EP0144522A2 - Getter-Sorptionspumpe mit Wärmespeicher für Hochvakuum- und Gasentladungsanlagen - Google Patents

Getter-Sorptionspumpe mit Wärmespeicher für Hochvakuum- und Gasentladungsanlagen Download PDF

Info

Publication number
EP0144522A2
EP0144522A2 EP84109511A EP84109511A EP0144522A2 EP 0144522 A2 EP0144522 A2 EP 0144522A2 EP 84109511 A EP84109511 A EP 84109511A EP 84109511 A EP84109511 A EP 84109511A EP 0144522 A2 EP0144522 A2 EP 0144522A2
Authority
EP
European Patent Office
Prior art keywords
getter
sorption pump
individual
pump
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP84109511A
Other languages
English (en)
French (fr)
Other versions
EP0144522A3 (de
Inventor
Heinz Ing. grad. Mägdefessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0144522A2 publication Critical patent/EP0144522A2/de
Publication of EP0144522A3 publication Critical patent/EP0144522A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/02Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by absorption or adsorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering

Definitions

  • the invention relates to a getter sorption pump for high vacuum and gas discharge systems with at least one getter body made of non-evaporating getter material and an associated heating element.
  • the working temperature either had to be varied or the individual getters had to be kept at different temperatures with at least two heating circuits.
  • the invention has for its object to increase the specific performance of getter pumps with a simultaneous reduction in the required heating power and to stabilize long-term with the help of heat storage and to achieve a high pumping speed through an extremely large surface area in the smallest space.
  • the pumping speed of a getter body increases with its surface, i.e. also with its porosity, but the capacity with its mass. Both factors together determine the temporal stability over the amount of gas sorbed. Furthermore, this stability is influenced by the working temperature depending on the type of gas.
  • the reduction in the required heating output compared to the use of many individual getters results from the more economical use of the heating output from the heating element, e.g. a heating coil (less radiation losses).
  • the heat storage is achieved by the ceramic mass integrated in the construction.
  • the possibilities are extremely versatile and can be optimized in a practical way.
  • Another advantage of energy-saving heat storage is that the heat-related good pumping effect is retained for a long time after the heating voltage has been switched off. For example, such a cut-off 'is essential required in nuclear accelerator facilities to avoid interference from external fields.
  • the slow cooling of the getter body has an advantageous effect in that the temperature-sensitive selective optimal pumping areas pass very slowly and thus all important gas type-related sorption maxima are recorded.
  • the getter sorption pump shown in Fig. 1 consists essentially of the heating element 1, which is arranged in an insulating tube 2.
  • the plurality of single getter bodies 3 is spaced apart on the insulating. tube 2 attached.
  • This arrangement is surrounded by a pump vessel 7, which can be connected to the high vacuum system with a pump flange 8.
  • the heating connections 9 are passed through the pump vessel 7.
  • the insulating tube 2 again shows the insulating tube 2, which is provided with the heating element 1 and is preferably made of ceramic and serves as a heat store.
  • the individual getter bodies 3 are on metal disks 5 brought.
  • the metal disks 5 are provided with spacer beads 6.
  • the metal disks 5 can also be designed as tubular attachment parts. This creates both a good heat-conducting connection with the insulating tube 2 and the desired distance between the individual metal disks.
  • FIG. 3 shows a getter sorption pump in which the individual getter bodies 3 applied to the insulating tube 2, in which the heating element 1 runs, are spaced apart from one another by metal or ceramic rings 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Die Erfindung bezieht sich auf eine Getter-Sorptionspumpe mit mindestens einem Getterkörper (3) aus nichtverdampfendem Gettermaterial und einem zugehörigen Heizelement (1). Bei dieser Getterpumpe soll eine hohe Pumpgeschwindigkeit durch eine extrem große Oberfläche auf kleinstem Raum erreicht werden. Die Erfindung sieht hierzu vor, daß das Heizelement (1) in einem Isolierrohr (2) angeordnet ist, und daß eine Vielzahl von Einzel-Getterkörpern (3) voneinander beabstandet auf dem Isolierrohr (2) angebracht ist. Eine erfindungsgemäße Getterpumpe findet in Hochvakuum- und Gasentladungsanlagen Verwendung.

Description

  • Die Erfindung betrifft eine Getter-Sorptionspumpe für Hochvakuum- und Gasentladungsanlagen mit mindestens einem Getterkörper aus nichtverdampfendem Gettermaterial und einem zugehörigen Heizelement.
  • Um eine große Pumpleistung zu erzielen, mußten bisher eine Vielzahl von Einzelgettern zusammengeschaltet werden, wodurch sich der auf der Heizleistung bezogene Wirkungsgrad zunehmend verschlechterte, das Problem der Wärmeabführung sich vergrößerte sowie der Platzbedarf für die Unterbringung der Einzelgetter sich problematisch erhöhte. Um die Pumpleistung über längere Zeit zu stabilisieren mußte ständig Heizleistung zugeführt werden.
  • Da die gebräuchlichen Getterstoffe ihre optimalen Pumpfähigkeiten für verschiedene Gase nur bei bestimmten Temperaturen entfalten (selektive Pumpeigenschaften), mußte die Arbeitstemperatur entweder variiert werden oder mit mindestens zwei Heizstromkreisen die einzelnen Getter auf unterschiedliche Temperaturen gehalten werden.
  • In der Anwendungspraxis wurden diese notwendigen Maßnahmen in der Regel vernachlässigt, so daß die optimalen Gettereigenschaften der nichtverdampfenden Getter ungenutzt blieben. Auch die bisher bekannten Getterpumpen, die an Stelle vieler Einzelgetter einen größeren kompakten Getterkörper besitzen, weisen die wesentlichsten genannten Nachteile auf.
  • Der Erfindung liegt die Aufgabe zugrunde, die spezifische Leistungsfähigkeit von Getterpumpen bei gleichzeitiger Herabsetzung der erforderlichen Heizleistung zu erhöhen und mit Hilfe einer Wärmespeicherung langzeitig zu stabilisieren sowie eine hohe Pumpgeschwindigkeit durch eine extrem große Oberfläche auf kleinstem Raum zu erreichen.
  • Diese Aufgabe wird erfindungsgemäß durch eine Getter-Sorptionspumpe mit den Merkmalen des Anspruchs 1 gelöst.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand zusätzlicher Ansprüche.
  • Die Pumpgeschwindigkeit eines Getterkörpers erhöht sich mit seiner Oberfläche, d.h. auch mit seiner Porosität, die Kapazität hingegen mit seiner Masse. Beide Faktoren zusammen bestimmen die zeitliche Stabilität über die sorbierte Gasmenge. Ferner wird diese Stabilität von der gasartabhängigen Arbeitstemperatur beeinflußt.
  • Die Herabsetzung der erforderlichen Heizleistung gegenüber der Verwendung von vielen Einzelgettern ergibt sich aus der wirtschaftlicheren Ausnutzung der Heizleistung aus dem Heizelement, z.B. einer Heizspirale (weniger Strahlungsverluste).
  • Die Wärmespeicherung wird durch die in die Konstruktion integrierte Keramikmasse erzielt. Die Möglichkeiten sind außerordentlich vielseitig und zweckdienlich optimierbar.
  • Ein weiterer Vorteil der energiesparenden Wärmespeicherung ist, daß die wärmebedingte gute Pumpwirkung längere Zeit erhalten bleibt, nachdem die Heizspannung abgeschaltet ist. Eine solche Abschaltung' ist z.B. unbedingt erforderlich in Nuklear-Beschleunigeranlagen, um Störungen durch Fremdfelder zu vermeiden.
  • Außerdem wirkt sich die langsame Abkühlung des Getterkörper dadurch vorteilhaft aus, daß die temperaturbedürftigen selektiven optimalen Pumpbereiche sehr langsam durchfahren und damit alle wichtigen gasartbedingten Sorptionsmaxima erfaßt werden.
  • Die Erfindung wird anhand von Ausführungsbeispielen weiter erläutert. Teile, die nicht unbedingt zum Verständnis der Erfindung beitragen, sind in den Figuren unbezeichnet oder weggelassen. Einander entsprechende Teile sind in den Figuren mit den gleichen Bezugszeichen versehen.
  • Es zeigen schematisch teilweise im Schnitt:
    • Fig. 1 eine erfindungsgemäße Getter-Sorptionspumpe und die
    • Fig. 2 und 3 weitere Ausführungsbeispiele der erfindungsgemäßen Getter-Sorptionspumpe.
  • Die in Fig. 1 dargestellte Getter-Sorptionspumpe besteht im wesentlichen aus dem Heizelement 1, das in einem Isolierrohr 2 angeordnet ist. Die Vielzahl von Einzelgetterkörpern 3 ist voneinander beabstandet auf dem Isolier-. rohr 2 angebracht. Diese Anordnung ist von einem Pumpgefäß 7 umgeben, das mit einem Pumpflansch 8 an die Hochvakuumanlage angeschlossen werden kann. Die Heizanschlüsse 9 sind durch das Pumpgefäß 7 hindurchgeführt.
  • Fig. 2 zeigt wiederum das mit dem Heizelement 1 versehene vorzugsweise aus Keramik bestehende und als Wärmespeicher dienende Isolierrohr 2. In diesem Ausführungsbeispiel sind die Einzel-Getterkörper 3 auf Metallscheiben 5 aufgebracht. Die Metallscheiben 5 sind mit Abstandssicken 6 versehen. Die Metallscheiben 5 können auch als Rohransatzteile ausgebildet sein. Damit wird sowohl eine gut wärmeleitende Verbindung mit dem Isolierrohr 2 als auch der gewünschte Abstand der einzelnen Metallscheiben geschaffen.
  • In Fig. 3 ist eine Getter-Sorptionspumpe dargestellt,bei der die auf das Isolierrohr 2, in dem das Heizelement 1 verläuft, aufgebrachten Einzel-Getterkörper 3 durch Metall- oder Keramikringe 4 voneinander beabstandet sind.

Claims (5)

1. Getter-Sorptionspumpe für Hochvakuum- und Gasentladungsanlagen mit mindestens einem Getterkörper aus nichtverdampfendem Gettermaterial und einem zugehörigen Heizelement, dadurch gekennzeichnet, daß das Heizelement (1) in einem Isolierrohr (2) angeordnet ist, und daß eine Vielzahl von Einzel-Getterkörpern (3) voneinander beabstandet auf dem Isolierrohr (2) angebracht ist.
2. Getter-Sorptionspumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Einzel-Getterkörper (3) durch Metall- oder Keramikringe (4) voneinander beabstandet sind.
3. Getter-Sorptionspumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Einzel-Getterkörper (3) auf Metallscheiben (5) aufgebracht sind, die mit Abstandssicken (6) versehen sind.
4. Getter-Sorptionspumpe nach Anspruch 3, dadurch gekennzeichnet, daß die Metallscheiben (5) aus Molybdän oder Wolfram bestehen.
5. Getter-Sorptionspumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Einzel-Getterkörper (5) aus Zirkon, Titan, Thorium, Tantal, Platin, Niob, Cer, Palladium sowie deren Mischungen oder Legierungen bestehen.
EP84109511A 1983-09-09 1984-08-09 Getter-Sorptionspumpe mit Wärmespeicher für Hochvakuum- und Gasentladungsanlagen Withdrawn EP0144522A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3332606 1983-09-09
DE19833332606 DE3332606A1 (de) 1983-09-09 1983-09-09 Getter-sorptionspumpe mit waermespeicher fuer hochvakuum- und gasentladungsanlagen

Publications (2)

Publication Number Publication Date
EP0144522A2 true EP0144522A2 (de) 1985-06-19
EP0144522A3 EP0144522A3 (de) 1986-10-15

Family

ID=6208667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84109511A Withdrawn EP0144522A3 (de) 1983-09-09 1984-08-09 Getter-Sorptionspumpe mit Wärmespeicher für Hochvakuum- und Gasentladungsanlagen

Country Status (3)

Country Link
US (1) US4571158A (de)
EP (1) EP0144522A3 (de)
DE (1) DE3332606A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238908A1 (de) * 1986-03-19 1987-09-30 Siemens Aktiengesellschaft Kryosorptionspumpe für ein thermisches Isoliervakuum im Läufer einer elektrischen Maschine mit supraleitender Erregerwicklung
WO1996017171A2 (en) * 1994-12-02 1996-06-06 Saes Pure Gas, Inc. Getter pump module and system
US5555304A (en) * 1992-03-16 1996-09-10 Fujitsu Limited Storage medium for preventing an illegal use by a third party
EP0753663A1 (de) * 1995-07-10 1997-01-15 SAES GETTERS S.p.A. Gettersorptionspumpe, insbesondere für ein tragbares Gerät für chemische Analysen
US5685963A (en) * 1994-10-31 1997-11-11 Saes Pure Gas, Inc. In situ getter pump system and method
US5911560A (en) * 1994-10-31 1999-06-15 Saes Pure Gas, Inc. Getter pump module and system
US6109880A (en) * 1994-10-31 2000-08-29 Saes Pure Gas, Inc. Getter pump module and system including focus shields
US6142742A (en) * 1994-10-31 2000-11-07 Saes Pure Gas, Inc. Getter pump module and system
USRE39802E1 (en) 1992-03-16 2007-08-28 Fujitsu Limited Storage medium for preventing an irregular use by a third party

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317900A (en) * 1992-10-02 1994-06-07 The Lyle E. & Barbara L. Bergquist Trust Ultrasensitive helium leak detector for large systems
US5328336A (en) * 1992-12-09 1994-07-12 Praxair Technology, Inc. Getter capsule
KR20010006278A (ko) * 1997-04-18 2001-01-26 사이스 푸어 가스 인코포레이티드 인시튜 게터펌프시스템 및 방법
IT1295340B1 (it) * 1997-10-15 1999-05-12 Getters Spa Pompa getter ad elevata velocita' di assorbimento di gas
US6988924B2 (en) * 2003-04-14 2006-01-24 Hewlett-Packard Development Company, L.P. Method of making a getter structure
US7045958B2 (en) * 2003-04-14 2006-05-16 Hewlett-Packard Development Company, L.P. Vacuum device having a getter
JP4644189B2 (ja) * 2004-03-23 2011-03-02 株式会社大阪真空機器製作所 ポンプ装置及びそのポンプユニット
JP6095586B2 (ja) * 2013-01-25 2017-03-15 有限会社真空実験室 ゲッター部材収納具、ゲッター装置及びゲッターポンプ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662522A (en) * 1969-07-24 1972-05-16 Getters Spa Getter pump cartridge
GB1586676A (en) * 1976-11-03 1981-03-25 Getters Spa Modular getter pumps

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899257A (en) * 1959-08-11 Getter for electron discharge device
US2130190A (en) * 1936-03-18 1938-09-13 Rca Corp Getter for vacuum tubes
US3081413A (en) * 1952-07-19 1963-03-12 Gen Electric X-ray tube with gas gettering means
US2890319A (en) * 1957-09-16 1959-06-09 Tung Sol Electric Inc Fast-heating hydrogen reservoir
US3167678A (en) * 1961-06-19 1965-01-26 Gen Electric Getter operating at various temperatures to occlude various gases
US3381805A (en) * 1966-07-08 1968-05-07 Getters Spa Getter assembly having support of low thermal conductivity
US3390758A (en) * 1967-03-21 1968-07-02 Union Carbide Corp Getter assembly
NL163054C (nl) * 1968-08-10 1980-07-15 Getters Spa Niet-verdampende getterinrichting.
JPS53121210A (en) * 1977-03-30 1978-10-23 Hitachi Ltd Non-evaporation type getter pump
JPS53131511A (en) * 1977-04-22 1978-11-16 Hitachi Ltd Non-evaporation type cetter pump
US4515528A (en) * 1983-07-05 1985-05-07 General Electric Company Hydrocarbon getter pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662522A (en) * 1969-07-24 1972-05-16 Getters Spa Getter pump cartridge
GB1586676A (en) * 1976-11-03 1981-03-25 Getters Spa Modular getter pumps

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727724A (en) * 1986-03-19 1988-03-01 Siemens Aktiengesellschaft Crysosorption pump for the rotor of an electric machine having a superconducting exciter winding
EP0238908A1 (de) * 1986-03-19 1987-09-30 Siemens Aktiengesellschaft Kryosorptionspumpe für ein thermisches Isoliervakuum im Läufer einer elektrischen Maschine mit supraleitender Erregerwicklung
US5796824A (en) * 1992-03-16 1998-08-18 Fujitsu Limited Storage medium for preventing an irregular use by a third party
USRE39802E1 (en) 1992-03-16 2007-08-28 Fujitsu Limited Storage medium for preventing an irregular use by a third party
US5555304A (en) * 1992-03-16 1996-09-10 Fujitsu Limited Storage medium for preventing an illegal use by a third party
US6043137A (en) * 1994-10-31 2000-03-28 Saes Getters S.P.A. Getter pump module and system
US5980213A (en) * 1994-10-31 1999-11-09 Saes Getters S.P.A. Getter pump module and system
US6165328A (en) * 1994-10-31 2000-12-26 Saes Getters S.P.A. Method for processing wafers with in situ gettering
US6142742A (en) * 1994-10-31 2000-11-07 Saes Pure Gas, Inc. Getter pump module and system
US5879134A (en) * 1994-10-31 1999-03-09 Saes Pure Gas, Inc. In situ getter pump system and method
US5911560A (en) * 1994-10-31 1999-06-15 Saes Pure Gas, Inc. Getter pump module and system
US5972183A (en) * 1994-10-31 1999-10-26 Saes Getter S.P.A Getter pump module and system
US5685963A (en) * 1994-10-31 1997-11-11 Saes Pure Gas, Inc. In situ getter pump system and method
US5993165A (en) * 1994-10-31 1999-11-30 Saes Pure Gas, Inc. In Situ getter pump system and method
US5997255A (en) * 1994-10-31 1999-12-07 Saes Getters S.P.A. Method for pumping a chamber using an in situ getter pump
US6109880A (en) * 1994-10-31 2000-08-29 Saes Pure Gas, Inc. Getter pump module and system including focus shields
WO1996017171A3 (en) * 1994-12-02 1996-10-24 Saes Pure Gas Inc Getter pump module and system
WO1996017171A2 (en) * 1994-12-02 1996-06-06 Saes Pure Gas, Inc. Getter pump module and system
EP0753663A1 (de) * 1995-07-10 1997-01-15 SAES GETTERS S.p.A. Gettersorptionspumpe, insbesondere für ein tragbares Gerät für chemische Analysen
US5772404A (en) * 1995-07-10 1998-06-30 Saes Getters S.P.A. Compact getter pump with nested thermally insulating shields

Also Published As

Publication number Publication date
EP0144522A3 (de) 1986-10-15
US4571158A (en) 1986-02-18
DE3332606A1 (de) 1985-03-28

Similar Documents

Publication Publication Date Title
EP0144522A2 (de) Getter-Sorptionspumpe mit Wärmespeicher für Hochvakuum- und Gasentladungsanlagen
DE69823449T2 (de) Getter-Pumpe mit hoher Geschwindigkeit von Gassorption
DE2620880C2 (de) Kryopumpe
DE69601900T2 (de) Gettersorptionspumpe, insbesondere für ein tragbares Gerät für chemische Analysen
EP0384922B1 (de) Mit einem zweistufigen Refrigerator betriebene Kryopumpe
DE2034633A1 (de) Kartusche und Streifen zur Bildung eines Kartuschenelementes fur eine Getter
DE2446833A1 (de) Getterpumpe
WO1988009578A1 (en) Gas laser
DE3046458A1 (de) Refrigerator-kryostat
DE4392772B4 (de) Cryopumpe und Cryoplatte, die eine reifkonzentrierende Einrichtung hat
CH677009A5 (de)
DE4110588A1 (de) Ionenzerstaeuberpumpe mit gettermodul
EP0617650B1 (de) Verfahren zum verlöten von trägerkörpern von abgaskatalysatoren
DE3232324A1 (de) Refrigerator-betriebene kryopumpe
DE3610674C2 (de)
EP0019249B1 (de) Elektronenstrahl-Erzeugungssystem für Kathodenmehrstrahlröhren
DE3044023A1 (de) "te-laser-verstaerker"
EP0146685A2 (de) Getter-Sorptionspumpe mit Wärmespeicher für Hochvakuum- und Gasentladungsanlagen
EP0144523A2 (de) Getter-Sorptionspumpe mit Wärmespeicher für Hochvakuum- und Gasentladungsanlagen
DE2532038A1 (de) Elektronenroehre
DE69810745T2 (de) GETTERPUMPE MIT EINTEILIGEM STüTZRAHMEN MIT MEHREREN ZU EINANDER PARALLELEN GETTERELEMENTEN AUS NICHTVERDAMPFBAREM MATERIAL
EP0247452A1 (de) Ionenlaser
DE2426387A1 (de) Bauelement fuer vakuumpumpen
EP0243674A2 (de) Gaslaser
DE2741045C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: F04B 37/02

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR IT LI

17P Request for examination filed

Effective date: 19870326

17Q First examination report despatched

Effective date: 19870914

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19880613

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAEGDEFESSEL, HEINZ, ING. GRAD.