EP0152919B1 - Vorrichtung zum Luftverwirbeln einer Vielzahl von laufenden Fäden - Google Patents

Vorrichtung zum Luftverwirbeln einer Vielzahl von laufenden Fäden Download PDF

Info

Publication number
EP0152919B1
EP0152919B1 EP85101621A EP85101621A EP0152919B1 EP 0152919 B1 EP0152919 B1 EP 0152919B1 EP 85101621 A EP85101621 A EP 85101621A EP 85101621 A EP85101621 A EP 85101621A EP 0152919 B1 EP0152919 B1 EP 0152919B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
air
thread
nozzles
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85101621A
Other languages
English (en)
French (fr)
Other versions
EP0152919A3 (en
EP0152919A2 (de
Inventor
Karl Dr.-Ing. Bauer
Michael Dr.-Ing. Hanisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19843413276 external-priority patent/DE3413276A1/de
Application filed by Barmag AG filed Critical Barmag AG
Publication of EP0152919A2 publication Critical patent/EP0152919A2/de
Publication of EP0152919A3 publication Critical patent/EP0152919A3/de
Application granted granted Critical
Publication of EP0152919B1 publication Critical patent/EP0152919B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02HWARPING, BEAMING OR LEASING
    • D02H11/00Methods or apparatus not provided for in the preceding groups, e.g. for cleaning the warp
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams

Definitions

  • the invention relates to a device for air entanglement of a plurality of running threads and a nozzle bar for use in such a device.
  • a device for air swirling of such a thread group in which the swirl nozzles are inserted in an airtight manner in a flat swirl housing and are jointly connected to an air source.
  • the nozzle plate is arranged in a vertical plane so that the air nozzles are aligned horizontally.
  • the device has the disadvantage that some threads with poor interlacing arise, but some also the qualitative homogeneity of the thread family is poor.
  • the invention is based on the finding that the thread guide in the nozzle has a significant influence on the quality of the thread and in particular that Quality of the swirl
  • the invention therefore achieves the object of providing a device for air swirling for a group of threads which start up from a multiplicity of horizontal and vertical planes, by means of which essentially uniform throughput conditions can be created for each thread through the vortex nozzle.
  • a device of the type described at the outset which is characterized in that a plurality of nozzle bodies each provided with a plurality of vortex nozzles is provided on a common support or supporting frame, the position of which can be changed relative to one another and to the thread sheet.
  • the nozzle bodies are advantageously designed as hollow bodies and the cavities are connected both to a compressed air source and to the blowing channels of the individual swirl nozzles of the respective nozzle body.
  • vortex nozzles are arranged in a plurality of horizontal bars and that the bars are pivotable separately from one another about a horizontal axis.
  • a thread overflow rod can be arranged in front of and / or behind each bar, which extends along the bar and defines the thread path within the nozzles. These thread overflow rods can advantageously be connected to the bar and pivoted accordingly with it.
  • a preferred embodiment provides that the frame in which the individual nozzle bars are pivotally mounted can also be pivoted about a horizontal axis. This will. a further adjustment of the thread runs possible through the respective swirl nozzles. But in particular with this device it is also possible to ensure that the deflection of the threads as they run through the swirl nozzles is relatively small, so that the differences in the thread running length between the clamping points in front of and behind the device are also relatively small. Furthermore, the pivotability offers considerable advantages when inserting the individual threads.
  • the nozzle bars can be connected to a compressed air source by hoses.
  • the frame is formed at least one of the vertical side pieces as a hollow profile and is connected to the compressed air network, the individual beams being connected to the hollow profile, preferably being connected to the hollow profile via their hollow pivot axes .
  • external Beeransc be h Lüsse avoided that hinder in the multitude of strictlyädelnden and run threads.
  • the air is preferably supplied to the frame in the lower crossmember, which in this case is also designed as a hollow profile
  • the nozzle bar has an upward-facing, carefully plane surface on which a cover beam with a congruent, also plane surface lies.
  • Thread guiding grooves are machined perpendicular to the longitudinal axis of the thread in one of the two surfaces. When the top beam is lifted off, a thread can easily be inserted into each of these grooves. By covering the grooves with the cover beam, each groove forms a thread channel which is closed all around. Each groove is connected via a branch duct to an air duct which extends in the longitudinal direction of the nozzle bar and which - e.g. B. as described above - is supplied with compressed air.
  • the thread guide channels can, for. B. rectangular grooves, which are introduced by milling in the flat surface of the nozzle bar. This has the advantage that the cover bar does not require any further processing apart from the surface processing.
  • grooves can also be made in both flat surfaces, which mesh with one another when the top beam is attached. In this way, thread channels with a circular cross-section can be produced, in particular, by firmly clamping the lower beam and the cover beam to one another and then introducing the nozzle bores in the seam area of the plane-worked surfaces.
  • the grooves can also be made in the deck beam. In this case, the lower bar only has the surface machining of its surface, with branch channels opening into the air channel in this surface with the division of the grooves made in the top bar.
  • This construction of the nozzle bar allows the air nozzles to be sealed very closely at a distance of e.g. B. only 5 mm next to each other, so that a device for air vortex treatment of a thousand threads builds relatively small.
  • the stitch channels are attached so that the air stream exiting into the thread channels has a movement component in the direction of conveyance of the threads.
  • a row of nozzle bodies is fastened on an essentially horizontally extending air supply bar, each nozzle body has a number of swirl nozzles, the thread channels of which run parallel to one another and whose blowing channels are connected to a common air supply.
  • the individual vortex nozzles can be arranged in the nozzle bodies in one or more rows parallel to one another, the planes parallel to one another running essentially perpendicular to the air supply bar through the nozzle axes of the individual rows.
  • the individual nozzle body advantageously has at least four and preferably at least six vortex nozzles arranged with a small mutual distance between the thread channels; the distance between two adjacent thread channels is advantageously at least 1.5 mm and is at most 15 mm, and in order to reduce the row spacing when the thread channels are arranged in a plurality of parallel rows, the thread channels of adjacent rows can be arranged offset from one another.
  • the individual nozzle body consists of a housing and a housing insert which fits into the housing and accommodates the individual vortex nozzles.
  • the blowing channels of the individual swirl nozzles of a nozzle body are connected to a common air supply in the nozzle body.
  • the vortex nozzles can be arranged in the insert in up to six rows, the rows of nozzles lying in mutually parallel planes which are substantially perpendicular to the air supply bar.
  • the air supply can take place via cavities between the insert and the inner wall of the housing and / or in the center of the insert.
  • the insert can also consist of at least two parallel plates, each receiving one or two rows of swirl nozzles, wherein grooves can be provided as air supply for the blowing channels, which are incorporated in at least some of the plates.
  • the nozzle body is a hollow box. In its side walls lying transversely to the thread run, it contains bores for the tightly packed accommodation of insert nozzles, the ends of which are fitted into the bores of the side walls; their blow channels open into the box interior, which in turn is connected to the interior of the air supply beam.
  • the rows of nozzles are offset from one another by half a distance between two insert nozzles lying next to one another in the same row; the individual insert nozzles are each provided with a rectangular plate on its front, the edge lengths of which are matched in such a way that the plates abut one another with essentially no space when the nozzles are fitted. If the rectangular plates are offset asymmetrically on the edges for mutual overlap, it is possible to lock all insert nozzles together using only one clamp and to align them unambiguously with regard to the position of their blowing channels during assembly.
  • the nozzle bodies in their side walls lying parallel to the general thread run have bores for receiving insert nozzles which extend essentially parallel to the thread run.
  • the holes and the use of nozzles have the length of the application nozzle reaching, starting from the side walls Einfädeischl i to Tze, while the air supply to the individual nozzle inserts via emanating from the individual holes connecting channels to the air-conducting interior of the nozzle body. It goes without saying that, in the operating position, blow channels and connecting channels correspond to one another.
  • the threading slots in the nozzle body can be covered by suitable means after the threads have been inserted, but the threads can also be prevented from escaping by rotating the nozzle inserts in the bores, so that the threading slots are closed.
  • suitable means for preventing the threading slots from escaping by rotating the nozzle inserts in the bores, so that the threading slots are closed.
  • threading slit and Blow hole in the insert nozzle on its circumference offset such that the blowing channels in the threading position and in the working position the threading slots are covered by the bore wall.
  • the individual insert nozzle consists of an outer tube which is stuck in the bore of the nozzle body with a threading slot and an inner body which can be rotated in the tube and which has provisions for thread take-up.
  • the stuck tube also has a blowing bore that matches the connecting channel of the bore in the nozzle body.
  • the inner body can be solid or also a tube.
  • a thread guide groove extending over its length is introduced into its outer surface and has any, but preferably rounded, cross section.
  • the inner body is an inner tube which is also provided with a threading slot.
  • the inner body is rotated so that its thread guide groove or threading slot matches the threading slot of the nozzle body bore and possibly the fixed tube; in the working position, the thread guide groove or the inner threading slot is rotated so that it matches the blow hole or / and that
  • a connecting channel to the interior of the nozzle body is advantageous.
  • a device is advantageous with which the inner body of a nozzle body or a nozzle body half can be rotated together.
  • the air supply bar suitable for carrying the above-described nozzle body is fastened in its supporting frame in such a way that it can be rotated about its longitudinal axis in order to change the deflection angle of the threads passing through the vortex nozzles.
  • the beam end sitting in the stand and serving as a pivot bearing can be provided with bores leading to the interior of the beam, which can be connected to the interior of the stand designed as a hollow beam; the hollow stand is provided with a fianschanschiuß for the air line, so that the vortex nozzles via the interior of the air supply bar, the holes in the stator end and the stator interior are connected to the air supply.
  • stator end of the air supply bar is extended beyond the stator and even equipped with a flange for connecting the air supply.
  • a particularly compact embodiment of the device according to the invention has two rows of nozzle bodies on an air supply bar which are offset from one another on their circumference by approximately 180 °.
  • the air supply bar with the nozzle bodies can advantageously be encased by a flat box serving as extraction for the blown air and / or as soundproofing, which extends over part of the thread path after the thread inlet side and / or the thread outlet side.
  • a flat box serving as extraction for the blown air and / or as soundproofing, which extends over part of the thread path after the thread inlet side and / or the thread outlet side.
  • Its inner walls can be covered with sound-absorbing material, the interior can be equipped with a suction box.
  • the latter advantageously has a plurality of suction openings on its side facing the threads. They are advantageously rectangular, their material separated on three sides of the respective opening is bent obliquely into the suction space in the form of a flag.
  • the flat box envelops two parallel air supply bars, each equipped with a row of nozzle bodies and essentially pointing towards one another with the latter. It is essentially symmetrical to the two rows of nozzle bodies.
  • the suction box is arranged in the middle between the two sets of threads assigned to the two rows of nozzle bodies and designed in such a way that it acts on both sets of threads with the same intensity.
  • the parts of the flat box lying in front of and behind the rows of nozzle bodies can be displaced essentially perpendicularly to the plane of the filaments, which makes it possible to compensate for the mutual displacement of the filament groups between the thread inlet and the thread outlet, which result when the air supply bar is rotated.
  • the carrier or supporting frame to which the nozzle bodies are attached can be pivoted about a vertical axis.
  • the carrier or support frame can be adapted to the mode of operation of the stretching device on which the individual threads are distributed, with - as already described - more or fewer vortex nozzles or nozzle bodies being killed.
  • FIG. 1 a and 1 b The system for stretching a sheet of threads according to Figures 1 a and 1 b is only shown schematically.
  • a gate 1 there is a variety of - z. B. 1 000 - supply spools 2, of which the threads 3 run over suitable thread guides, thread tensioners and thread monitors (not shown).
  • the threads are drawn off by the first pair of rollers 4 and then fanned out in groups and passed through nozzle bars 7 lying one above the other in planes.
  • the multi-filament threads are tangled in each of these nozzle bars in what is known as a “tangle nozzle”. This will close the thread, i.e. H. the cohesion of the individual filaments of each thread is improved and the smoothness and stretchability are improved
  • an overflow rod 41 is arranged upstream and downstream of each nozzle bar.
  • the overflow rods are connected to the nozzle bar in a manner not shown.
  • the family of threads is then fed via a comb 18 to a warp beam 17 of the plant 16-.
  • a frame 6 is pivotally mounted in a stand 22 in the pivot axis 23.
  • the frame 6 is pivoted by the square 24 and the locking device 25 and fixed in a desired pivot position by means of the locking bolt 26.
  • the frame 6 consists of a lower cross member 20, an upper cross member 21 and the side parts 19.
  • the cross members and side parts are designed as rectangular hollow profiles.
  • the lower traverse has an air connection 27.
  • Nozzle bars 7 are pivotally mounted in the side parts. Details of a first embodiment of these nozzle bars are shown in FIGS. 3a and 3b.
  • the nozzle bar 7 is a rectangular profile 28 in cross section, which has the hollow pivot pin 23 at both ends. With these pivot pins 23, each nozzle bar is pivotally mounted on both sides in a side wall of the side parts 19.
  • the nozzle bar By means of the locking device 33 connected to the nozzle bar, the nozzle bar can be pivoted relative to the frame and locked in a desired pivoting position by means of fixing bolts 30.
  • the pivot pins 23 are sealed by seals 32, so that the interior of the lower beam (hollow profile) 28 is in air-conducting connection with the side parts 19 supplied with compressed air.
  • Each lower beam 28 is plan-worked on its upward-facing surface.
  • a cover plate 29 is placed, which also has a plane-worked lower surface. Both plane-worked surfaces are worked so precisely that they lie on one another in the parting line 34 without substantial gap formation.
  • the cover beam 29 is fixed in its operating position by fixing bolts 30.
  • Grooves 35 are machined into the plane-machined surface of the lower beam and perpendicularly cross the longitudinal axis of the lower beam. Via grooves 36, these grooves 35 are connected to the air-guiding interior of the lower beam.
  • the grooves serve as thread channels in which the air swirling of the threads running through takes place. It has been found that the threads are preferably passed diagonally through the intermingling nozzles, as seen in the longitudinal section of the grooves 35. For this reason, the cover plate 29 has a thread guide bar 37 in the thread inlet and a thread guide bar 38 in the thread outlet of the lower beam.
  • the cover bar 29 is lifted off for threading. Then a thread can be simply inserted into a groove 35. Upstream of the nozzle bar are overflow rods 41, which can be connected to the top bar and / or lower bar. The connections are not shown here.
  • the grooves can also be introduced into the deck beam 29.
  • the stitch channels 36 open onto the plane-machined surface of the lower beam 28.
  • thread channels with a circular cross section.
  • a suitable embodiment is shown in Figures 4a and 4b.
  • the upper beam and the lower beam are firmly clamped together on their plane-machined surfaces.
  • holes 40 are made in the parting line 34, half of which are in the lower beam and half in the upper beam.
  • Each part of the bar has a bowl-shaped groove and a round thread channel is created when the top bar is placed on top.
  • the thread guides 37 and 38 are semi-ring-shaped.
  • the heated rollers 10 are heated with a liquid and that valve devices are provided through which the heated liquid can be exchanged very quickly for cold liquid, these valve devices being operationally connected to the thread break monitoring of the drawing system.
  • a hot liquid z. B. water, since only temperatures up to 100 ° are desired. Water is also suitable as the cold liquid, cold being understood here as a temperature at which the threads lying on the rollers 10 are no longer damaged.
  • the surface speed of the rollers 10 can be set independently of that of the rollers 9 or 15, which is known per se from the stretching technology for plastic threads, in particular polyester threads
  • FIGS. 5 to 13 A further exemplary embodiment of the device according to the invention with some forms of further development is shown in FIGS. 5 to 13.
  • the air supply bar 101 is cantilevered with its fastening end 123 in the stand 102 and is rotatable about its axis 148.
  • the bar 101 preferably runs essentially horizontally.
  • a row 151 of nozzle bodies 103 is fastened tightly packed on the air supply bar 101
  • Each nozzle body is a cuboid, which is penetrated by a large number of vortex nozzles.
  • the axis of the swirl nozzles is essentially perpendicular to the longitudinal axis 148 of the air supply bar.
  • Each nozzle body has a system of cavities and channels through which each vortex nozzle is supplied with compressed air.
  • the channel system 109 of each nozzle body is connected to the interior 147 of the air supply bar.
  • Each nozzle body is sealed pressure-tight against the air supply bar.
  • each beam 101 is rotatably fastened in the stand 102.
  • Each air supply bar ends outside of the stand 102 in a flange 146 which can be connected to the air connection 135 (dashed).
  • two air supply beams 101 with axes 148 running parallel to one another are mounted in the stand 102. They are mounted so that the two rows of nozzle bodies 151, each of which has a bar 101, face each other; the reason for this is described below.
  • the stand 102 can be pivoted about the vertical axis 164 in order to be able to evenly cover the air supply bar with threads even when the number of threads changes over its length.
  • FIGS. 6A and 6B show an embodiment in which two rows of nozzle bodies 151 offset from one another by approximately 180 ° are arranged on an air supply bar 101.
  • 6A shows an air supply bar 101 with a round cross section.
  • the air supply bar has two longitudinal flat surfaces 160 which extend in the longitudinal direction of the air supply bar. These surfaces form with the circumference of the air supply bar on one side a dovetail-shaped recess 154.
  • Each of the nozzle bodies 103 sitting closely next to one another is pressed against the dovetail-like stop 154 with the aid of a claw 110 and threaded bolts 115.
  • Rubber seals 155 as are indicated, for example, in FIGS. 7A, 7B, ensure the tightness of the connection between the nozzle bodies and the air supply bar 101.
  • the stand can be pivoted about the vertical axis 164 for the reason cited.
  • the nozzle bodies can be fastened to their respective air supply bar 101 in the same way as in the exemplary embodiment according to FIGS. 6A, 6B.
  • nozzle body 103 The internal structure of nozzle body 103 according to the invention is shown in particular with reference to the embodiment according to FIGS. 7A, 7B.
  • a claw 110 is again provided for fastening the nozzle body. This claw 110 is only hinted at here.
  • the nozzle body 103 consists essentially of the two plates 116 and 117, which are held together by means of the screws 156. Recesses are worked into the surfaces facing each other. In the assembled state of the plates 116, 117, these recesses form a chamber 109 which serves to supply air to the blow channels 108 and which is connected via the connection opening 157 to the interior 147 of the air supply bar 101, which here has a rectangular cross section.
  • Each of the plates 116 and 117 has a row of thread channels 111, 112; A blow duct 108 leads from each thread duct 107 into the air supply chamber 109. With the aid of the seals 155, each individual nozzle body 103 is sealed off from the air supply bar 101.
  • the thread channels 107 are arranged in planes which are perpendicular to the surface 160. It is also possible to arrange the thread channels in planes that form an angle with the surface 160 that is less than 90 °. This means that even when viewed vertically from above, you can see all the thread channels and the threads running through them.
  • Each thread channel 107 is a bore which is made in one of the plates 116 and 117, respectively.
  • a wear-resistant insert which serves as a thread guide.
  • FIGS. 8A and 8B Two further embodiments of the nozzle body according to the invention are shown in FIGS. 8A and 8B. Both embodiments consist of a housing 105 and an insert 106 which is fitted into the housing 105 in a sealing manner.
  • the housing 105 is U-shaped in cross section.
  • the bottom has a hole which is aligned with the connection opening 157 in the installed position. Together with the floor, the two side walls form a cuboid interior that is open at the top and on the two end faces.
  • Fig. 8C It is a cuboid block that is fitted into the interior of the housing 105.
  • the cuboid block has laterally recesses 118 which, together with the side walls of the housing 105, form an air chamber.
  • the insert 106 also has a recess 109 at its base above the hole in the bottom of the housing.
  • the air chambers 118 are connected to the interior 147 of the air supply bar 101 via this recess 109 and the bore in the bottom of the housing 105 and the hole 157.
  • the thread channels 107 penetrate the insert in the longitudinal direction, namely transversely to the longitudinal direction of the air supply bar 101.
  • the blowing channels 108 are perpendicular to the thread channels 107. They open into the recesses 118 which, as said, with the interior 147 of the air supply bar 101 via the connection opening 157, the bore in the bottom of the housing 105 and the recess 109 in the insert 106 are connected.
  • FIGS. 8A, 8C also has two rows of thread channels 111, 112, the four rows of thread channels 111 to 114 are provided in insert 106 of FIG. 8B.
  • the adjacent rows are offset from one another in such a way that the individual thread channels are “in a gap; the rows 112 and 114 have seven, the rows 11 and 113 each have six thread channels 107.
  • FIGS. 9A and 9B A further embodiment of the nozzle body is shown in FIGS. 9A and 9B.
  • a hollow, cuboid box 119 which is closed by the cover 144 and which replaces the housing 105 of the previously described embodiment, there are bores 136 for receiving the individual swirl nozzles.
  • the swirl nozzles are tubular nozzle inserts 120 which are inserted into the bores.
  • Each tubular nozzle insert 120 has a radial blow duct 108, which the air supply chamber 109, i. H. connects the interior of the box 119 with the thread channel 107.
  • the tubular nozzle inserts 120 are each provided with a suitable thread guide on their thread inlet side and on their thread outlet side.
  • the inlet-side ends 149 of the nozzle inserts are also provided with rectangular plates 121, the side lengths of which are dimensioned such that they meet one another with practically no space when nozzles 120 are inserted (FIG. 9B). Their position cannot then be changed without removing a few inserts 120. If, for example, the plates (as in FIG. 9C) are cut in a step-like manner on the edges 139 on the back and on the edges 140 on the front, the edges 139 can sit on the edges 140 during assembly and with the aid of only one fastening tab 141 all nozzle inserts are fixed in their longitudinal direction.
  • the nozzle bodies as shown in FIGS. 7 to 9, give the possibility of increasing the number of the same time when using nozzle bodies according to FIGS. 7A, 7B or 9A to 9C and a nozzle bar according to FIGS .6 some of the nozzle bodies are replaced with dummies. These dummies contain no vortex nozzles or air channels and only serve to seal the nozzle bar.
  • the inserts of some of the nozzle bodies of an air supply bar can be replaced by dummies, which in turn have the purpose of sealing the openings 157 of the air supply bar.
  • the dimensions of the mentioned dummies correspond to the nozzle bodies according to FIGS. 7 and 9 or the inserts according to FIGS. 8A to 8C.
  • This invention also focuses on the environmental effects of the device for intermingling a plurality of threads.
  • a device by means of which such environmental influences are avoided is shown in FIGS. 11 and 12.
  • FIGS. 11 and 12 are aimed in particular at mitigating the effects of these two factors.
  • the system for intermingling a large number of threads shows two air supply bars 101 with attached nozzle bodies 103. In this respect, the system corresponds to the system shown in FIG. 5.
  • a box 126 encloses the air supply bars 101 over their entire working width. Furthermore, the box 126 extends on both sides in front of and behind the air supply bar 101 over part of the thread path. In the right part of box 126, the inside is shown with a soundproofing covering 128; other sound-absorbing measures, such as internals based on reflection and / or interference, can also be provided.
  • a suction box 129 is provided on each side in the interior of the flat box 126 between the two air supply bars 101 and the thread groups 122 assigned to them; the suction boxes 129 also extend over the entire working width of the air supply beams 101 and essentially over the length of the box 126.
  • the suction boxes are connected to a suction device via the suction connections 158.
  • Each suction box 129 has suction openings 131 on its surfaces facing the thread coulters 122, which are shown in FIG. 12 as a top view of a suction box 129.
  • Each suction opening is provided with an air vane 132.
  • the air guide vanes 132 are aligned in such a way that they collect the air coming from the nozzle bodies 103 and flowing to the open ends of the box 126 and direct them into the suction box 129.
  • the holes 131 were created by cutting or punching the hole borders on three sides and bending the resulting flags 132 inwards.
  • Both box 126 and suction boxes 129 are essentially symmetrical to the central plane 127.
  • both bars 101 are rotated clockwise from the vertical plane. This leads to the fact that the thread sheets on the input side are offset by an amount 125 from the output side. Since the favorable deflection angle for guiding the threads through their thread channels is adjustable and depends on the individual thread and process parameters, the upper cover and the lower cover of the box 126 are adjustable in height.
  • adjustable suspensions 162 are provided, which in the exemplary embodiment shown are designed as screw spindles. 163 is marked with ropes on which the widely protruding box ends are suspended.
  • FIG. 5 shows a modified air supply compared to the embodiment according to FIG. 10.
  • the flange connection 142 for the air connection 135 is located here on the stand 102, the cavity 143 of which is sealed accordingly.
  • the end 123 of the air supply bar 101, which is mounted in the stand 102, is closed by a cover 159 and has inlet openings 145 within the stand 102 for the air to pass from the stand 102 into the bar 101.
  • the equipping of the air supply bar 101 with nozzle bodies 103 is expediently based on the maximum number of threads. Voted.
  • the adaptation to the specific number of threads is then easily possible in the device according to the invention in that individual nozzle bodies or insert nozzles - as described - are replaced by blind inserts.
  • the threads are threaded into the individual swirl nozzles using bristles.
  • the threads can be threaded pneumatically.
  • FIG. 13 shows three different embodiments. Common to all is that the nozzle body 103 is designed as a solid body which, as described with reference to FIGS. 7A, 7B, is composed of two plates which form an air chamber 109 between them. Nozzle holes are made in the nozzle body. The nozzle bores have the threading slots 305, which are open towards the side surfaces of the nozzle body.
  • a slotted tube 301 is firmly inserted into the housing bore 136. Its slot 305 coincides with the threading slot 305 of the bore 136.
  • a cylindrical inner body 302 which is rotatable therein and which is in its outer surface has a rectangular groove 303 running axially over its entire length or a rounded groove 304.
  • the inner body 302 is rotated such that groove 303 or 304 and threading slot 305 coincide.
  • the inner body 302 is rotated so that the blow channel 108 meets the groove 303 or 304.
  • the inserted thread 311 is carried along when the inner body 302 rotates.
  • FIG. 3 Another example of a threadable swirl nozzle is shown in the upper example of the right vertical nozzle row.
  • a slotted tube is firmly inserted into the nozzle bore 136. Its slot in turn coincides with the threading slot 305 of the nozzle body 103.
  • An inner tube 307 slotted on a surface line is rotatably inserted in the tube 301. In the position shown, in which the slot of the inner tube 307 covers the threading slot 305 of the nozzle body or tube 305, the thread can be inserted into the inner tube 307.
  • the threading slot 305 is closed and the slot of the inner tube is made to overlap with the blowing channel 306.
  • the two lower examples of the right row of nozzles show a simplified version.
  • the outer tube 301 has been omitted.
  • An inner tube 308 rotatable in the housing bore 136 has a slot 310 which extends over its length and is used for threading, and also has a blow hole 309. Both are offset from each other, for example by about 90 °.
  • the slot 3.10 of the inner tube 308 is in correspondence with the threading slot 305 of the nozzle body 103 13 shows the two situations with one another
  • the nozzle bodies In order to make room for the lateral threading, the nozzle bodies must be moved apart in the area in which the insert nozzles 104 are located.
  • the nozzle body 103 has a lateral widening 312 on its foot part, so that the seal with respect to the air supply bar 101 is also ensured here.
  • the nozzle body shown in Fig.13 z. B. also fastened by means of a dovetail guide and a claw (see, for example, FIG. 6A).
  • the embodiment of the nozzle body according to FIG. 13 has the advantage on the one hand that the threads can be inserted easily. Another advantage also lies in the fact that the vortex nozzles can be separated from the air supply individually by rotating the inner body 302 or inner tube 307, 308 and laid dead. When using such a nozzle body, a particularly simple adaptation of the device to the desired number of threads is therefore possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Luftverwirbein einer Vielzahl von laufenden Fäden sowie einen Düsenbalken zur Verwendung in einer derartigen Vorrichtung.
  • Beim Verstrecken von Multifilamentfäden aus thermoplastischen Kunststoffen, insbesondere Polyamiden und Polyester, Polypropylen, Polyäthylen werden die Fäden vorteilhafterweise vor der Verstreckung oder auch nach der Verstreckung einer Luftverwirbelung unterworfen. Dabei wird ein Luftstrahl quer auf den laufenden Faden geblasen. Durch die geometrische Verlagerung einzelner Filamente erhalten die Filamente untereinander einen gewissen Zusammenschluß. Daher ist dieses Verfahren auch als Verflechten bezeichnet worden. Das Verfahren ist weitgehend unter dem Begriff « Tanglen » bekannt
  • Beim Verstrecken von Fadenscharen derartiger Multfilamentfäden, bei dem z. B. tausend Fäden von einem Gatter abgezogen, in eine gemeinsame Ebene geführt und gemeinsam zwischen mehren Walzen verstreckt werden, besteht das Problem, eine ausreichende Anzahl derartiger Düsen vor der Verstreckung oder - sofern dies erwünscht ist - auch hinter der Verstreckung anzuordnen.
  • Durch die DE-AS2611 547 ist eine Vorrichtung zum Luftverwirbeln einer derartigen Fadenschar bekannt, bei der die Wirbeldüsen in einem flachen Wirbelgehäuse luftdicht eingesetzt sind und gemeinsam an eine Luftquelle angeschlossen sind. Dabei ist die Düsenplatte in einer senkrechten Ebene angeordnet, so daß die Luftdüsen horizontal ausgerichtet sind. Die Vorrichtung hat den Nachteil, daß zum Teil Fäden mit schlechter Verwirbelung entstehen, zum Teil aber auch die qualitative Homogenität der Fadenschar schlecht ist Der Erfindung liegt die Erkenntnis zugrunde, daß die Fadenführung in der Düse einen wesentlichen Einfluß auf die Qualität des Fadens und insbesondere die Qualität der Verwirbelung hat
  • Die Erfindung löst daher die Aufgabe, für eine Schar von Fäden, die aus einer Vielzahl von horizontalen und vertikalen Ebenen anlaufen, eine Vorrichtung zum Luftverwirbeln bereitzustellen, durch die für jeden Faden im wesentlichen einheitliche Durchlaufverhältnisse durch die Wirbeldüse geschaffen werden können.
  • Die Aufgabe wird durch eine Vorrichtung der eingangs beschriebenen Art gelöst, die sich dadurch auszeichnet, daß auf einem gemeinsamen Träger oder Tragrahmen eine Mehrzahl jeweils mit mehreren Wirbeldüsen besetzter Düsenkörper vorgesehen ist, deren Lage relativ zueinander und zur Fadenschar veränderbar ist. Mit Vorteil sind die Düsenkörper als Hohlkörper ausgebildet und die Hohlräume sowohl mit einer Druckluftquelle als auch mit den Blaskanälen der einzelnen Wirbeldüsen des jeweiligen Düsenkörpers verbunden.
  • Eine vorteilhafte Ausführung zeichnet sich dadurch aus; daß die Wirbeldüsen in einer Mehrzahl von horizontalen Balken angeordnet sind und daß die Balken getrennt voneinander um eine horizontale Achse schwenkbar sind.
  • Man hat - dies sei vorab bemerkt - festgestellt, daß die Qualität der Verwirbelung wesentlich auch davon abhängt, daß der Faden die Wirbeldüse - im Längsschnitt des Düsenkanals gesehen - diagonal durchläuft. Durch die Erfindung wird es möglich, jeden Balken so einzustellen, daß diese Voraussetzung gegeben ist. Dabei kann vor und/oder hinter jedem Balken noch eine Fadenüberlaufstange angeordnet sein, die sich längs des Balkens erstreckt und den Fadenlauf innerhalb der Düsen festlegt. Diese Fadenüberlaufstangen können vorteilhafterweise mit dem Balken verbunden und mit ihm dementsprechend schwenkbar sein.
  • Ein bevorzugtes Ausführungsbeispiel sieht vor, daß auch der Rahmen, in dem die einzelnen Düsenbalken schwenkbar gelagert sind, um eine horizontale Achse schwenkbar ist. Hierdurch wird . eine weitere Anpassung der Fadenläufe durch die jeweiligen Wirbeldüsen möglich. Man kann aber insbesondere mit dieser Vorrichtung auch bewirken, daß die Auslenkung der Fäden bei ihrem Lauf durch die Wirbeldüsen relativ gering ist, so daß auch die Unterschiede der Fadenlauflänge zwischen den Klemmpunkten vor und hinter der Vorrichtung relativ gering ist. Ferner bietet die Schwenkbarkeit erhebliche Vorteile beim Einlegen der Einzelfäden.
  • Die Düsenbalken können durch Schläuche mit einer Druckluftquelle verbunden sein.
  • Eine robuste und konstruktiv einfache Ausführung wird dadurch ermöglicht, daß der Rahmen zumindest eines der vertikalen Seitenstücke als Hohlprofil ausgebildet und an das Druckluftnetz angeschlossen ist, wobei die einzelnen Balken mit dem Hohlprofil in Verbindung stehen, vorzugsweise über ihre hohlen Schwenkachsen mit dem Hohlprofil in Verbindung stehen. In dieser Ausführung werden äußerliche Luftanschlüsse vermieden, die bei der Vielzahl der einzufädelnden und geführten Fäden hinderlich sind.
  • Die Luftzufuhr zu dem Rahmen erfolgt vorzugsweise in der unteren Traverse, die in diesem Falle ebenfalls als Hohlprofil ausgebildet ist
  • Bei einer besonders vorteilhaften Ausführung des Düsenbalkens besitzt dieser eine nach oben weisende, sorgfältig plan gearbeitete Oberfläche, auf der ein Deckbalken mit einer kongruenten, ebenfalls plan gearbeiteten Oberfläche aufliegt.
  • In eine der beiden Oberflächen sind Fadenführungsnuten senkrecht zur Fadenlängsachse eingearbeitet. Bei abgehobenem Deckbalken kann in diese Nuten sehr leicht je ein Faden eingelegt werden. Durch Abdeckung der Nuten mit dem Deckbalken bildet jede Nut einen ringsherum abgeschlossenen Fadenkanal. Jede Nut steht über einen Stichkanal mit einem Luftkanal in Verbindung, der sich in Längsrichtung des Düsenbalkens erstreckt und der - z. B. wie zuvor geschildert - mit Druckluft beschickt wird.
  • Die Fadenführungskanäle können z. B. rechteckige Nuten sein, die mittels Fräser in die Planfläche des Düsenbalkens eingebracht werden. Dies hat den Vorteil, daß der Deckbalken außer der Planbearbeitung der Oberfläche keine weitere Bearbeitung benötigt. Es können aber auch Nuten in beide Planflächen eingebracht werden, die bei aufgesetztem Deckbalken miteinander kämmen. Auf diese Weise kann man insbesondere Fadenkanäle mit kreisförmigem Querschnitt herstellen, indem man den Unterbalken und den Deckbalken fest miteinander verspannt und sodann im Nahtbereich der plan gearbeiteten Oberflächen die Düsenbohrungen einbringt. Weiterhin können die Nuten aber auch in den Deckbalken eingebracht werden. In diesem Falle weist der Unterbalken lediglich die Planbearbeitung seiner Oberfläche auf, wobei in dieser Oberfläche mit der Teilung der in den Deckbalken eingebrachten Nuten Stichkanäle zu dem Luftkanal ausmünden.
  • Durch diese Konstruktion des Düsenbalkens gelingt es, die Luftdüsen sehr dicht in einem Abstand von z. B. lediglich 5 mm nebeneinander anzubringen, so daß auch eine Vorrichtung zur Luftwirbelbehandlung von tausend Fäden verhältnismäßig klein baut.
  • In einer vorteilhaften Ausführung werden die Stichkanäle so angebracht, daß der in die Fadenkanäle austretende Luftstrom eine Bewegungskomponente in Förderrichtung der Fäden hat Dadurch wird dann, wenn die Vorrichtung zum Luftverwirbeln hinter dem Streckwerk angebracht ist, ein Vorteil deshalb erzielt, weil die Verwirbelungsdüsen eine Zugkraft auf den Faden ausüben. Im Falle eines Fadenbruchs im Bereich der Aufwicklung wird daher der Faden weitergefördert, ohne daß der gebrochene Faden neu in die ihm zugeordnete Düse eingelegt werden muß.
  • Bei einer weiteren Ausgestaltungsform der Erfindung ist auf einem im wesentlichen horizontal verlaufenden Luftzufuhrbalken eine Reihe von Düsenkörpem befestigt, jeder Düsenkörper weist eine Anzahl Wirbeldüsen auf, deren Fadenkanäle parallel zueinander verlaufen und deren Blaskanäle mit einer gemeinsamen Luftzufuhr in Verbindung stehen. Die einzelnen Wirbeldüsen können in den Düsenkörpem in einer oder in mehreren zueinander parallelen Reihen angeordnet sein, wobei die zueinander Parallelen Ebenen durch die Düsenachsen der einzelnen Reihen im wesentlichen senkrecht zum Luftzufuhrbalken verlaufen.
  • Vorteilhaft weist der einzelne Düsenkörper mindestens vier und vorzugsweise mindestens sechs mit geringem gegenseitigen Abstand der Fadenkanäle angeordnete Wirbeldüsen auf; der Abstand zwischen zwei benachbarten Fadenkanälen liegt mit Vorteil bei mindestens 1,5 mm und beträgt höchstens 15 mm, wobei zur Verringerung des Reihenabstandes bei Anordnung der Fadenkanäle in mehreren parallelen Reihen die Fadenkanäle benachbarter Reihen gegeneinander versetzt angeordnet sein können.
  • Bei einer besonderen Weiterbildungsform besteht der einzelne Düsenkörper aus einem Gehäuse und einem in dieses eingepaßten, die einzelnen Wirbeldüsen aufnehmenden Gehäuseeinsatz.
  • Die Blaskanäle der einzelnen Wirbeldüsen eines Düsenkörpers stehn mit einer gemeinsamen Luftzufuhr im Düsenkörper in Verbindung. Die Wirbeldüsen können in dem Einsätzen in bis zu sechs Reihen angeordnet sein, wobei die Düsenreihen in zueinander parallelen, im wesentlichen senkrecht auf dem Luftzufuhrbalken stehenden Ebenen liegen. Die Luftversorgung kann über Hohlräume zwischen Einsatz und Gehäuseinnenwand oder/und im Zentrum des Einsatzes erfolgen. Der Einsatz kann auch aus mindestens zwei jeweils eine oder zwei Reihen Wirbeldüsen aufnehmenden parallelen-Platten bestehn, wobei als Luftzufuhr für die Blaskanäle Nuten vorgesehen sein können, die in mindestens einem Teil der Platten eingearbeitet sind.
  • Bei einer anderen Weiterbildungsform ist der Düsenkörper ein hohler Kasten. In seinen quer zum Fadenlauf liegenden Seitenwänden enthält er Bohrungen zur, dicht gepackten, Aufnahme von Einsatzdüsen, die mit ihren Enden in die Bohrungen der Seitenwände eingepaßt sind; ihre Blaskanäle münden in den Kasteninnenraum, der seinerseits mit den Innenraum des Luftzufuhrbalkens in Verbindung steht.
  • Bei einer besonderen Ausgestaltungsform dieser Weiterbildung der Erfindung sind die Düsenreihen gegeneinander um einen halben Abstand zweier in derselben Reihe nebeneinanderliegender Einsatzdüsen versetzt; die einzelnen Einsatzdüsen sind auf ihrer Vorderseite mit je einem rechteckigen Plättchen versehn, dessen Kantenlängen derart abgestimmt sind, daß bei montierten Düsen die Plättchen im wesentlichen ohne Zwischenraum aneinanderstoßen. Werden die rechteckigen Plättchen an den Rändern zur gegenseitigen Überdeckung unsymmetrisch abgesetzt, so ist es möglich, alle Einsatzdüsen gemeinsam durch nur eine Klammer zu arretieren und sie bei der Montage bezüglich der Lage ihrer Blaskanäle eindeutig auszurichten.
  • Bei einer anderen besonderen Ausführungsform weisen die Düsenkörper in ihren parallel zum allgemeinen Fadenlauf liegenden Seitenwänden in diesen im wesentlichen parallel zum Fadenlauf sich erstreckende Bohrungen zur Aufnahme von Einsatzdüsen auf. Die Bohrungen und die Einsatzdüsen weisen über die Länge der Einsatzdüsen reichende, von den Seitenwänden ausgehende Einfädeischlitze auf, während die Luftversorgung der einzelnen Düseneinsätze über von den einzelnen Bohrungen ausgehende Verbindungskanäle zum luftführenden Innenraum des Düsenkörpers erfolgt. Es versteht sich, daß in Betriebsstellung Blaskanäle und Verbindungskanäle miteinander korrespondieren.
  • Die Einfädelschlitze im Düsenkörper können durch geeignete Mittel nach dem Einlegen der Fäden abgedeckt werden, das Austreten der Fäden kann aber auch dadurch verhindert werden, daß die Düseneinsätze in den Bohrungen verdreht werden, so daß die Einfädelschlitze verschlossen sind. In letzteren Fall sind Einfädelschlitz und Blasbohrung in der Einsatzdüse auf deren Umfang derart gegeneinander versetzt angeordnet, daß in Einfädelstellung die Blaskanäle und in Arbeitsstellung die Einfädelschlitze durch die Bohrungswand verdeckt sind.
  • Bei einer Weiterbildung besteht die einzelne Einsatzdüse aus einem äußeren, in der Bohrung des Düsenkörpers festsitzenden Röhrchen mit Einfädelschlitz und einem im Röhrchen drehbaren Innenkörper, der Vorkehrungen zur Fadenaufnahme aufweist. Das festsitzende Röhrchen weist außerdem eine mit dem Verbindungskanal der Bohrung im Düsenkörper übereinstimmende Blasbohrung auf. Der Innenkörper kann massiv oder ebenfalls ein Röhrchen sein. Bei einer Ausbildungsform ist in seine Außenfläche eine über seine Länge reichende Fadenführungsnut eingebracht, die beliebigen, vorzugsweise jedoch ausgerundeten Querschnitt aufweist. Bei einer anderen Ausbildungsform ist der Innenkörper ein ebenfalls mit einem Einfädelschlitz versehenes Innenröhrchen. Zum Einfädeln wird der Innenkörper so gedreht, daß seine Fadenführungsnut bzw. sein Einfädelschlitz mit den Einfädelschlitz der Düsenkörperbohrung und ggf. des feststehenden Röhrchens übereinstimmt, in Arbeitsstellung ist die Fadenführungsnut bzw. der innere Einfädelschlitz so gedreht, daß Übereinstimmung mit der Blasbohrung oder/und dem Verbindungskanal zum Düsenkörperinneren entsteht Vorteilhaft ist dabei eine Einrichtung, mit der die innenkörper eines Düsenkörpers oder einer Düsenkörperhälfte gemeinsam verdrehbar sind.
  • Der zum Tragen der vorbeschriebenen Düsenkörper geeignete Luftzufuhrbalken ist in seinem Traggestell derart befestigt, daß er zur Veränderung des Ablenkwinkels der die Wirbeldüsen durchlaufenden Fäden um seine Längsachse verdreht werden kann. Das im Ständer sitzende, als Schwenklager dienende Balkenende kann mit zum Balkeninnenraum führenden Bohrungen versehen sein, die mit dem Innenraum des als Hohlbalken ausgebildeten Ständers in Verbindung gebracht werden können; der hohle Ständer ist mit einem Fianschanschiuß für die Luftleitung versehen, so daß die Wirbeldüsen über den Innenraum des Luftzufuhrbalkens, die Bohrungen im ständerseitigen Ende und den Ständerinnenraum mit der Luftversorgung in Verbindung stehn. Bei einer anderen Ausführungsform ist das ständerseitige Ende des Luftzufuhrbalkens über den Ständer hinaus verlängert und selbst mit einem Flansch zum Anschluß der Luftversorgung ausgestattet. Eine besonders kompakte Ausführungsform der erfindungsgemäßen Vorrichtung weist auf einem Luftzufuhrbalken zwei Düsenkörperreihen auf, die auf seinem Umfang um etwa 180° gegeneinander versetzt sind.
  • Der Luftzufuhrbalken mit den Düsenkörpem kann vorteilhaft von einem als Absaugung für die Blasluft und/oder als Schallschutz dienenden flachen Kasten eingehüllt sein, der sich nach der Fademeinlaufseite und/oder der Fadenauslaufseite hin über einen Teil des Fadenwegs erstreckt. Seine Innenwände können mit schallabsorbierendem Material belegt, der Innenraum kann mit einem Absaugkasten ausgestattet sein. Letzterer weist vorteilhaft auf seiner den Fäden zugewandten Seite eine Vielzahl Absaugöffnungen auf. Sie sind mit Vorteil rechteckig, ihr an drei Seiten der jeweiligen Öffnung abgetrenntes Material ist in Fahnenform schräg in den Saugraum hinein abgebogen.
  • In einer bevorzugten Ausführungsform umhüllt der flache Kasten zwei zueinander parallele, mit je einer Düsenkörperreihe ausgestattete und mit den letzteren im wesentlichen gegeneinander zeigende Luftzufuhrbalken. Er ist im wesentlichen symmetrisch zu den beiden Düsenkörperreihen ausgebildet. Der Absaugkasten ist in der Mitte zwischen den beiden den zwei Düsenkörperreihen zugeordneten Fadenscharen angeordnet und so gestaltet, daß er auf beide Fadenscharen mit gleicher Intensität einwirkt. Vorteilhaft sind die vor und hinter den Düsenkörperreihen liegenden Teile des flachen Kastens im wesentlichen senkrecht zu den Fadenscharebenen verschiebbar, wodurch es möglich wird, die gegenseitige Verschiebung der Fadenscharen zwischen dem Fadenein- und dem fadenauslauf, die sich beim Verdrehen der Luftzufuhrbalken ergeben, zu kompensieren.
  • Erfindungsgemäß ist es bei den vorhergehend beschriebenen Ausführungsformen möglich, zur Anpassung an veränderte Fadenzahlen einzelne Düsenkörper gegen Blindkörper oder/und einzelne Einsatzdüsen gegen Blindeinsätze auszutauschen, ohne daß dadurch ins Gewicht fallende Störungen in der Fadenschar auftreten.
  • Zur Anpassung der erfindungsgemäßen Vorrichtung an unterschiedliche Fadenzahlen ist weiterhin vorgesehen, daß der Träger bzw. Tragrahmen, an dem die Düsenkörper befestigt sind, um eine senkrechte Achse schwenkbar ist. Hierdurch kann der Träger bzw. Tragrahmen der Arbeitsweise der Streckeinrichtung, auf der die einzelnen Fäden verteilt sind, angepaßt werden, wobei - wie bereits beschrieben - mehr oder weniger Wirbeldüsen bzw. Düsenkörper totgelegt werden.
  • Im folgenden werden Ausführungsbeispiele der Erfindung beschrieben.
  • Es zeigen
    • Fig. 1 A, 1 B das Diagramm einer Fadenschar-Streckeinrichtung ;
    • Fig. 2 die Ansicht der Vorrichtung zum Luftverwirbeln der Fadenschar;
    • Fig. 3A, 3B Quer- und Längsschnitt eines Düsenbalkens ;
    • Fig. 4A, 4B Quer- und Längsschnitt eines Düsenbalkens ;
    • Fig. 5 Vorrichtung mit zwei jeweils eine Düsenkörperreihe tragenden Luftzufuhrbalken ;
    • Fig. 6A Querschnitt durch einen Luftzufuhrbalken ähnlich der Ausführung nach Fig. 8 ;
    • Fig. 6B Schnitt durch einen mit zwei um etwa 180° gegeneinander versetzten Düsenkörperreihen bestückten Luftzufuhrbalken ;
    • Fig. 7A, 7B Längs- und Querschnitt durch einen Düsenkörper;
    • Fig. 8A Düsenkörper mit zweimal sieben Wirbeidüsen ;
    • Fig. 8B Düsenkörper mit vier Reihen Wirbeldüsen ;
    • Fig. 9A Düsenkörper mit Einsatzdüsen ;
    • Fig. 9B Frontseite eines Düsenkörpers gem. Fig. 9A ;
    • Fig. 9C zwei benachbarte Düsen gem. Fig. 9A (Detail) ;
    • Fig. 10 Schnitt durch den Ständer der Vorrichtung gem. den Fig. 5 bis 13 (teilweise) ;
    • Fig. 11 Schallschutz- und Absaugekasten, Längsschnitt ;
    • Fig. 12 Ansicht des Absaugekastens von oben;
    • Fig. 13 Düsenkörper mit Einfädelschlitzen.
  • Die Anlage zum Verstrecken einer Fadenschar nach den Figuren 1 a und 1 b ist lediglich schematisch dargestellt. Auf einem Gatter 1 befindet sich eine Vielzahl von - z. B. 1 000 - Vorlagespulen 2, von denen die Fäden 3 über geeignete Fadenführer, Fadenspanner und Fadenwächter (nicht dargestellt) ablaufen. Die Fäden werden durch das erste Walzenpaar 4 abgezogen und sodann gruppenweise aufgefächert und durch in Ebenen übereinanderliegende Düsenbalken 7 geführt. In diesen Düsenbalken werden die Multfilamentfäden in jeweils einer sog. « Tangle-Düse »verwir belt. Dadurch wird der Fadenschluß, d. h. der Zusammenhalt der Einzelfilamente eines jeden Fadens verbessert und die Laufruhe und Verstreckbarkeit verbessert
  • Einzelheiten zur Ausgestaltung der Düsenbalken und des Rahmens 6 sowie Ständer 5 werden im folgenden anhand der Figuren 2 bis 4 geschildert. Jedem Düsenbalken ist in dem Ausführungsbeispiel eine Überlaufstange 41 vor- und nachgeordnet. Die Überlaufstangen sind in nicht dargestellter Weise mit dem Düsenbalken verbunden.
  • Im Anschluß an die Luftverwirbelung werden sämtliche Fäden wieder in eine Ebene zusammengeführt, was mittels zweier Überlaufwalzen 8 geschieht Die Fäden werden sodann durch die Eingangswalzen 9 des Streckwerks abgezogen. Es folgen die beheizten Walzen 10, die zur Verarbeitung von Polyesterfäden auf ca. 90° aufgeheizt werden. Die Fäden durchlaufen sodann eine Heizplatte 11, auf der sie auf mehr als 120° aufgeheizt werden. Die Heizplatte 11 ist schwenkbar an der Trageinrichtung 12 gelagert. Sie kann durch die Antriebseinrichtung 13 - dargestellt ist eine pneumatische Zylinder-Kolben-Einheit - von der Fadenschar abgehoben werden. Die Antriebseinrichtung 13 wird in Abhängigkeit von Fadenwächtem gesteuert. Hinter der Umlenkwalze 14 folgen die Ausgangswalzen 15. Die Umfangsgeschwindigkeit der Ausgangswalzen 15 ist um das Streckverhältnis größer als die Umfangsgeschwindigkeit der Eingangswalzen 9 bzw. beheizten Walzen 10.
  • Die Fadenschar wird sodann über einen Kamm 18 einem Kettbaum 17 der Bäumanlage 16- zugeführt.
  • Einzelheiten der Vorrichtung für die Luftverwirbelung der Einzelfäden ergeben sich aus den Figuren 2 bis 4.
  • Nach Fig. 2 ist in einem Ständer 22 ein Rahmen 6 in Schwenkachse 23 schwenkbar gelagert. Der Rahmen 6 wird durch Vierkant 24 und Arretiereinrichtung 25 verschwenkt und mittels Arretierbolzen 26 in einer gewünschten Schwenklage fixiert. Der Rahmen 6 besteht aus einer unteren Traverse 20, einer oberen Traverse 21 und den Seitenteilen 19. Die Traversen und Seitenteile sind als rechteckige Hohlprofile ausgeführt. Die untere Traverse weist einen Luftanschluß 27 auf. In den Seitenteilen sind Düsenbalken 7 schwenkbar gelagert. Einzelheiten eines ersten Ausführungsbeispiels dieser Düsenbalken ergeben sich aus den Fig. 3a und 3b. In diesem Ausführungsbeispiel ist der Düsenbalken 7 im Querschnitt ein Rechteckprofil 28, das an seinen beiden Enden die hohlen Schwenkzapfen 23 aufweist. Mit diesen Schwenkzapfen 23 ist jeder Düsenbalken beidseits in einer Seitenwand der Seitenteile 19 schwenkbar gelagert. Durch die mit dem Düsenbalken verbundene Arretiereinrichtung 33 kann der Düsenbalken relativ zu dem Rahmen verschwenkt und in einer gewünschten Schwenkposition durch Fixierbolzen 30 arretiert werden. Die Schwenkzapfen 23 sind durch Dichtungen 32 abgedichtet, so daß der Innenraum des Unterbalkens (Hohlprofils) 28 in luftführender Verbindung mit den mit Druckluft beschickten Seitenteilen 19 steht.
  • Jeder Unterbalken 28 ist auf seiner nach oben weisenden Fläche plangearbeitet. Auf die Fläche ist eine Deckplatte 29 gesetzt, die ebenfalls eine plangearbeitete Unterfläche hat Beide plangearbeiteten Flächen sind so genau gearbeitet, daß sie ohne wesentliche Spaltbildung in der Trennfuge 34 aufeinander liegen. Der Deckbalken 29 wird in seiner Betriebsposition durch Fxierbolzen 30 festgelegt In die plangearbeitete Fläche des Unterbalkens sind Nuten 35 eingearbeitet, die die Längsachse des Unterbalkens senkrecht kreuzen. Ober Stichkanäle 36 stehen diese Nuten 35 mit dem luftführenden Inneren des Unterbalkens in Verbindung.
  • Bei aufgesetztem Deckbalken 29 dienen die Nuten als Fadenkanäle, in denen die Luftverwirbelung der durchlaufenden Fäden erfolgt. Es hat sich herausgestellt, daß die Fäden vorzugsweise diagonal - gesehen im Längsschnitt der Nuten 35 - durch die Verwirbelungsdüsen geführt werden. Aus diesem Grunde besitzt im Fadeneingang die Deckplatte 29 eine Fadenführungsleiste 37 und im Fadenausgang der Unterbalken eine Fadenführungsleiste 38.
  • Zum Einfädeln wird der Deckbalken 29 abgehoben. Sodann kann jeweils ein Faden einfach in eine Nut 35 eingelegt werden. Dem Düsenbalken vorgeordnet sind Überlaufstangen 41, die mit dem Deckbalken und/oder Unterbalken verbunden sein können. Die Verbindungen sind hier nicht dargestellt.
  • Alternativ können die Nuten auch in den Deckbalken 29 eingebracht werden. In diesem Falle münden die Stichkanäle 36 auf der plangearbeiteten Oberfläche des Unterbalkens 28.
  • Ebenso ist es möglich, Nuten mit geringerer Tiefe in die plangearbeitete Oberfläche sowohl des Unterbalkens wie auch des Deckbalkens einzubringen.
  • Für die Luftverwirbelung bestimmter Fäden mag es bevorzugt sein, Fadenkanäle mit kreisförmigem Querschnitt zu verwenden. Eine geeignete Ausführungsform ist in den Figuren 4a und 4b dargestellt. In dieser Ausführungsform werden der Oberbalken und der Unterbalken auf ihren plangearbeiteten Oberflächen fest miteinander verspannt. Sodann werden in der Trennfuge 34 Bohrungen 40 eingebracht, die zur Hälfte im Unterbalken, zur Hälfte im Oberbalken liegen. Jeder Balkenteil hat also eine schalenförmige Nut und es entsteht bei aufgelegtem Deckbalken ein runder Fadenkanal. In diesem Falle sind die Fadenführer 37 und 38 halbringförmig ausgebildet.
  • Es kann erforderlich sein, die 8treckaniage sehr schnell außer Betrieb zu setzen. Dies ist dann erforderlich, wenn ein Faden der Fadenschar bricht. In diesem Falle will man vermeiden, daß die übrigen Fäden der Fadenschar durch die Heizeinrichtungen beschädigt werden. Dies geschieht - wie dargestellt - zum einen dadurch, daß die Heizplatte 11 von der Fadenschar abgehoben werden kann.
  • Zum anderen ist erfindungsgemäß vorgesehen, daß die beheizten Walzen 10 mit einer Flüssigkeit beheizt sind und daß Ventileinrichtungen vorgesehen sind, durch die die beheizte Flüssigkeit sehr schnell gegen kalte Flüssigkeit ausgetauscht werden kann, wobei diese Ventileinrichtungen mit der Fadenbruchüberwachung der Streckanlage betriebsmäßig verbunden sind. Als heiße Flüssigkeit eignet sich z. B. Wasser, da lediglich Temperaturen bis 100° erwünscht sind. Als kalte Flüssigkeit eignet sich ebenfalls Wasser, wobei unter kalt hier eine Temperatur verstanden wird, bei der die auf den Walzen 10 liegenden Fäden nicht mehr beschädigt werden.
  • Es sei bemerkt, daß die Oberflächengeschwindigkeit der Walzen 10 unabhängig von derjenigen der Walzen 9 bzw. 15 eingestellt werden kann, was an sich aus der Strecktechnologie für Kunststoffäden, insbesondere Polyesterfäden bekannt ist
  • Eine weitere beispielsweise Ausführungsform der erfindungsgemäßen Vorrichtung mit einigen Weiterbildungsformen zeigen die Figuren 5 bis 13.
  • Nach Fig. 5 ist in dem Ständer 102 der Luftzufuhrbalken 101 mit seinem Befestigungsende 123 auskragend und um seine Achse 148 verdrehbar gelagert. Der Balken 101 verläuft vorzugsweise im wesentlichen horizontal. Auf dem Luftzufuhrbalken 101 ist dicht gepackt eine Reihe 151 von Düsenkörpem 103 befestigt
  • Jeder Düsenkörper ist ein Quader, der von einer Vielzahl von Wirbeldüsen durchdrungen wird. Die Achse der Wirbeldüsen liegt im wesentlichen senkrecht zur Längsachse 148 des Luftzufuhrbalkens. Jeder Düsenkörper besitzt ein System von Hohlräumen und Kanälen, durch das jede einzelne Wirbeldüse mit Druckluft beschickt wird. Hierzu steht das Kanalsystem 109 eines jeden Düsenkörpers mit dem Innenraum 147 des Luftzufuhrbalkens in Verbindung. Jeder Düsenkörper ist druckdicht gegenüber dem Luftzufuhrbalken abgedichtet.
  • Mit Hilfe des Ringkragens 124 und einer mit einer Scheibe 152 unterlegten Ringmutter 152 ist jeder Balken 101 im Ständer 102 drehbar befestigt. Jeder Luftzufuhrbalken endet außerhalb des Ständers 102 in einem Flansch 146, der mit dem Luftanschluß 135 (gestrichelt) verbunden werden kann. Bei der in Fig. 5 dargestellten Ausführungsform sind im Ständer 102 zwei Luftzufuhrbalken 101 mit zueinander parallel verlaufenden Achsen 148 gelagert. Sie sind so montiert, daß die beiden Düsenkörperreihen 151, von denen jeder Balken 101 eine aufweist, gegeneinander zeigen ; der Grund hierfür wird weiter unten beschrieben. Der Ständer 102 ist um die senkrechte Achse 164 schwenkbar, um den Luftzufuhrbalken auch bei Veränderung der Fadenzahl über seine Länge gleichmäßig mit Fäden belegen zu können.
  • Eine Ausgestaltungsform, bei der auf einem Luftzufuhrbalken 101 zwei gegeneinander um etwa 180° versetzte Düsenkörperreihen 151 angeordnet sind, zeigen die Figuren 6A und 6B. Fig. 6A zeigt einen Luftzufuhrbalken 101 mit rundem Querschnitt. Der Luftzufuhrbalken besitzt zwei in Längsrichtung verlaufende ebene Flächen 160, die sich in Längsrichtung des Luftzufuhrbalkens erstrecken. Diese Flächen bilden mit dem Umfang des Luftzufuhrbalkens an einer Seite eine schwalbenschwanzförmige Ausnehmung 154. Jeder der dicht nebeneinander sitzenden Düsenkörper 103 wird mit Hilfe je einer Pratze 110 sowie Gewindebolzen 115 gegen den Schwalbenschwanz-ähnlichen Anschlag 154 gepreßt. Gummidichtungen 155, wie sie beispielsweise in Fig. 7A, 7B angedeutet sind, sorgen für die Dichtheit der Verbindung zwischen den Düsenkörpem und dem Luftzufuhrbalken 101. Auch hier ist der Ständer aus dem zitierten Grund um die senkrechte Achse 164 schwenkbar.
  • Es sei erwähnt, daß in dem Ausführungsbeispiel nach Fig. 5 die Düsenkörper in derselben Weise wie in dem Ausführungsbeispiel nach Fig. 6A, 6B an ihrem jeweiligen Luftzufuhrbalken 101 befestigt sein können.
  • Der innere Aufbau erfindungsgemäßer Düsenkörper 103 ist insbesondere anhand der Ausführung nach Fig. 7A, 7B gezeigt Zur Befestigung des Düsenkörpers ist wiederum eine Pratze 110 vorgesehen. Diese Pratze 110 ist hier nur angedeutet.
  • Der Düsenkörper 103 besteht im wesentlichen aus den beiden Platten 116 und 117, die mit Hilfe der Schrauben 156 zusammengehalten sind. In die zueinander weisenden Flächen sind Ausnehmungen eingearbeitet. Im zusammengebauten Zustand der Platten 116, 117 bilden diese Ausnehmungen eine der Luftzufuhr zu den Blaskanälen 108 dienende Kammer 109, die über die Verbindungsöffnung 157 mit dem Innenraum 147 des Luftzufuhrbalkens 101, der hier einen rechteckigen Querschnitt hat, in Verbindung steht. Jede der Platten 116 und 117 weist je eine Fadenkanalreihe 111, 112 auf; von jedem Fadenkanal 107 führt ein Blaskanal 108 in die Luftzufuhrkammer 109. Mit Hilfe der Dichtungen 155 ist jeder einzelne Düsenkörper 103 gegen den Luftzufuhrbalken 101 abgedichtet.
  • Die Fadenkanäle 107 sind in dem gezeichneten Ausführungsbeispiel in Ebenen angeordnet, die senkrecht auf der Fläche 160 stehen. Es ist auch möglich, die Fadenkanäle in Ebenen anzuordnen, die mit der Fläche 160 einen Winkel bilden, der kleiner als 90° ist. Dadurch erreicht man, daß man auch bei der Betrachtung senkrecht von oben alle Fadenkanäle und die durchlaufenden Fäden sehen kann.
  • Jeder Fadenkanal 107 ist eine Bohrung, die in eine der Platten 116 bzw. 117 eingebracht ist. Am Fadeneingang und Fadenausgang 149, 150 befindet sich jeweils ein verschleißfester Einsatz, der als Fadenführer dient.
  • Zwei weitere Ausbildungsformen des erfindungsgemäßen Düsenkörpers sind in den Figuren 8A und 8B gezeigt. Beide Ausführungsformen bestehen aus einem Gehäuse 105 und einem Einsatz 106, der in das Gehäuse 105 dichtend eingepaßt ist. Das Gehäuse 105 ist im Querschnitt U-förmig ausgebildet Der Boden besitzt ein Loch, welches in der eingebauten 8tellung mit der Verbindungsöffnung 157 fluchtet. Die beiden Seitenwände bilden mit dem Boden einen quaderförmigen Innenraum, der oben und an den beiden Stirnseiten offen ist. Der Einsatz ist im einzelnen in Fig.8C dargestellt. Es handelt sich um einen quaderförmigen Block, der in den Innenraum des Gehäuses 105 eingepaßt ist. Der quaderförmige Block besitzt seitlich Aussparungen 118, die zusammen mit den Seitenwänden des Gehäuses 105 eine Luftkammer bilden. Weiterhin besitzt der Einsatz 106 auch an seinem Grunde eine Ausnehmung 109 oberhalb des Loches im Boden des Gehäuses. Die Luftkammem 118 stehen über diese Ausnehmung 109 und die Bohrung im Boden des Gehäuses 105 sowie das Loch 157 mit dem Innenraum 147 des Luftzufuhrbalkens 101 in Verbindung. Die Fadenkanäle 107 durchdringen den Einsatz in Längsrichtung, und zwar quer zur Längsrichtung des Luftzufuhrbalkens 101. Die Blaskanäle 108 liegen senkrecht zu den Fadenkanälen 107. Sie münden in die Ausnehmungen 118, die - wie gesagt - mit dem Innenraum 147 des Luftzufuhrbalkens 101 über die Verbindungsöffnung 157, die Bohrung im Boden des Gehäuses 105 sowie die Ausnehmung 109 im Einsatz 106 verbunden sind.
  • Während auch die Ausführungsform nach Fig.8A, 8C zwei Fadenkanalreihen 111, 112 aufweist, sind im Einsatz 106 der Fig.8B deren vier Fadenkanalreihen 111 bis 114 vorgesehen. Zum Erzielen einer größeren Kanaldichte, die für das Erreichen möglichst gleicher Bedingungen für die Fäden der Fadenschar vorteilhaft ist, sind die benachbarten Reihen derart gegeneinander versetzt, daß die einzelnen Fadenkanäle «auf Lücke stehen; die Reihen 112 und 114 weisen sieben, die Reihen 11 und 113 jeweils sechs Fadenkanäle 107 auf.
  • Eine weitere Ausbildungsform des Düsenkörpers zeigen die Figuren 9A und 9B. In einem hohlen, durch den Deckel 144 abgeschlossenen, quaderförmigen Kasten 119, der das Gehäuse 105 der vorhergehend beschriebenen Ausführungsform ersetzt, sind Bohrungen 136 zur Aufnahme der einzelnen Wirbeldüsen. Die Wirbeldüsen sind rohrförmige Düseneinsätze 120, die in die Bohrungen eingeführt sind. Jeder rohrförmige Düseneinsatz 120 weist einen radialen Blaskanal 108 auf, der die Luftzufuhrkammer 109, d. h. den Innenraum des Kastens 119 mit dem Fadenkanal 107 verbindet. Die rohrförmigen Düseneinsätze 120 sind an ihrer Fadeneinlaufseite und an ihrer Fadenauslaufseite je mit einem geeigneten Fadenführer versehen. Die einlaufseitigen Enden 149 der Düseneinsätze sind darüberhinaus mit reckteckigen Plättchen 121 versehen, deren Seitenlängen so bemessen sind, daß sie bei eingesetzten Düsen 120 praktisch ohne Zwischenraum aneinanderstoßen (Fig. 9B). Ihre Lage kann dann ohne das Entfernen einiger Einsätze 120 nicht verändert werden. Werden die Plättchen (wie in Fig. 9C) beispielsweise an den Kanten 139 auf der Rückseite und an den Kanten 140 auf der Vorderseite stufenförmig eingeschnitten, so setzen sich bei der Montage die Kanten 139 auf die Kanten 140 und mit Hilfe nur einer Befestigungslasche 141 können alle Düseneinsätze in ihrer Längsrichtung festgelegt werden.
  • Die Düsenkörper, wie sie in den Figuren 7 bis 9 gezeigt sind, geben die Möglichkeit, die Anzahl der gleichzeitig Hierzu können bei Verwendung von Düsenkörpem nach den Fig.7A, 7B bzw. 9A bis 9C und eines Düsenbalkens nach Fig. 5 bzw. Fig.6 einige der Düsenkörper gegen Attrappen ausgetauscht werden. Diese Attrappen enthalten keine Wirbeldüsen bzw. keine Luftkanäle und dienen lediglich der Abdichtung des Düsenbalkens. Bei Verwendung von Düsenkörpem nach den Fig.8A bis 8C können die Einsätze einiger der Düsenkörper eines Luftzufuhrbalkens durch Attrappen ersetzt werden, die wiederum den Zweck haben, die Öffnungen 157 des Luftzufuhrbalkens abzudichten. Durch Stillegen einiger Düsen oder Düsenkörper wird auch bei geringerer Fadenzahl die gleichmäßige Verteilung der Fäden über die Arbeitsbreite des Streckwerks und des Kettbaums sichergestellt.
  • Die erwähnten Attrappen entsprechen dabei in ihren Abmessungen den Düsenkörpem nach den Fig. 7 bzw. 9 bzw. den Einsätzen nach den Fig. 8A bis 8C.
  • Bei Verwendung von Düsenkörpem nach Fig. 9A bis 9C ist es darüberhinaus auch möglich, die Düseneinsätze durch Attrappen zu ersetzen, die der Abdichtung der Bohrungen im Düsenkörper dienen.
  • Es sei erwähnt, daß zur Anpassung der Anlage an unterschiedliche Fadenzahlen der Luftzufuhrbalken nach Fig. 5 bzw. Fig. 6 auch um die Achse 164, die in Fig. 5, 6A und Fig. 10, 11 gezeigt ist, schwenkbar sein kann. Hierdurch läßt sich die Fadendichte einstellen. Das heißt: Man kann die Fäden gleichmäßig über die Breite der Anlage verteilen. Dabei ist als vorteilhaft auch vorgesehen, daß die einzelnen Düsenkörper gegenüber dem Luftzufuhrbalken drehbar angeordnet sind, so daß bei Drehung des Luftzufuhrbalkens um die Achse 161 die einzelnen Fadenkanäle wieder in der gewünschten Weise auf den Fadenlauf ausgerichtet werden können.
  • Diese Erfindung richtet ihr Augenmerk auch auf die Umwelteinflüsse, die von der Vorrichtung zum Verwirbeln einer Vielzahl von Fäden ausgehen. Eine Vorrichtung, durch die derartige Umwelteinflüsse vermieden werden, ist in den Figuren 11 und 12 gezeigt.
  • Es ist bekannt, daß die Verflechtungsbehandlung der Fäden mit einer außerordentlich starken Geräuschentwickiung verbunden ist Außerdem ist bei der Blasbehandlung einer so großen Einzelfadenzahl der Luftverbrauch erheblich und bei der Regelung des Raumklimas nicht mehr vernachlässigbar. Insbesondere auf die Milderung der Auswirkungen dieser beiden Faktoren ist die in den Figuren 11 und 12 dargestellte Ausgestaltungsform gerichtet. Die Anlage zum Verwirbeln einer Vielzahl von Fäden zeigt zwei Luftzufuhrbalken 101 mit aufgesetzten Düsenkörpem 103. Insoweit entspricht die Anlage der in Fig. 5 gezeigten Anlage. Wie in Fig.11 zu erkennen, umschließt ein Kasten 126 die Luftzufuhrbalken 101 auf deren gesamter Arbeitsbreite. Ferner erstreckt sich der Kasten 126 zu beiden Seiten vor und hinter dem Luftzufuhrbalken 101 über einen Teil des Fadenweges. Im rechten Teil des Kastens 126 sind die Innenseiten mit einem Schalldämpfungsbelag 128 dargestellt; es können auch andere schalldämpfende Maßnahmen wie beispielsweise auf Reflexion und/oder Interferenz basierende Einbauten vorgesehen sein.
  • Zwischen den beiden Luftzufuhrbalken 101 und den ihnen zugeordneten Fadenscharen 122 ist im Inneren des flachen Kastens 126 auf jeder Seite ein Absaugkasten 129 vorgesehen ; die Absaugkästen 129 erstrecken sich ebenfalls über die gesamte Arbeitsbreite der Luftzufuhrbalken 101 und im wesentlichen über die Länge des Kastens 126. Die Absaugkästen sind über die Absauganschlüsse 158 an eine Absaugung angeschlossen. Jeder Absaugkasten 129 weist auf seinen den Fadenscharen 122 zugekehrten Flächen Absaugöffnungen 131 auf, die in Fig. 12 als Aufsicht auf einen Absaugkasten 129 dargestellt sind. Jede Absaugöffnung ist mit einer Luftleitfahne 132 versehen. Die Luftleitfahnen 132 sind so ausgerichtet, daß sie die von den Düsenkörpem 103 kommende und zu den offenen Enden des Kastens 126 strömende Luft auffangen und in den Absaugkasten 129 lenken. Bei der dargestellten Ausführung sind die Löcher 131 dadurch entstanden, daß die Lochumrandungen auf drei Seiten eingeschnitten oder -gestanzt und die sich so ergebenden Fahnen 132 nach innen umgebogen wurden. Sowohl Kasten 126 als auch Absaugkästen 129 sind im wesentlichen symmetrisch zur Mittelebene 127 ausgebildet.
  • In Fig. 11 sind beide Balken 101 im Uhrzeigersinn aus der vertikalen Ebene verdreht. Dies führt dazu, daß die Fadenscharen auf der Eingangsseite gegenüber der Ausgangsseite um einen Betrag 125 versetzt sind. Da der günstige Umlenkwinkel für die Führung der Fäden durch ihre Fadenkanäle einstellbar ist und von den einzelnen Faden-und Prozeßparametem abhängt, sind der obere Deckel und der untere Deckel des Kastens 126 höhenverstellbar. Hierzu sind einstellbare Aufhängungen 162 vorgesehen, die im dargestellten Ausführungsbeispiel als Schraubspindeln ausgeführt sind. Mit 163 sind Halteseile bezeichnet, an denen die weit ausladenden Kastenenden aufgehängt sind.
  • Eine gegenüber der Ausführung nach Fig. 5 veränderte Luftzufuhr zeigt Fig. 10. Der Flanschanschluß 142 für den Luftanschluß 135 befindet sich hier am Ständer 102, dessen Hohlraum 143 entsprechend abgedichtet ist. Das im Ständer 102 gelagerte Ende 123 des Luftzufuhrbalkens 101 ist durch einen Deckel 159 verschlossen und weist innerhalb des Ständers 102 Eintrittsöffnungen 145 zum Übertritt der Luft vom Ständer 102 in den Balken 101 auf.
  • Da die Anzahl der Fäden der Fadenscharen 122 veränderbar ist, wird die Bestückung der Luftzufuhrbalken 101 mit Düsenkörpem 103 zweckmäßig auf die maximale Fadenzahl. abgestimmt. Die Anpassung an die konkrete jeweilige Fadenzahl ist bei der erfindungsgemäßen Vorrichtung dann leicht dadurch möglich, daß einzelne Düsenkörper oder Einsatzdüsen - wie beschrieben - durch Blindeinsätze ersetzt werden.
  • Wie aus der Zeichnung, insbesondere den Figuren 5 und 6B zu erkennen, ist es möglich, die einzelnen Wirbeldüsen dicht zusammenzulegen, wobei Abstände von 2 bis 3 mm zwischen benachbarten Fadenkanälen bevorzugte Werte sind. Dadurch kann man beispielsweise bei Verwendung von Düseneinsätzen 106 entsprechend Fig.8B bereits in einer Düsenkörperreihe 151 eine große Fadenschar unterbringen.
  • Das Einfädeln der Fäden in die einzelnen Wirbeldüsen geschieht durch Borsten. Durch entsprechende Ausbildung der Wirbeldüsen und Anlage der Blaskanäle kann man auch erreichen, daß die Wirbeldüsen Luft ansaugen. In diesem Falle können die Fäden pneumatisch eingefädelt werden.
  • Eine Ausführung der Düsenkörper 103 mit einer anderen Möglichkeit der Einfädelung ist anhand der Fig. 13 beschrieben. Fig. 13 zeigt drei verschiedene Ausführungsformen. Allen gemeinsam ist, daß der Düsenkörper 103 als massiver Körper ausgebildet ist, der - wie anhand von Fig. 7A, 7B beschrieben - aus zwei Platten zusammengesetzt ist, die zwischen sich eine Luftkammer 109 bilden. In den Düsenkörper sind Düsenbohrungen eingebracht. Die Düsenbohrungen weisen die Einfädelschlitze 305 auf, die zu den Seitenflächen des Düsenkörpers hin offen sind.
  • Zunächst wird auf die linke senkrechte Düsenreihe Bezug genommen. Ein geschlitztes Röhrchen 301 ist in die Gehäusebohrung 136 fest eingesetzt. Sein Schlitz 305 fällt mit dem Einfädelschlitz 305 der Bohrung 136 zusammen. In dem Röhrchen 301 sitzt ein in diesem verdrehbarer, zylindrischer Innenkörper 302, der in seiner Außenfläche auf einer Mantellinie eine axial über seine ganze Länge verlaufende Rechtecknut 303 oder eine ausgerundete Nut 304 aufweist Zum Einlegen des Fadens wird der Innenkörper 302 so gedreht, daß Nut 303 oder 304 und Einfädelschlitz 305 zusammenfallen. In Arbeitsstellung ist der Innenkörper 302 so gedreht, daß der Blaskanal 108 auf die Nut 303 oder 304 trifft. Der eingelegte Faden 311 wird bei der Drehung des Innenkörpers 302 mitgenommen.
  • Ein weiteres Beispiel einer einfädelbaren Wirbeldüse ist im oberen Beispiel der rechten senkrechten Düsenreihe gezeigt In die Düsenbohrung 136 ist ein geschlitztes Röhrchen fest eingesetzt. Sein Schlitz deckt sich wiederum mit dem Einfädelschlitz 305 des Düsenkörpers 103. In dem Röhrchen 301 ist ein auf einer Mantellinie geschlitztes Innenrohr 307 verdrehbar eingesetzt. In der gezeigten Stellung, in der der Schlitz des Innenrohres 307 den Einfädelschlitz 305 des Düsenkörpers bzw. Rohres 305 überdeckt, kann der Faden in das Innenrohr 307 eingelegt werden. Durch Verdrehen des Innenrohres 301 wird der Einfädelschlitz 305 verschlossen und der Schlitz des Innenrohres zur Überdeckung mit dem Blaskanal 306 gebracht.
  • Eine vereinfachte Ausführung zeigen die beiden unteren Beispiele der rechten Düsenreihe. Das Außenröhrchen 301 ist entfallen. Ein in der Gehäusebohrung 136 drehbares Innenrohr 308 weist einen über seine Länge reichenden, dem Einfädeln dienenden Schlitz 310 und außerdem eine Blasbohrug 309 auf. Beide sind gegeneinander versetzt, beispielsweise um ca. 90°. In der Einfädelstellung des Innenrohres befindet sich der Schlitz 3.10 des Innenrohres 308 in Übereinstimmung mit dem Einfädelschlitz 305 des Düsenkörpers 103. In Arbeitsstellung fallen Blasbohrung 309 des Innenrohres und Blaskanal 306 des Düsenkörpers zusammen und der Schlitz 310 des Innenrohres wird durch die Wandung der Bohrung 136 abgedeckt, In Fig. 13 sind beide Situationen untereinander dargestellt
  • Um für das seitliche Einfädeln Platz zu schaffen, müssen die Düsenkörper in dem Bereich, in dem sich die Einsatzdüsen 104 befinden, auseinandergerückt werden. Bei der dargestellten Ausführung weist hierzu der Düsenkörper 103 an seinem Fußteil eine seitliche Verbreiterung 312 auf, so daß auch hier die Abdichtung gegenüber dem Luftzufuhrbalken 101 gewährleistet ist.
  • Im übrigen wird der in Fig.13 gezeigte Düsenkörper z. B. ebenfalls mittels einer Schwalbenschwanzführung und einer Pratze befestigt (vgl. hierzu z. B. Figur 6A).
  • Die Ausführung des Düsenkörpers nach Fig. 13 hat zum einen den Vorteil, daß die Fäden leicht eingelegt werden können. Ein weiterer Vorteil liegt aber auch darin, daß die Wirbeldüsen einzeln von der Luftzufuhr durch Verdrehen des Innenkörpers 302 bzw. Innenrohres 307, 308 abgetrennt und totgelegt werden können. Bei Verwendung eines derartigen Düsenkörpers ist daher auch eine besonders einfache Anpassung der Vorrichtung an die gewünschte Fadenzahl möglich.

Claims (46)

1. Vorrichtung zum gleichzeitigen Verwirbeln einer großen Zahl multifiler Fäden, insbesondere in Verbindung mit einem Schär- oder Streckschärvorgang, durch quer auf die einzelnen Fäden gerichtete Druckluftstrahlen, dadurch gekennzeichnet, daß auf einem gemeinsamen Träger oder Tragrahmen (6; 102) eine Mehrzahl jeweils mit mehreren Wirbeldüsen (35, 36; 104) besetzter Düsenkörper (7; 103) vorgesehen ist, deren Lage relativ zueinander und zur Fadenschar (3; 122) veränderbar ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Düsenkörper (7; 103) als Hohlkörper ausgebildet sind und die Hohlräume (109) sowohl mit einer Druckluftquelle als auch mit den Blaskanälen (36 ; 108; 306) der einzelnen Wirbeldüsen (35, 36; 104) des jeweiligen Düsenkörpers (7; 103) in Verbindung stehen.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in einem rechteckigen Rahmen (6) eine Mehrzahl von horizontalen Düsenbalken (7) um eine horizontale Achse schwenkbar gelagert sind, daß jeder Düsenbalken in seiner Längsrichtung von einem Luftkanal und senkrecht zu seiner Längsrichtung von einer Vielzahl von Fadenkanälen durchdrungen wird, und daß jeder Fadenkanal mit dem Luftkanal durch einen Stichkanal verbunden ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Rahmen um eine horizontale Achse schwenkbar ist
5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß zumindest eine Seitenflanke des Rahmens als Hohlprofil ausgebildet ist,
daß das Hohlprofil an eine Druckluftquelle angeschlossen ist,
daß die Düsenbalken luftführend mit dem Hohlprofil verbunden sind.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Düsenbalken mittels hohler Schwenkzapfen (23) an dem Hohlprofil gelagert sind.
7. Vorrichtung nach Anspruch 4 bis 6, dadurch gekennzeichnet, daß auch die untere Rahmenflanke als Hohlprofil ausgebildet und an die Druckluftquelle angeschlossen ist
8. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß die in die Fadenkanäle ausmündenden Stichkanäle eine Blaskomponente in Fadenlaufrichtung haben.
9. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Düsenkörper (7) als Düsenbalken (28) ausgebildet ist, in dessen Längsrichtung sich ein Luftkanal erstreckt, daß der Düsenbalken (29) eine parallel zu seiner Längsrichtung liegende Planfläche aufweist, daß ein Deckbalken (29) mit einer kongruenten Planfläche auf der Planfläche des Düsenbalkens (28) aufgesetzt ist, daß in zumindest eine der Planflächen Fadenführungsnuten (35) senkrecht zur Längsrichtung des Düsenbalkens (28) eingebracht sind und daß jede Fadenführungsnut (35) über einen Stichkanal (36) mit dem Luftkanal verbunden ist.
10. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß auf einem im wesentlichen horizontal verlaufenden Luftzufuhrbalken (101) eine Reihe (151) dicht aneinander sitzender Düsenkörper (103) befestigt ist und jeder Düsenkörper (103) eine Anzahl Wirbeldüsen (104; 120) aufweist, deren Fadenkanäle parallel zueinander verlaufen und deren Blaskanäle (108) mit einer gemeinsamen Luftzufuhr (109) in Verbindung stehen.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Wirbeldüsen (104; 120) in den Düsenkörpem (103) in einer oder mehreren zueinander parallelen Reihen (111-114) angeordnet sind und die zueinander parallelen Ebenen (127) durch die Düsenachsen (134) der einzelnen Reihen (111-114) im wesentlichen senkrecht zum Luftzufuhrbalken (101) verlaufen.
12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der Abstand (133) zwischen zwei benachbarten Fadenkanälen (107) mindestens 1,5 mm und höchstens 15 mm beträgt
13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß der einzelne Düsenkörper (103) mindestens vier und vorzugsweise mindestens sechs mit geringem gegenseitigen Abstand (133) der Fadenkanäle (107) angeordnete Wirbeldüsen (104; 120) aufweist.
14. Vorrichtung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß der Düsenkörper (103) aus einem Gehäuse (105; 119) und einem in dieses eingepaßten, die einzelnen Wirbeldüsen (104; 120) aufnehmenden Einsatz (106) besteht und die Blaskanäle (108) der einzelnen Wirbeldüsen (104; 120) mit einer gemeinsamen Luftzufuhr (109) in Verbindung stehn.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Einsatz (106) mit bis zu sechs in zueinander parallelen Ebenen (127) verlaufenden Reihen (111-114) von Wirbeldüsen - (104; 120) ausgestattet ist
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß zur Verringerung des Reihenabstands die Fadenkanäle (107) benachbarter Reihen (111-114) gegeneinander versetzt angeordnet sind (Figuren 9B und 13).
17. Vorrichtung nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, daß die Luftzufuhr (109) zur Versorgung der Blaskanäle (108) zwischen dem Einsatz (106) und der Innenwand des Gehäuses (105) oder im Zentrum des Einsatzes (106) vorgesehen ist.
18. Vorrichtung nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, daß der Einsatz (106) aus mindestens zwei jeweils eine oder zwei Reihen (111-114) Wirbeldüsen (104; 120) aufnehmenden parallelen Platten (116, 117) besteht, die alle oder zum Teil eine quer zu den Fadenkanälen (107) verlaufende, als Luftzufuhr (109) für die Blaskanäle (108) dienende Nut (118) aufweisen.
19. Vorrichtung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß das Gehäuse (105) als hohler Kasten (119) ausgebildet ist, der Bohrungen (136) zur dicht gepackten Aufnahme einzelner Einsatzdüsen (120) aufweist und die Blaskanäle (108) der Einsatzdüsen (120) in den Kasteninnenraum (137), der seinerseits mit dem Balkeninnenraum (147) in Verbindung steht, münden.
20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß die Düsenreihen (111-114) mit den Einsatzdüsen (120) gegeneinander um vorzugsweise einen halben Abstand (133) zwischen zwei in derselben Reihe (111-114) nebeneinander liegenden Einsatzdüsen (120) versetzt und die einzelnen Einsatzdüsen (120) auf ihrer Vorderseite mit einem rechteckigen Plättchen (121) versehen sind, dessen Kantenlängen derart abgestimmt sind, daß die Plättchen (121) im montierten Zustand (Fig. 15) im wesentlichen ohne Zwischenräume aneinanderstoßen.
21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß die rechteckigen Plättchen (121) an den Rändern (139, 140) zur gegenseitigen Überdeckung (138) unsymmetrisch abgesetzt sind und alle Einsatzdüsen (120) durch eine gemeinsame Klammer (141) arretiert und bezüglich der Lage ihrer Blaskanäle (108) ausgerichtet sind.
22. Vorrichtung nach einem der Ansprüche 10 bis 21, dadurch gekennzeichnet, daß der Luftzufuhrbalken (101) in seinem Traggestell (102) zur Variation des Ablenkwinkels der die Wirbeldüsen (104; 120) durchlaufenden Fäden (122) um seine Längsachse (148) verdrehbar ist
23. Vorrichtung nach einem der Ansprüche 10 bis 22, dadurch gekennzeichnet, daß der den Luftzufuhrbalken (101) tragende Ständer (102) hohl ist und einen mit seinem Innenraum (143) in Verbindung stehenden Flanschanschluß (142) für die Luftleitung aufweist und daß das im Ständer (102) sitzende Balkenende (123) mit Eintrittsöffnungen (145) für die Blasluft versehen ist
24. Vorrichtung nach einem der Ansprüche 10 bis 22, dadurch gekennzeichnet, daß der Luftzufuhrbalken (101) an seinem im Ständer (102) gelagerten und durch diesen hindurchreichenden Ende (123) einen Flansch (146) zum direkten Anschluß der Blasluftleitung aufweist
25. Vorrichtung nach einem der Ansprüche 10 bis 24, dadurch gekennzeichnet, daß auf einem Luftzufuhrbalken (101) zwei um etwa 180° gegeneinander versetzte Düsenkörperreihen (151) angeordnet sind (Figuren 8 und 9).
26. Vorrichtung nach einem der Ansprüche 10 bis 25, dadurch gekennzeichnet, daß der Luftzufuhrbalken (101) mit den Düsenkörpem (103) von einem flachen Kasten (126) umgeben ist, der sich nach der Fadeneinlaufseite und/oder der Fadenauslaufseite des Balkens (101) hin über einen Teil des Fadenwegs erstreckt, auf der Innenseite mit schallabsorbierenden Mitteln ausgestattet und/oder dessen Innenraum (137) mit einer Absaugung (129) ausgestattet ist.
27. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß der sich im wesentlichen über die in Fadenlaufrichtung gemessene Länge des flachen Kastens (126) erstreckende Absaugkasten (129) auf seiner den Fäden (122) zugewandten Seite eine Vielzahl Absaugöffnungen (131) aufweist.
28. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, daß die Absaugöffnungen (131) rechteckig sind und ihr an drei Seiten der jeweiligen Öffnungen (131) abgetrenntes Material als Fahnen (132) schräg in den Saugraum (130) hinein abgebogen sind.
29. Vorrichtung nach einem der Ansprüche 10 bis 28, dadurch gekennzeichnet, daß zwei zueinander parallele Luftzufuhrbalken (101) mit je einer Düsenkörperreihe (151) ausgestattet und derart übereinander angeordnet sind, daß die Düsenkörper (151) im wesentlichen gegeneinander zeigen.
30. Vorrichtung nach Anspruch 29, dadurch gekennzeichnet, daß auf einer Ebene zwischen den Luftzufuhrbalken (101) der Absaugkasten (129) angeordnet und mit einer Vielzahl von Absaugöffnungen (131) versehen ist, die auf die beiden den Düsenkörperreihen (151) zugeordneten Fadenscharen (122) gerichtet sind.
31. Vorrichtung nach einem der Ansprüche 26 bis 30, dadurch gekennzeichnet, daß die vor und hinter den Düsenkörperreihen (151) liegenden Teile des flachen Kastens (126) zum Ausgleich der bei Verdrehen des oder der Luftzufuhrbalken(s) (101) sich ergebenden Verschiebung (125) der Fadenscharen (122) im wesentlichen senkrecht zu den Fadenscharen (122) verschiebbar sind.
32. Vorrichtung nach einem der Ansprüche 10 bis 31, dadurch gekennzeichnet, daß die die Wirbeldüsen (104; 120) aufnehmenden Einsätze (106) bzw. hohlen Kästen (119) zur Anpassung an die Einzelfadenzahl der zu behandelnden Fadenschar (122) gegen Blindeinsätze bzw. Blindkästen austauschbar sind.
33. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die einzelnen Düsenkörper (7; 103) oder Düsenkörpergruppen durch Versorgungsschläuche mit mindestens einem gemeinsamen Luftbalken verbunden sind.
34. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der gemeinsame Träger oder Tragrahmen um eine im wesentlichen senkrechte Achse (164) schwenkbar ist.
35. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Blaskanäle eines Düsenkörpers in einer Ebene liegen, die gegenüber der senkrechten Ebene durch einen der Blaskanäle einen Winkel zwischen 0° und 45° bildet.
36. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Düsenkörper derart um ihre senkrechte Längsachse verdrehbar sind, daß sie unabhängig von der Drehstellung des Tragrahmens mit den Achsen ihrer Blaskanäle auf den Fadenlauf ausgerichtet werden können.
37. Vorrichtung nach Anspruch 36, dadurch gekennzeichnet, daß die einzelnen Düsenkörper voneinander unabhängig um ihre jeweilige Längsachse drehbar sind.
38. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Düsenkörper einzeln dem Verband entnehmbar und/oder von der Luftversorgung abtrennbar sind.
39. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Düsenkörper (103) Bohrungen (136) mit jeweils einem Einfädelschlitz (305) aufweist,
daß jede Bohrung durch einen Blaskanal (Verbindungskanal 306) mit dem luftführenden Innenraum (109) des Düsenkörpers verbunden ist,
und daß ein mit Nut oder Einfädelschlitz versehener zylindrischer Innenkörper in jede Bohrung (136) verdrehbar eingesetzt ist.
40. Vorrichtung nach Anspruch 38, dadurch gekennzeichnet, daß die Wirbeldüsen (308) in den Bohrungen (136) des Düsenkörpers (103) verdrehbar sowie ihre Einfädelschlitze (310) und ihre als Blaskanäle wirkenden Bohrungen (309) auf ihrem Umfang derart gegeneinander versetzt angeordnet sind, daß in Einfädelstellung die Blaskanäle (309) und in Arbeitsstellung die Einfädelschlitze (310) durch die Bohrungswände verdeckt sind.
41. Vorrichtung nach Anspruch 38 oder 39, dadurch gekennzeichnet, daß die einzelne Wirbeldüse (104) aus einem äußeren, in der Bohrung (136) des Düsenkörpers (103) festsitzenden Röhrchen (301) mit Einfädelschlitz (305) und einem in dem festsitzenden Röhrchen (301) drehbaren Innenkörper (302; 307) mit Vorkehrungen (303; 304) zur Aufnahme des Fadens (311) besteht und das festsitzende Röhrchen (301) mit dem luftführenden Innenraum (109) des Düsenkörpers (103) durch einen Verbindungskanal (306) verbunden ist.
42. Vorrichtung nach Anspruch 41, dadurch gekennzeichnet, daß in die Oberfläche des Innenkörpers (302) eine rechteckige (303) oder vorzugsweise ausgerundete Fadenführungsnut (304) eingearbeitet ist, die in Einfädelstellung in Deckung mit dem Einfädelschlitz (305) und in Arbeitsstellung in Deckung mit dem Verbindungskanal (306) zum Innenraum (109) gedreht ist.
43. Vorrichtung nach Anspruch 41, dadurch gekennzeichnet, daß als Innenkörper (302) ein mit einem Längsschlitz (310) versehenes drehbares Innenröhrchen (307) vorgesehen ist.
44. Vorrichtung nach einem der Ansprüche 39 bis 43, dadurch gekennzeichnet, daß die drehbaren Innenkörper (302, 307, 308) eines Düsenkörpers (103) gemeinsam verdrehbar sind.
45. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fäden (3 ; 122) vor dem Einlauf in die Wirbeldüsen (35; 104) eine Benetzungseinrichtung durchlaufen.
46. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor und hinter den Wirbeldüsen (35; 104) Fadenführungsösen vorgesehen sind.
EP85101621A 1984-02-18 1985-02-14 Vorrichtung zum Luftverwirbeln einer Vielzahl von laufenden Fäden Expired - Lifetime EP0152919B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3405891 1984-02-18
DE3405891 1984-02-18
DE3413276 1984-04-07
DE19843413276 DE3413276A1 (de) 1984-04-07 1984-04-07 Vorrichtung zum gleichzeitigen verwirbeln einer grossen zahl multifiler faeden

Publications (3)

Publication Number Publication Date
EP0152919A2 EP0152919A2 (de) 1985-08-28
EP0152919A3 EP0152919A3 (en) 1987-10-28
EP0152919B1 true EP0152919B1 (de) 1990-01-24

Family

ID=25818607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85101621A Expired - Lifetime EP0152919B1 (de) 1984-02-18 1985-02-14 Vorrichtung zum Luftverwirbeln einer Vielzahl von laufenden Fäden

Country Status (3)

Country Link
US (2) US4592119A (de)
EP (1) EP0152919B1 (de)
DE (1) DE3575584D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523711A1 (de) * 1984-02-18 1986-10-02 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Vorrichtung zum luftverwirbeln einer vielzahl von laufenden faeden

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0150301A2 (de) * 1983-12-01 1985-08-07 b a r m a g Barmer Maschinenfabrik Aktiengesellschaft Vorrichtung zum Verstrecken synthetischer Fadenscharen
US4941242A (en) * 1984-12-03 1990-07-17 Rieter Machine Works, Ltd. Thread treating nozzles
US4675957A (en) * 1985-03-29 1987-06-30 Basf Aktiengesellschaft Method for removing trash from yarn entangling apparatus
DE3571839D1 (en) * 1985-10-04 1989-08-31 Mayer Textilmaschf Device to entangle multifilament yarns
US5364701A (en) * 1986-01-30 1994-11-15 E. I. Du Pont De Nemours And Company Mixed filament yarn of polyester filaments and nylon filaments
US5691057A (en) * 1986-01-30 1997-11-25 E. I. Du Pont De Nemours And Company Polyester mixed yarns with fine filaments
DE3711761C2 (de) * 1986-04-08 1994-06-16 Inst Textil & Faserforschung Vorrichtung zum Verwirbeln von Multifilamentgarnen
US4729151A (en) * 1986-09-10 1988-03-08 Rhs Industries, Inc. Apparatus for entangling yarn
DE3732755A1 (de) * 1986-10-03 1988-04-14 Barmag Barmer Maschf Einlegeduese fuer tangleriet
WO1989001538A1 (en) * 1987-04-07 1989-02-23 Deutsche Institute für Textil- und Faserforschung Device for twisting multifilament yarns
EP0333789A1 (de) * 1987-09-30 1989-09-27 Rhône-Poulenc Viscosuisse SA Vorrichtung und verfahren zum luftverwirbeln einer fadenschar
US4852225A (en) * 1988-06-27 1989-08-01 Mccoy-Ellison, Inc. Draw warping apparatus
US4841606A (en) * 1988-07-15 1989-06-27 Basf Corporation Notched guide filament yarn interlacer
DE3832283C2 (de) * 1988-09-22 1993-12-02 Hoechst Ag Verwirbelungsdüse
TW200534B (de) * 1990-06-21 1993-02-21 Du Pont
US5360667A (en) * 1990-06-21 1994-11-01 E. I. Du Pont De Nemours & Company Nylon flat yarns
US5219503A (en) * 1990-06-21 1993-06-15 E. I. Du Pont De Nemours And Company Process of making nylon flat yarns
FR2668503B1 (fr) * 1990-10-29 1992-12-24 Michelin & Cie Procede et installation permettant d'obtenir en ligne la realisation d'une nappe d'assemblages et son enroulage sur une ensouple.
US5275618A (en) * 1991-11-13 1994-01-04 United States Surgical Corporation Jet entangled suture yarn and method for making same
US5216791A (en) * 1992-04-23 1993-06-08 E. I. Du Pont De Nemours And Company Synthetic yarn bulking jet apparatus
IL107195A (en) * 1992-10-13 1997-07-13 Allied Signal Inc Fabric having reduced air permeability comprising multifilament yarn
DE69310379T3 (de) * 1992-10-13 2000-09-07 Allied Signal Inc Verflochtenes garn mit hoher festigkeit und daraus hergestellter stoff
NL9300283A (nl) * 1993-02-12 1994-09-01 Kema Nv Zegelsysteem voor een object, en een zegel daarvoor.
DE4323131A1 (de) * 1993-07-10 1995-01-12 Temco Textilmaschkomponent Vorrichtung zum Verwirbeln von Filamenten mit einer Vielzahl von Verwirbelungsdüsen
US5349729A (en) * 1993-08-02 1994-09-27 Milliken Research Corporation Method to control drawing of a plurality of synthetic yarns
DE4327371C2 (de) * 1993-08-14 1997-10-16 Hoechst Ag Webverfahren unter Einsatz von Fadenketten aus schlichtefreien Multifilamentglattgarnen, sowie danach hergestellte Gewebe
IT1274759B (it) * 1994-09-06 1997-07-24 Vito Ballarati Metodo per ottenere un filato multibave stirato durante la fase di interlacciatura a partire da filati termoplatici parzialmente orientati
CA2187067A1 (en) * 1995-10-06 1997-04-07 Bascum G. Lesley Continuous process to provide a heather yarn
US5590447A (en) * 1995-10-06 1997-01-07 Milliken Research Corporation Continuous process from interlacing to warping to provide a heather yarn
CA2194843A1 (en) * 1996-01-12 1997-07-13 Hans-Joachim Weiss Method and apparatus for producing a multicoloured yarn from differently coloured part-threads of endless filament
US5682656A (en) * 1996-02-29 1997-11-04 Milliken Research Corporation Continuous process to wrap entangled yarn
US5715584A (en) * 1996-03-25 1998-02-10 Basf Corporation Continuous filament yarn with pixel color effect
US5675878A (en) * 1996-12-16 1997-10-14 Milliken Research Corporation Apparatus to merge and texturize mulitple filament yarns
IT1289161B1 (it) * 1997-01-08 1998-09-29 Legler S P A Orditoio per filati in genere con svanatore perfezionato
IT1289927B1 (it) * 1997-02-19 1998-10-19 G I B A S P A Processo e apparato per la volumizzazione e simultanea interlacciatura di fili termoplastici con impiego di fluidi di riscaldamento
EP0861931B1 (de) * 1997-02-26 2001-12-19 Maschinenfabrik Rieter Ag Verfahren und Anlage zum Erzeugen eines Garnes aus mindestens zwei Garnkomponenten
US5970593A (en) * 1997-09-12 1999-10-26 International Machinery Sales, Inc. Jet for interlacing textile yarns
US5950290A (en) * 1997-09-12 1999-09-14 International Machinery Sales, Inc. Jet for interlacing textile yarns
CH692623A5 (de) 1997-10-03 2002-08-30 Rieter Ag Maschf Spinnstrecktexturier- oder Strecktexturiermaschine.
US5996328A (en) * 1997-10-22 1999-12-07 Basf Coporation Methods and systems for forming multi-filament yarns having improved position-to-position consistency
DE59807305D1 (de) 1998-01-14 2003-04-03 Rieter Ag Maschf Spinnstrecktexturier- oder Strecktexturiermaschine
EP0980920A1 (de) * 1998-08-14 2000-02-23 Dongsin Machine Co., Ltd. Fadenwächter für eine Mehrfachfadenschärmaschine mit einer Vorrichtung zur Teilung des Fadens, einer Fadenspannungssteuervorrichtung , sowie einem Teilfadenführer
US6301760B1 (en) 2000-02-14 2001-10-16 Guilford Mills, Inc. Method of selectively altering physical properties of an elastane filament
EP1719829B1 (de) * 2004-02-13 2010-07-14 Mitsubishi Rayon Co., Ltd. Carbonfaservorgängerfaserbündel, produktionsverfahren und produktions-vorrichtung dafür sowie carbonfaser und produktionsverfahren dafür
US7406818B2 (en) * 2004-11-10 2008-08-05 Columbia Insurance Company Yarn manufacturing apparatus and method
CH699327B1 (de) 2007-02-14 2010-03-15 Oerlikon Heberlein Temco Wattw Vorrichtung zum gleichzeitigen Behandeln von mehreren multifilen Fäden.
KR100871901B1 (ko) * 2007-04-12 2008-12-05 코오롱글로텍주식회사 사가공이 가능한 정경 장치
JP2009133018A (ja) * 2007-11-29 2009-06-18 Tmt Machinery Inc 多糸条用交絡装置
DE202010013054U1 (de) * 2010-12-03 2012-03-05 Baumer Hhs Gmbh Vorrichtung zum Auftragen von viskosen Medien

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022566A (en) * 1958-02-11 1962-02-27 Du Pont False twisted yarn beam
US3134158A (en) * 1962-03-27 1964-05-26 Ind Heat Engineering Company Singeing machine for synthetic fabrics
US3353344A (en) * 1964-10-13 1967-11-21 Du Pont Fluid jet twister
US3261071A (en) * 1965-05-25 1966-07-19 Du Pont Yarn treating jet
US3324526A (en) * 1965-05-26 1967-06-13 Du Pont Yarn treating jet
US3367100A (en) * 1965-06-23 1968-02-06 Monsanto Co Multifilament yarn having individually twisted filaments
BE691301A (de) * 1966-01-14 1967-05-29
DE1685664A1 (de) * 1967-06-19 1971-08-19 Glanzstoff Ag Vorrichtung zum gleichzeitigen Zwirnen und Verwirbeln
US3555808A (en) * 1968-10-09 1971-01-19 Du Pont Process for drawing and continuously heat-setting synthetic filaments
US3659350A (en) * 1970-03-25 1972-05-02 Du Pont Yarn heating jet
US3822449A (en) * 1972-11-16 1974-07-09 Du Pont Hinged cap jet
CA1051184A (en) * 1975-02-27 1979-03-27 James E. Simmons Bulk yarn and method for making same
US4223520A (en) * 1975-02-27 1980-09-23 Poinsett Machine Works, Inc. Method and apparatus for bulking yarn
DE2527511B2 (de) * 1975-06-18 1977-06-08 Maschine zum lufttexturieren von synthetischen endlosfaeden
US4011640A (en) * 1975-10-20 1977-03-15 Milliken Research Corporation Yarn entanglement nozzle
DE2611547B2 (de) * 1976-03-18 1978-01-05 Bayer Ag, 5090 Leverkusen Verfahren und vorrichtung zum schaeren von teilkettbaeumen
DE2840177A1 (de) * 1978-09-15 1980-03-27 Karlsruhe Augsburg Iweka Verwirbelungsduese
JPS5943142A (ja) * 1982-08-31 1984-03-10 村田機械株式会社 糸条の流体処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523711A1 (de) * 1984-02-18 1986-10-02 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Vorrichtung zum luftverwirbeln einer vielzahl von laufenden faeden

Also Published As

Publication number Publication date
EP0152919A3 (en) 1987-10-28
EP0152919A2 (de) 1985-08-28
DE3575584D1 (de) 1990-03-01
US4592119A (en) 1986-06-03
US4644622A (en) 1987-02-24

Similar Documents

Publication Publication Date Title
EP0152919B1 (de) Vorrichtung zum Luftverwirbeln einer Vielzahl von laufenden Fäden
DE2857473C2 (de)
WO2007093165A2 (de) Maschine zur herstellung einer maschenware aus fasermaterial, insbesondere rundstrickmaschine
DD262903A5 (de) Druckluft- und sauglufttrockner fuer maschinen zur kontinuierlichen textilbehandlung
DE4213707A1 (de) Stoffauflaufeinrichtung für eine Papiermaschine
DD249929A5 (de) Vorrichtung zum verwirblen von multiflilen faeden
EP0653980B1 (de) Breitschlitzdüse
DE2130724A1 (de) Vorrichtung zum spindellosen verspinnen von textilfasern
CH677941A5 (de)
EP0679741A1 (de) Faserbandzuführeinrichtung
EP0189099B1 (de) Düse zur Texturierung eines Fadens
DE68909998T2 (de) Vorrichtung zur Trockenbehandlung eines Gewebes.
DE3805267A1 (de) Vorrichtung zum kontinuierlichen dekatieren von geweben in einem autoklaven
CH681373A5 (de)
CH660874A5 (de) Druckgasspleisskopf.
DE3711761C2 (de) Vorrichtung zum Verwirbeln von Multifilamentgarnen
EP0681981B1 (de) Teilungskamm
DE4232027A1 (de) Vorrichtung zum knotenlosen verbinden von faeden oder garnen mit hilfe von druckluft
EP0262237B1 (de) Vorrichtung zur Verwirbelung von Garnen
WO2020025411A1 (de) Vorrichtung zum einstellen der kettspannung von kettfäden
EP0935112B1 (de) Vorrichtung zur Wärmebehandlung einer Warenbahn
DE19903164A1 (de) Kühlvorrichtung für Garnbildende Fäden
EP0464055A1 (de) Lufttexturiermaschine.
DD255201A1 (de) Vorrichtung zur waermebehandlung von warenbahnen, insbesondere textilbahnen
DE102021107995B4 (de) Fadenherstellungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: B A R M A G AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19871031

17Q First examination report despatched

Effective date: 19881209

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3575584

Country of ref document: DE

Date of ref document: 19900301

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930205

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930218

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930220

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST