細胞質雄性不稔系統「Q15」を選抜した(図3)。
 図4に、正常細胞質の「Pt3」と、「Pt3」を連続戻し交雑(BC7)した細胞質雄性不稔系統「pcf-CMS」と、「Q15」のそれぞれの葯の形態を示した。
 「pcf-CMS」は、退化した葯と稔性のない花粉粒の生産が認められたが、「Q15」は、葯が完全に退化しており、花粉は生産されなかった。細胞質雄性不稔系統「Q15」は、7回の戻し交雑を実施しており、ミトコンドリアゲノムは、ホモプラズミー化し細胞質は安定していると考えられた。
 「Q15」は、非対称戻し細胞融合時に得られたカルスの時点では、タバコのnad3遺伝子を有することを確認していたが、7回の戻し交雑を実施したBC7世代では、タバコのnad3遺伝子が消失していた。これは、戻し交雑の各世代で、雄性不稔性を発現することを確認しながら、幼苗期の生育力に基づいて選抜を繰り返したため、ペチュニアの核-細胞質ゲノム間の不親和性の原因となると考えられるN. suaveolens由来のミトコンドリア遺伝子が排除される方向で選抜が進んだためであると考えられた。
 したがって、「Q15」は、細胞質選抜のマーカーとして使用していたタバコのnad3遺伝子が消失したため、「Q15」にN. suaveolensのミトコンドリアDNAが導入されていることを確認するためには、新たに分子マーカーを設計し、細胞質を分析する必要があった。
 N. suaveolensのミトコンドリアゲノムの塩基配列情報は、公開されていないため、同じタバコ属のN. tabacumの全塩基配列情報(GenBank 登録番号 BA000042)を利用して、16個のミトコンドリア遺伝子を特異的に増幅させるプライマーを設計し、表3のプライマーNo.2~17に示した。
 また、既知のペチュニアのCMS原因遺伝子(pcf)の塩基配列情報に基づいて、pcf遺伝子を特異的に増幅させるプライマーを設計し、表3のプライマーNo.18に示した。
 さらに、「Q15」の葉緑体の由来を特定するため、N. tabacumの葉緑体ゲノムの全塩基配列情報(GenBank 登録番号 Z00044)を利用して、atpA遺伝子とatpH遺伝子間のスペーサー領域を特異的に増幅させるプライマーを設計し、表3のプライマーNo.19に示した。PCR産物は、制限酵素TaqIで消化し、制限酵素サイトの違いによるRFLPを検出して葉緑体の由来を特定した。
Figure JPOXMLDOC01-appb-T000003
 新たに設計した表3のプライマーセットを使用して、N. suaveolens、「Pt3」、「P4」、「Q15」、及び「pcf-CMS」の各系統の細胞質を分析した結果を、表4に示した。
Figure JPOXMLDOC01-appb-T000004
 今回設計したプライマーNo.2~17は、N. suaveolensにおいて特異的な増幅が起きることが確認された。正常細胞質のペチュニアでは、プライマーNo.6を除いて特異的増幅が起こらず、プライマーNo.6では、ペチュニア特異的な増幅が起こることが確認された。
 「P4」、及び「Q15」は、いずれも今回設計した16個のプライマーセットすべてにおいて、N. suaveolens型の特異的増幅が認められなかった。すなわち、「P4」、及び「Q15」は、すでにミトコンドリアゲノムの大部分がペチュニア型に組み換えられていることが示唆された。「pcf-CMS」は、Petunia属の野生種由来であると考えられており、N. suaveolens型の特異的増幅は認められなかった。
 また、「pcf-CMS」は、pcf遺伝子を増幅させるプライマーNo.18によるPCRで、特異的増幅が確認できた。
 しかしながら、N. suaveolens、「P4」、及び「Q15」では、特異的増幅は認められず、pcf遺伝子がN. suaveolens、「P4」、及び「Q15」には存在せず、「P4」、「Q15」は、pcf遺伝子とは異なる因子で細胞質雄性不稔性を発現していることが確認された。
 プライマーNo.19による葉緑体遺伝子atpAのPCR-RFLPによる分析では、「P4」、及び「Q15」の葉緑体は、ペチュニア型であることが示された。
 細胞融合では葉緑体の組み換えは基本的には生じないことがわかっているため、「P4」、及び「Q15」は、ペチュニア由来の葉緑体を有することが確認できた。
 以上の結果から、「P4」、及び「Q15」は、既存のpcf遺伝子とは別の機構でCMSを発現しており、ペチュニア由来の葉緑体を有し、主要なミトコンドリア遺伝子は、ペチュニア型に組み換えられていることが確認された。
 タバコ(N. tabacum)では、細胞融合によりN. suaveolensの細胞質をN. tabacumに導入した「sua-CMS」が利用され、そのCMS系統である「ms zhongyan100」のミトコンドリアゲノム(N. tabacumとN. suaveolensの組み換えミトコンドリアゲノム)の塩基配列情報(GenBank登録番号 KR071121)が公開されている。
 また同じ核ゲノムを有する正常細胞質の「zhongyan100」のミトコンドリアゲノム(N. tabacum)の塩基配列情報(GenBank登録番号 KR780036)も公開されている。
 したがって、「ms zhongyan100」と、「zhongyan 100」とのミトコンドリアゲノムをBLAST(Basic Local Alignment Search Tool)を利用して比較することにより、N. suaveolensのミトコンドリアゲノムに特異的な領域を推定し、N. suaveolensのDNAを特異的に増幅させるプライマーを設計した(表5)。
Figure JPOXMLDOC01-appb-T000005
 N. suaveolensに特異的と推定された領域に設計したプライマーセットを使用して、N. suaveolens、「Pt3」、「P4」、「Q15」、及び「pcf-CMS」の各系統の細胞質を分析した結果を、表6に示した。
Figure JPOXMLDOC01-appb-T000006
 今回設計した22個のプライマーセットは、N. suaveolensにおいて特異的なDNAの増幅が起き、正常細胞質のペチュニアでは、プライマーNo.24、35の組み合わせを除いて特異的増幅が起こらず、プライマーNo.24、35では、ペチュニア特異的な増幅が起こることを確認した。
 「P4」は、5つのプライマーセット(プライマーNo.21、27、29、30、34)でN. suaveolensに特異的なDNAの増幅が認められ、「Q15」は、2つのプライマーセット(プライマーNo.30、34)でN. suaveolensに特異的なDNAの増幅が認められた。
 「pcf-CMS」は、Petunia属の野生種由来であると考えられており、表4と同様に、N. suaveolens型の特異的増幅は認められなかった。
 また、「Q15」は、「P4」を材料として非対称戻し細胞融合を行っており、CMSに関与するDNA領域を残しながら、N. suaveolensの領域の排除が進み、ペチュニアのミトコンドリアゲノムに近づいていると考えられた。
 ペチュニア新規細胞質雄性不稔系統である「Q15」は、多様な親系統51系統への導入(BC1~BC4)を進めたが、稔性回復は認められなかった。
 さらに、これらの親系統を使用した91組み合わせのF1テストクロスにおいても稔性回復は認められなかった。
 したがって、「Q15」の雄性不稔性は、極めて安定性が高いと考えられた。一方、本願明細書の「背景技術」の項で述べたように、既存の「pcf-CMS」は、単一優性または複数の稔性回復遺伝子による稔性の回復および環境の変化による稔性の回復が知られていた(非特許文献3)。
 既存の「pcf-CMS」の細胞質雄性不稔性が不安定な要因は、既存の「pcf-CMS」がペチュニア属植物内の種間雑種に由来するものであり、ペチュニア属植物内に進化の過程で複数の稔性回復遺伝子が出現したためであると考えられる。一方、新規細胞質雄性不稔ペチュニア「Q15」の細胞質雄性不稔性が安定する要因は、タバコ属植物由来の細胞質を使用しているため、遠縁であるペチュニア属植物内に稔性回復遺伝子が存在しないためであると考えられた。
実施例3: ペチュニア新規細胞質雄性不稔系統「Q15」の幼苗期の生長性の評価
 実施例2によって作出されたペチュニア新規細胞質雄性不稔系統「Q15」の有用性を確認するため、正常細胞質を有する「Pt3」と、「Q15」及び「pcf-CMS」の「Pt3」による細胞質置換系統の幼苗の生長性の比較試験を行った。
 幼苗の生長性の比較試験は、正常細胞を有する「Pt3」をコントロールとし、「Pt3」を反復親として7回の連続戻し交雑(BC7)した新規CMS系統「Q15」と、既存のCMS系統である「pcf-CMS」とを使用した。各CMS系統は、BC7であるため、核ゲノムは、「Pt3」に置換され同一の核ゲノムを有しており、細胞質の違いを比較することが可能となっている。
 各系統の種子を、128穴セルトレーに播種し、昼温22℃、夜温15℃、16時間照明に設定した人工気象室内で栽培を行った。
 幼苗の生長性を定量的に評価するため、播種30日後に、各系統の幼苗の地上部を地際で切り取り、株あたりの重量を計量した。
 結果を、表7に示した。また、図5には、そのときの各系統の生長性の違いを写真で示した。
Figure JPOXMLDOC01-appb-T000007
 表7の試験区Aの欄に示されているように、「pcf-CMS」系統は、「Pt3」に対する地上部重量の相対値が、「39」となり低い生長性を示した。
 これに対して、新規CMS系統「Q15」は、「Pt3」に対する地上部重量の相対値が「137」となり、非常に高い生長性を示した。
 次に、ガラス温室の環境下でも同様の試験を行った。
 ガラス温室(静岡県掛川市に所在)は、昼温22℃、夜温15℃に設定し、2020年4月1日に各系統の種子を、128穴セルトレーに播種し、栽培を行った。
 幼苗の生長性を定量的に評価するため、播種30日後に、各系統の幼苗の地上部を地際で切り取り、株あたりの重量を計量した。
 結果を、同じく表7に示した。
 表7の試験区Bの欄に示されているように、「pcf-CMS」系統は、「Pt3」に対する地上部重量の相対値が、「47」となり低い生長性を示した。
 これに対して、新規CMS系統「Q15」は、「Pt3」に対する地上部重量の相対値が「119」となり、高い生長性を示した。
 以上の結果より、人工気象器と温室の両方の環境において、既存の「pcf-CMS」系統が、幼苗期において生長性の低下を示したのに対し、ペチュニア新規細胞質雄性不稔系統「Q15」は、両方の環境において、正常細胞質を有する「Pt3」を上回る生長性を示し、有用性が確認された。
 なお、ペチュニア新規細胞質雄性不稔系統「Q15」の種子は、2020年8月28日付けで独立行政法人 製品評価技術基盤機構 特許生物寄託センター(千葉県木更津市かずさ鎌足2-5-8 120号室)に国際寄託(原寄託)されている(寄託者が付した識別のための表示:SSC-PET-20-001、受託番号:FERM BP-22398)。
実施例4:ペチュニア新規細胞質雄性不稔の属間雑種植物への導入
 本発明で作出したN. suaveolensを利用したペチュニア新規細胞質雄性不稔を、ペチュニア類の可稔の属間雑種植物(ペチュニア×カリブラコア)に導入するため、ペチュニア新規細胞質雄性不稔系統を種子親(一回親)、ペチュニア類の可稔の属間雑種植物7系統を花粉親(反復親)として、連続戻し交雑を行って、細胞質置換を行った。
 
 連続戻し交雑によって新規細胞質雄性不稔系統の細胞質に細胞質置換された属間雑種植物は、図6に示されるように、葯が退化し花粉粒は全く形成されなかった。
 供試した属間雑種植物7系統112個体は、すべて雄性不稔となり、新規細胞質雄性不稔系統の細胞質雄性不稔は、属間雑種植物においても安定的に細胞質雄性不稔性を発現することが確認された。
 したがって、本発明によるN. suaveolens由来の新規CMS系統の細胞質は、近縁の属間雑種植物に導入可能であり、細胞質雄性不稔性を発現させることが確認された。
 

Claims (23)

  1.  タバコ属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する、細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  2.  前記タバコ属植物がNicotiana suaveolensである、請求項1に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  3.  前記細胞質雄性不稔ペチュニア属植物が、Petunia hybrida又はその種間雑種植物に由来するものである、請求項1又は2に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  4.  前記細胞質雄性不稔ペチュニア属植物が、タバコ属植物を細胞質供与親として用いる非対称細胞融合を行うことにより得られたものに由来するものである、請求項1~3のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  5.  前記細胞質雄性不稔ペチュニア属植物との雑種植物が、ペチュニア属植物とカリブラコア属植物の属間雑種植物に由来するものである、請求項1~4のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  6.  受託番号FERM BP-22398で特定される植物由来のミトコンドリアゲノムを含む、請求項1~5のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  7.  配列番号59及び60に示される塩基配列を有するプライマーセット、及び、配列番号67及び68に示される塩基配列を有するプライマーセットに含まれるプライマーからなる群より選択される1以上のプライマーを利用したミトコンドリアゲノムマーカーにより特定されるミトコンドリアDNA領域の少なくともいずれか1つが、Nicotiana suaveolens 型である、請求項1~6のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  8.  受託番号FERM BP-22398で特定される植物のミトコンドリアゲノムを有する、請求項1~7のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  9.  受託番号FERM BP-22398で特定される、請求項1~7のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  10.  受託番号FERM BP-22398で特定される植物のミトコンドリアゲノムを有する、細胞質雄性不稔ペチュニア属植物又は細胞質雄性不稔ペチュニア属植物との雑種植物を細胞質供与親として用い、かつ正常細胞質を有するペチュニア属植物又はペチュニア属植物との雑種植物を細胞質受容親として用いる非対称細胞融合により得られる、請求項1~9のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代。
  11.  請求項1~10のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の、植物体の一部。
  12.  請求項1~10のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の、種子。
  13.  請求項1~10のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代、請求項11に記載の植物体の一部、又は請求項12に記載の種子に含まれる、ミトコンドリアゲノム。
  14.  タバコ属植物を細胞質供与親として用い、かつ正常細胞質を有するペチュニア属植物又はペチュニア属植物との雑種植物を細胞質受容親として用いる非対称細胞融合を行う工程を含んでなる、細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の製造方法。
  15. タバコ属植物がNicotiana suaveolensである、請求項14に記載の製造方法。
  16.  タバコ属植物のミトコンドリアゲノムに由来するDNAをミトコンドリアゲノム内に有する細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代を細胞質供与親として用い、かつ正常細胞質を有するペチュニア属植物又はペチュニア属植物との雑種植物を細胞質受容親として用いる非対称細胞融合を行う工程を含んでなる、ミトコンドリアゲノムが改良された細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代の製造方法。
  17.  前記細胞質雄性不稔ペチュニア属植物が、Petunia hybrida又はそれらの種間雑種植物に由来するものである、請求項14~16のいずれか一項に記載の製造方法。
  18.  前記細胞質雄性不稔ペチュニア属植物との雑種植物が、ペチュニア属植物とカリブラコア属植物の属間雑種植物に由来するものである、請求項14~17のいずれか一項に記載の製造方法。
  19.  請求項1~10のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代を種子親とし、該植物と交配可能なペチュニア属植物およびそれに由来する属間雑種を花粉親として交配し、交配後の種子親から雑種第一代種子を採種することを含んでなる、雑種第一代種子の製造方法。
  20.  請求項19に記載の方法により製造された雑種第一代種子、又は該種子から生育させた雑種第一代植物、その後代、又はそれらの植物体の一部。
  21.  請求項1~10のいずれか一項に記載の細胞質雄性不稔ペチュニア属植物、若しくは前記細胞質雄性不稔ペチュニア属植物との雑種植物、又はそれらの後代に、任意のペチュニア属植物およびそれに由来する属間雑種植物を連続戻し交雑し、細胞質置換することを含む、細胞質雄性不稔性を発現するペチュニア属植物およびそれに由来する属間雑種植物の製造方法。
  22.  配列番号59に示される塩基配列を有するプライマーと、配列番号60に示される塩基配列を有するプライマーからなる、プライマーセット。
  23.  配列番号67に示される塩基配列を有するプライマーと、配列番号68に示される塩基配列を有するプライマーからなる、プライマーセット。

     
PCT/JP2021/042382 2020-11-20 2021-11-18 細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法 WO2022107839A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180077904.2A CN116648134A (zh) 2020-11-20 2021-11-18 细胞质雄性不育碧冬茄属植物、其属间杂交植物、及其制造方法
JP2022563820A JPWO2022107839A1 (ja) 2020-11-20 2021-11-18
EP21894712.5A EP4248738A1 (en) 2020-11-20 2021-11-18 Cytoplasmic male sterile plant of genus petunia, intergeneric hybrid plant thereof, and method of producing same
US18/037,836 US20240016111A1 (en) 2020-11-20 2021-11-18 Cytoplasmic male sterile plant of genus petunia, intergeneric hybrid plant thereof, and method of producing same
IL303066A IL303066A (en) 2020-11-20 2021-11-18 A cytoplasmic sterile male plant of the genus Petunia, an intergeneric hybrid plant thereof, and a method for producing the same
CR20230267A CR20230267A (es) 2020-11-20 2021-11-18 Planta estéril macho citoplasmática del género petunia, planta híbrida intergenérica de la misma y método para producir la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020193820 2020-11-20
JP2020-193820 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107839A1 true WO2022107839A1 (ja) 2022-05-27

Family

ID=81708053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042382 WO2022107839A1 (ja) 2020-11-20 2021-11-18 細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法

Country Status (7)

Country Link
US (1) US20240016111A1 (ja)
EP (1) EP4248738A1 (ja)
JP (1) JPWO2022107839A1 (ja)
CN (1) CN116648134A (ja)
CR (1) CR20230267A (ja)
IL (1) IL303066A (ja)
WO (1) WO2022107839A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780036B1 (ko) 2006-06-23 2007-11-29 조동식 청미래덩굴이 함유된 참치 통조림
US20160272981A1 (en) * 2010-12-30 2016-09-22 Rutgers, The State University Of New Jersey Intercellular Transfer of Organelles in Plant Species for Conferring Cytoplasmic Male Sterility
WO2020213728A1 (ja) * 2019-04-17 2020-10-22 株式会社サカタのタネ 生長性が改良された細胞質雄性不稔Brassica rapa植物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944692A1 (en) * 2005-10-26 2015-11-18 Sakata Seed Corporation Cybrid plant of the genus lactuca and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780036B1 (ko) 2006-06-23 2007-11-29 조동식 청미래덩굴이 함유된 참치 통조림
US20160272981A1 (en) * 2010-12-30 2016-09-22 Rutgers, The State University Of New Jersey Intercellular Transfer of Organelles in Plant Species for Conferring Cytoplasmic Male Sterility
WO2020213728A1 (ja) * 2019-04-17 2020-10-22 株式会社サカタのタネ 生長性が改良された細胞質雄性不稔Brassica rapa植物

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. BA000042
ASAKO SIGENO ; SUGANE HAYASHI ; TORU TERACHI ; HIROSHI YAMAGISHI: "Introduction of transformed chloroplasts from tobacco into petunia by asymmetric cell fusion", PLANT CELL REPORTS, vol. 28, no. 11, 2 September 2009 (2009-09-02), Berlin, DE , pages 1633 - 1640, XP019758426, ISSN: 1432-203X, DOI: 10.1007/s00299-009-0763-6 *
J.D. GILLMAN ET AL.: "Cytoplasmic Male Sterility and Fertility Restoration in Petunia", PETUNIA, vol. 6, 2009, pages 107 - 4,372-9
JAP. J. GENET., vol. 50, 1975, pages 235
M.L.K. KAUL: "Male Sterility in Higher Plants", 1998, SPRINGER-VERLAG, pages: 809 - 810
MATSUMOTO, E, PLANT CELL REPORTS, vol. 9, no. 10, 1991
MURASHIGE, T.SKOOG, PHYSIOL. PLANT., vol. 15, 1962, pages 473 - 497
PLANTA, vol. 120, 1974, pages 215 - 227
PLANTA, vol. 151, 1981, pages 26 - 32
SUÑÉ-POU MARC; LIMERES MARÍA J; MORENO-CASTRO CRISTINA; HERNÁNDEZ-MUNAIN CRISTINA; SUÑÉ-NEGRE JOSEP M; CUESTAS MARÍA L; SUÑÉ CARLO: "Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects Underlying Disease", FRONTIERS IN GENETICS., vol. 11, 14 July 2020 (2020-07-14), Switzerland , pages 1 - 22, XP055844299, ISSN: 1664-8021, DOI: 10.3389/fgene.2020.00731 *

Also Published As

Publication number Publication date
US20240016111A1 (en) 2024-01-18
CN116648134A (zh) 2023-08-25
IL303066A (en) 2023-07-01
EP4248738A1 (en) 2023-09-27
CR20230267A (es) 2023-12-13
JPWO2022107839A1 (ja) 2022-05-27

Similar Documents

Publication Publication Date Title
JP4139429B2 (ja) 細胞質雑種Lactuca属植物およびその作出方法
Leus et al. Rose
WO2008084329A2 (en) Novel rucola plants with cytoplasmic male sterility (cms)
JP6328569B2 (ja) Tswv耐性トウガラシ植物体
CN113993373B (zh) 生长性被改良的细胞质雄性不育芜菁植物
AU2017336342B2 (en) Parthenocarpic watermelon plants
WO2022107839A1 (ja) 細胞質雄性不稔ペチュニア属植物、その属間雑種植物、及びその製造方法
Cap et al. Embryo culture of Lycopersicon esculentum× L. peruvianum hybrid genotypes possessing heat-stable resistance to Meloidogyne incognita
WO2020213727A1 (ja) 低温生長性が改良された細胞質雄性不稔Lactuca属植物
EP1161136A2 (en) INTERSPECIFIC $i(NICOTIANA) HYBRIDS AND THEIR PROGENY
US20230247952A1 (en) Methods for promoting production of viable seeds from apomictic guayule plants
Uijtewaal The production and evaluation of monohaploid potatoes (2n= x= 12) for breeding research on cell and plant level
Iaffaldano Evaluating the Development and Potential Ecological Impact of Genetically Engineered Taraxacum kok-saghyz.
Magdalita et al. Somatic embryogenesis, regeneration, phenotypic and cytological evaluation of selected Philippine papaya (Carica papaya L.) genotypes.
US20190364774A1 (en) Mildew resistant basil plants
Suenaga Basic studies on transfer of cytoplasmic male sterility by means of cytoplasmic hybridization in carrot:(Daucus carota L.)
SIEMENS II. 1 Somatic Hybridization Between Arabidopsis and Brassica J. SIEMENS and MD SACRISTÁN
Siemens et al. II. 1 Somatic Hybridization Between Arabidopsis and Brassica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563820

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180077904.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18037836

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023009721

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021894712

Country of ref document: EP

Effective date: 20230620

ENP Entry into the national phase

Ref document number: 112023009721

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230519