EP0139039B1 - Entmetallisierungsbad und Verfahren zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall - Google Patents

Entmetallisierungsbad und Verfahren zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall Download PDF

Info

Publication number
EP0139039B1
EP0139039B1 EP83110698A EP83110698A EP0139039B1 EP 0139039 B1 EP0139039 B1 EP 0139039B1 EP 83110698 A EP83110698 A EP 83110698A EP 83110698 A EP83110698 A EP 83110698A EP 0139039 B1 EP0139039 B1 EP 0139039B1
Authority
EP
European Patent Office
Prior art keywords
titanium
metals
stripping
base metal
sulfonic acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110698A
Other languages
English (en)
French (fr)
Other versions
EP0139039A1 (de
Inventor
Gernot Dr. Strube
Jürgen Dr. Röder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing Max Schloetter GmbH and Co KG
Original Assignee
Dr Ing Max Schloetter GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing Max Schloetter GmbH and Co KG filed Critical Dr Ing Max Schloetter GmbH and Co KG
Priority to DE8383110698T priority Critical patent/DE3374140D1/de
Priority to EP83110698A priority patent/EP0139039B1/de
Priority to AT83110698T priority patent/ATE30344T1/de
Publication of EP0139039A1 publication Critical patent/EP0139039A1/de
Application granted granted Critical
Publication of EP0139039B1 publication Critical patent/EP0139039B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings

Definitions

  • the invention relates to a method for the electrolytic removal of metals from titanium as the base metal in an electrolytic method using a special demetallization bath.
  • demetallization baths also contain aromatic nitro compounds as oxidizing agents, which interfere with the reprocessing of the solutions used.
  • This object is achieved according to the invention by a method for the electrolytic removal of Cd, Cr, Cu, Cu alloys, Ni, Pb, Pb / Sn. Sn or Zn of titanium as the base metal, which is characterized in that the titanium base body coated with the metals to be removed is at a current density of 0.1 to 100 A / dm 2 , a voltage of 0.1 to 25 V and at a temperature between 15 ° C up to the boiling point of the solution in an aqueous demetallization bath containing one or more alkylsulfonic acids, where the alkyl groups may optionally be hydroxy-substituted, in a concentration of 1 g up to the solubility limit.
  • Alkyl sulfonic acids for the aforementioned purpose are preferably those with 1 to 4 carbon atoms.
  • the alkyl groups can optionally be hydroxy-substituted.
  • Examples of preferred alkyl sulfonic acids are CH 2 (S0 3 H) 2 , CHgSOgH and HOCH 2 -CH 2 SO 3 H.
  • the demetallization baths used according to the invention can contain customary auxiliaries, such as activators, which accelerate the dissolution of the metals, e.g. B. thio compounds and halogens or inhibitors, e.g. B. non-ionic surfactants which favor the compact deposition of the dissolved metals in the alkyl sulfonic acid-containing solution on the cathode. This prevents metal powders from accumulating in the work containers.
  • activators which accelerate the dissolution of the metals
  • halogens or inhibitors e.g. B. non-ionic surfactants which favor the compact deposition of the dissolved metals in the alkyl sulfonic acid-containing solution on the cathode.
  • the titanium base metal with the metal coatings to be removed is switched as an anode and the electrolysis is carried out at a current density of 0.1 to 100 A / dm 2 , a voltage of 0.1 to 25 V and at a temperature between 15 ° C and the boiling point of the solution carried out taking care that the breakdown voltage for titanium is not exceeded under the given conditions.
  • a particular advantage of the demetallization bath used according to the invention for the electrolytic removal of metals from titanium as the base metal is that the titanium is not attacked by the demetallization bath.
  • the attack on titanium is immeasurably small and the base metal can be freed from the metal or metals deposited thereon with practically no damage.
  • Another advantage can also be seen in the fact that the detached metals that have gone into solution anodically can be deposited cathodically in a simple manner. It is therefore not necessary, as is the case with conventional stripper solutions, to discard the stripper solution after saturation.
  • a 20 ⁇ m thick copper layer is alternately placed on a titanium sheet of 100 x 20 x 2 mm and then a 10 ⁇ m thick lead-tin layer is deposited and this is repeated several times until an approximately 1 mm thick layer is present on the titanium sheet.
  • a solution is prepared from 250 g / l of hydroxyethanesulfonic acid and 750 g / l of water.
  • the titanium sheet coated with copper and tin is immersed in this solution and switched anodically.
  • the electrolysis is carried out until the copper and lead-tin coatings are completely detached. This takes about 200 minutes. It is then electrolyzed for a further 60 minutes under the same conditions.
  • the lead tin alloy and the metals copper, tin, silver and zinc are deposited on titanium sheet.
  • the metal is then anodically detached at 25 ° C. in an electrolyte containing 175 g / l methanesulfonic acid and the current efficiency is determined.
  • the lead tin alloy is deposited on titanium sheet.
  • the alloy is then detached from the titanium surface in an electrolyte containing 175 g / l methanesulfonic acid and 40 g / 1 fine grain additive.
  • an electrolyte containing 175 g / l methanesulfonic acid and 40 g / 1 fine grain additive.
  • By varying the temperature, stirring motion and cathodic current density it is determined whether lead tin can be cathodically compact again. With moderate stirring, compact, smooth and firmly adhering lead tin coatings are obtained at 60 ° C. and a cathodic current density of 10 A / dm 2 the cathode. At room temperature, compact and adherent coatings can be obtained up to a cathodic current density of 5 A / dm 2 and otherwise the same conditions.
  • Bright nickel and semi-gloss nickel are cathodically deposited on titanium sheet. These coatings are then anodically dissolved in an electrolyte.
  • the electrolyte contains 100 g / l methanesulfonic acid and various concentrations of halides.
  • the anodic current yield is determined at 20 A / dm 2 (anodic) and a temperature of 25 to 30 ° C. The results are shown in the table below.
  • Titanium anodized, is not attacked under these conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall in einem elektrolytischen Verfahren unter Anwendung eines speziellen Entmetallisierungsbades.
  • Bei der Herstellung von Leiterplatten werden Gestelle, an denen die Leiterplatten befestigt werden, verwendet. Diese Gestelle dienen zur Übertragung des elektrischen Stromes auf die Leiterplatten. Bei der praktischen Anwendung scheiden sich auf den Gestellkontakten, d. h. an den Verbindungsstellen zwischen dem Gestell zur Leiterplatte die bei der Herstellung der Leiterplatten verwendeten Metalle ab. Bei der Metall-Resist-Technik wendet man üblicherweise die Reihenfolge Kupfer, Zinn oder Bleizinn oder Nickel an. Dabei dienen die Metalle Zinn, Bleizinn oder Nickel als Ätzresiste. Da sich diese Metalle zwangsläufig auch auf dem Gestell abscheiden, baut sich im Laufe der Zeit auf den Gestellen eine Metallschicht auf, wodurch die Funktionsweise der Kontaktierung negativ beeinflußt wird. Daher muß man die Gestelle nach einer gewissen Betriebszeit von den abgeschiedenen Metallen reinigen. Hierfür sind mehrere Stunden oder sogar Tage notwendig.
  • Aus der europäischen Patentanmeldung 0 077 582 ist es bekannt, Zinn oder Legierungen aus Zinn-Blei von einem Substrat unter Verwendung einer Lösung, die Alkylsulfonsäuren oder Oxycarbonsäuren sowie organische Oxidationsmittel enthält, zu entfernen. Nachteile dieser Lösungen sind :
    • (a) Verwendung irreversibler, teurer Oxidationsmittel.
    • (b) Die Lösungen sind erschöpft, wenn ca 40 bis 60 g/I Metall abgezogen worden sind. Die Lösung muß dann verworfen werden. Eine Wiederaufarbeitung ist nicht möglich.
    • (c) Die nicht mehr brauchbaren Lösungen müssen einem besonderen Standentgiftungsverfahren unterworfen werden, da sie Komplexbildner, wie Thioharnstoff, enthalten. Diese Entgiftungsverfahren sind sehr kostspielig.
  • Außerdem enthalten diese Entmetallisierungsbäder als Oxidationsmittel aromatische Nitroverbindungen, die bei der Wiederaufarbeitung der verwendeten Lösungen stören.
  • Aufgabe der Erfindung ist es, ein Verfahren zum Entmetallisieren von mit Metallüberzügen versehenem Titan-Grundmetall zur Verfügung zu stellen, das ein einfaches elektrolytisches Abziehen der Metalle von dem Titan-Grundmetall ermöglicht...
  • Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum elektrolytischen Abziehen von Cd, Cr, Cu, Cu-Legierungen, Ni, Pb, Pb/Sn. Sn oder Zn von Titan als Grundmetall, das dadurch gekennzeichnet ist, daß man den mit den abzuziehenden Metallen überzogenen Titangrundkörper bei einer Stromdichte von 0,1 bis 100 A/dm2, einer Spannung von 0,1 bis 25 V und bei einer Temperatur zwischen 15 °C bis zum Siedepunkt der Lösung anodisch in einem wässrigen Entmetallisierungsbad, enthaltend eine oder mehrere Alkylsulfonsäuren, wobei die Alkylgruppen gegebenenfalls hydroxysubstituiert sein können, in einer Konzentration von 1 g bis zur Löslichkeitsgrenze, schaltet.
  • Alkylsulfonsäuren für den vorgenannten Zweck sind vorzugsweise solche mit 1 bis 4 C-Atomen. Gegebenenfalls können die Alkylgruppen hydroxysubstituiert sein. Beispiele für bevorzugte Alkylsulfonsäuren sind CH2(S03H)2, CHgSOgH und HOCH2-CH2SO3H.
  • Die erfindungsgemäß verwendeten Entmetallisierungsbäder können übliche Hilfsstoffe, wie Aktivatoren, welche die Auflösung der Metalle beschleunigen, z. B. Thioverbindungen und Halogene oder Inhibitoren, z. B. nicht-ionogene Tenside, die die kompakte Abscheidung der gelösten Metalle in der alkylsulfonsäurehältigen Lösung auf der Kathode begünstigen, enthalten. Dadurch kann die Ansammlung von Metallpulvern in den Arbeitsbehältern vermieden werden.
  • Beim erfindungsgemäßen Verfahren wird das Titan-Grundmetall mit den zu entfernenden Metallüberzügen als Anode geschaltet und die Elektrolyse wird bei einer Stromdichte von 0,1 bis 100 A/dm2, einer Spannung von 0,1 bis 25 V und bei einer Temperatur zwischen 15 °C und dem Siedepunkt der Lösung durchgeführt wobei darauf zu achten ist, daß die Durchschlagsspannung für Titan unter den gegebenen Bedingungen nicht überschritten wird.
  • Ein besonderer Vorteil des erfindungsgemäß eingesetzten Entmetallisierungsbades zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall ist darin zu sehen, daß das Titan durch das Entmetallisierungsbad nicht angegriffen wird. Während beispielsweise Edelstahl, sofern er nicht hoch legiert ist, durch eine alkylsulfonsäurehaltige Lösung angegriffen wird, ist der Angriff auf das Titan unmeßbar klein und das Grundmetall kann praktisch ohne jede Schädigung von dem darauf abgeschiedenen Metall oder Metallen befreit werden. Ein weiterer Vorteil ist auch darin zu sehen, daß die· anodisch in Lösung gegangenen abgelösten Metalle in einfacher Weise kathodisch abgeschieden werden können. Es ist deshalb nicht erforderlich, wie dies bei üblichen Stripperlösungen der Fall ist, nach Sättigung der Stripperlösung diese zu verwerfen.
  • Beispiel 1
  • Auf ein Titanblech von 100 x 20 x 2 mm werden abwechselnd eine 20 µm dicke Glanzkupferschicht und darauf eine 10 µm dicke Blei-Zinn-Schicht abgeschieden und dies wird mehrfach wiederholt, bis eine etwa 1 mm starke Auflage auf dem Titanblech vorhanden ist.
  • Man stellt eine Lösung aus 250 g/I Hydroxyäthansulfonsäure und 750 g/I Wasser her. Das mit Kupfer und Bleizinn beschichtete Titanblech wird in diese Lösung eingetaucht und anodisch geschaltet. Bei einer anodischen Stromdichte von 20 A/dm2 und bei einer Temperatur von 20 °C wird die Elektrolyse bis zur vollständigen Ablösung der Kupfer und Bleizinn-Überzüge durchgeführt. Hierzu benötigt man etwa 200 Minuten. Anschließend wird weitere 60 Minuten unter den gleichen Bedingungen elektrolysiert. Durch Auswiegen des Titanbleches vor der Beschichtung mit Kupfer und Bleizinn und nach dem anodischen Ablösen der Metalle und der zusätzlichen Elektrolysezeit von 60 Minuten stellt man fest, daß sich das Gewicht praktisch nicht verändert hat, und daß ein Abtrag von Titan nicht oder nur in unmeßbar geringem Maße erfolgte.
  • Beispiel 2
  • Die Legierung Bleizinn und die Metalle Kupfer, Zinn, Silber und Zink werden auf Titanblech abgeschieden. Anschließend wird in einem Elektrolyten, der 175 g/I Methansulfonsäure enthält, bei 25 °C das Metall anodisch abgelöst und die Stromausbeute ermittelt.
  • Folgende Werte wurden gefunden :
    Figure imgb0001
  • Beispiel 3
  • Die Legierung Bleizinn wird auf Titanblech abgeschieden. Anschließend löst man die Legierung von der Titanoberfläche in einem Elektrolyten ab, der 175 g/I Methansulfonsäure und 40 g/1 Feinkornzusatz enthält. Durch Variation von Temperatur, Rührbewegung und kathodische Stromdichte wird ermittelt, ob sich Bleizinn kathodisch wieder kompakt abscheiden läßt. Bei mäßiger Rührung erhält man bei 60 °C und einer kathodischen Stromdichte von 10 A/dm2 kompakte, glatte und festhaftende Bleizinnüberzüge auf der Kathode. Bei Raumtemperatur sind bis zu einer kathodischen Stromdichte von 5 A/dm2 und sonst gleichen Bedingungen noch kompakte und festhaftende Überzüge zu erhalten.
  • Beispiel 4
  • Glanznickel und Halbglanznickel wird auf Titanblech kathodisch abgeschieden. Anschließend werden diese Überzüge in einem Elektrolyten wieder anodisch aufgelöst. Der Elektrolyt enthält 100 g/I Methansulfonsäure und verschiedene Konzentrationen an Halogeniden. Bei 20 A/dm2 (anodisch) und einer Temperatur von 25 bis 30 °C wird die anodische Stromausbeute emittelt. Die Ergebnisse sind in der folgenden Tabelle enthalten.
    Figure imgb0002
  • Titan, anodisch geschaltet, wird unter diesen Bedingungen nicht angegriffen.

Claims (4)

1. Verfahren zum elektrolytischen Abziehen von Cd, Cr, Cu, Cu-Legierungen, Ni, Pb, Pb/Sn, Sn oder Zn von Titan als Grundmetall, dadurch gekennzeichnet, daß man den mit den abzuziehenden Metallen überzogenen Titangrundkörper bei einer Stromdichte von 0,1 bis 100 A/dm2, einer Spannung von 0,1 bis 25 V und bei einer Temperatur zwischen 15 °C bis zum Siedepunkt der Lösung anodisch in einem wässrigen Entmetallisierungsbad, enthaltend eine oder mehrere Alkylsulfonsäuren, wobei die Alkylgruppen gegebenenfalls hydroxysubstituiert sein können, in einer Konzentration von 1 g bis zur Löslichkeitsgrenze, schaltet.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man als Alkylsulfonsäuren solche mit 1 bis 4 C-Atomen verwendet.
3. Verfahren gemäß Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß man als Sulfonsäuren CH2(SO3H)2, CH3S03H und/oder HOCH2―CH2S03H verwendet.
4. Verfahren gemäß Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß zusätzlich als Aktivatoren Halogenide und/oder NaSCN in dem wässrigen Entmetallisierungsbad enthalten sind.
EP83110698A 1983-10-26 1983-10-26 Entmetallisierungsbad und Verfahren zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall Expired EP0139039B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8383110698T DE3374140D1 (en) 1983-10-26 1983-10-26 Stripping bath and process for the electrolytical stripping of metals from titanium as a base metal
EP83110698A EP0139039B1 (de) 1983-10-26 1983-10-26 Entmetallisierungsbad und Verfahren zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall
AT83110698T ATE30344T1 (de) 1983-10-26 1983-10-26 Entmetallisierungsbad und verfahren zum elektrolytischen abziehen von metallen von titan als grundmetall.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP83110698A EP0139039B1 (de) 1983-10-26 1983-10-26 Entmetallisierungsbad und Verfahren zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall

Publications (2)

Publication Number Publication Date
EP0139039A1 EP0139039A1 (de) 1985-05-02
EP0139039B1 true EP0139039B1 (de) 1987-10-21

Family

ID=8190779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110698A Expired EP0139039B1 (de) 1983-10-26 1983-10-26 Entmetallisierungsbad und Verfahren zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall

Country Status (3)

Country Link
EP (1) EP0139039B1 (de)
AT (1) ATE30344T1 (de)
DE (1) DE3374140D1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678552A (en) * 1986-04-22 1987-07-07 Pennwalt Corporation Selective electrolytic stripping of metal coatings from base metal substrates
EP1302569A3 (de) * 2001-10-11 2004-03-03 Shipley Co. L.L.C. Entschichtungslösung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051415A1 (de) * 1980-10-31 1982-05-12 Warner-Lambert Company Wasserlösliche Salze von 2,4-Diamino-5-methyl-6-((3,4,5-trimethoxyanilino)-methyl)chinazolin, diese Salze enthaltende Zusammensetzungen und Herstellung dieser Salze
EP0062136A1 (de) * 1981-03-30 1982-10-13 Pennwalt Corporation Verfahren zur Herstellung von wasserfreien Alkansulfonsäuren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1144797B (it) * 1981-10-14 1986-10-29 Alfachimici Spa Soluzione per l asportazione di stagno o lega stagno piombo da un substrato mediante operazione a spruzzo

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051415A1 (de) * 1980-10-31 1982-05-12 Warner-Lambert Company Wasserlösliche Salze von 2,4-Diamino-5-methyl-6-((3,4,5-trimethoxyanilino)-methyl)chinazolin, diese Salze enthaltende Zusammensetzungen und Herstellung dieser Salze
EP0062136A1 (de) * 1981-03-30 1982-10-13 Pennwalt Corporation Verfahren zur Herstellung von wasserfreien Alkansulfonsäuren

Also Published As

Publication number Publication date
DE3374140D1 (en) 1987-11-26
EP0139039A1 (de) 1985-05-02
ATE30344T1 (de) 1987-11-15

Similar Documents

Publication Publication Date Title
DE3048083C2 (de) Verfahren zur chemischen Entfernung von Oxidschichten von Gegenständen aus Titan oder Titanlegierungen
DE19653681C2 (de) Verfahren zur elektrolytischen Abscheidung von Kupferschichten mit gleichmäßiger Schichtdicke und guten optischen und metallphysikalischen Eigenschaften und Anwendung des Verfahrens
DE2907875C2 (de) Verfahren zum elektrolytischen Abtragen von Wolframcarbid-Überzügen auf Werkstücken aus Titan oder Titan-Legierungen
DE60002838T2 (de) Verfahren zur rückgewinnung von zinn, zinnlegierungen oder bleilegierungen aus leiterplatten
EP0249650B1 (de) Elektrolyt zum elektrochemischen Polieren von Metalloberflächen
DE69014789T2 (de) Zusammensetzung und verfahren zur entfernung von zinn oder zinn-bleilegierungen von kupferflächen.
DE69101621T2 (de) Verfahren zur elektrolytischen Regenerierung von ammoniakalischen Kupferätzbädern.
DE60203050T2 (de) Regenerationsverfahren für eine plattierungslösung
DE2845736C2 (de)
KR850000304B1 (ko) 베어링 표면층에 납-주석층을 전착시키는 용액속의 구리이온 제거방법
EP0072456B1 (de) Stripperlösung
EP0139039B1 (de) Entmetallisierungsbad und Verfahren zum elektrolytischen Abziehen von Metallen von Titan als Grundmetall
CH647001A5 (de) Verfahren zur selektiven entfernung von kupferverunreinigungen aus palladium und zinn enthaltenden waessrigen aktivatorloesungen.
EP0240589B1 (de) Verfahren zur Regenerierung eines stromlosen Verkupferungsbades und Vorrichtung zur Durchführung desselben
DE3889667T2 (de) Elektroniederschlag von zinn-wismut-legierungen.
DE2232903C3 (de) Verfahren zur elektrolytischen Raffination von Kupfer unter Verwendung von Titanelektroden
EP0360863A1 (de) Verfahren und nickeloxidelektrode zum anbringen einer nickeloxidschicht auf einen metallträger
DE1521875A1 (de) Verfahren zum Schuetzen von Titan gegen das AEtzen
DE69420761T2 (de) Verfahren und Lösung zur Elekroplattierung einer dichten reflektierender Schicht aus Zinn oder Zinn-Blei Legierung
KR100698430B1 (ko) 도금액의 리사이클 방법
EP0504764A1 (de) Verfahren zur Erhöhung des molaren Aluminium/Chlor-Verhältnisses in Polyaluminiumchloridlösungen
DE2025211A1 (en) Selective anodic recovery of silver - from scrap by electro - -deposition from aq soln
DE2747562C2 (de)
DE102004014680B3 (de) Entmetallisierungslösung und deren Verwendung
DE3016994C2 (de) Verfahren zum Lagern von Badlösungen zum stromlosen Abscheiden von Kupfer auf Trägerplatten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850708

17Q First examination report despatched

Effective date: 19860515

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 30344

Country of ref document: AT

Date of ref document: 19871115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REF Corresponds to:

Ref document number: 3374140

Country of ref document: DE

Date of ref document: 19871126

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921020

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921021

Year of fee payment: 10

Ref country code: LU

Payment date: 19921021

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921028

Year of fee payment: 10

Ref country code: BE

Payment date: 19921028

Year of fee payment: 10

Ref country code: AT

Payment date: 19921028

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921030

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930129

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931026

Ref country code: GB

Effective date: 19931026

Ref country code: AT

Effective date: 19931026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931031

Ref country code: CH

Effective date: 19931031

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: DR.ING. MAX SCHLOTTER G.M.B.H. & CO. K.G.

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83110698.4

Effective date: 19940510