EP0137911B1 - Verfahren zur Herstellung einer Depassivierungschicht und Depassivierungschicht auf einer Elektrode einer elektrochemischen Zelle - Google Patents

Verfahren zur Herstellung einer Depassivierungschicht und Depassivierungschicht auf einer Elektrode einer elektrochemischen Zelle Download PDF

Info

Publication number
EP0137911B1
EP0137911B1 EP84107073A EP84107073A EP0137911B1 EP 0137911 B1 EP0137911 B1 EP 0137911B1 EP 84107073 A EP84107073 A EP 84107073A EP 84107073 A EP84107073 A EP 84107073A EP 0137911 B1 EP0137911 B1 EP 0137911B1
Authority
EP
European Patent Office
Prior art keywords
noble metal
layer
substrate
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107073A
Other languages
English (en)
French (fr)
Other versions
EP0137911A1 (de
Inventor
Eric Killer
Günther Georg Anton Dr. Dipl.-Chem. Scherer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0137911A1 publication Critical patent/EP0137911A1/de
Application granted granted Critical
Publication of EP0137911B1 publication Critical patent/EP0137911B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Definitions

  • the invention is based on a method for producing a depassivation layer according to the preamble of claim 1.
  • Electrodes The requirements placed on the electrodes of electrochemical cells are diverse and in some cases divergent, so that these electrodes usually have to be constructed from composite materials in order to be able to meet all conditions to some extent. This applies in particular to electrodes (anodes) that have to work under oxidizing conditions. Normally, a corrosion-resistant carrier material serving as a substrate is used for such electrodes, which in turn is provided with one or more additional layers of other components. If solid electrolytes are used for the construction of the electrochemical cell, the substrate is built up from porous, liquid and gas permeable material.
  • titanium is particularly suitable as a substrate for anodes in technical electrolysis processes.
  • the titanium substrate is coated with a specific electrocatalyst.
  • the electrocatalyst / titanium substrate interface is particularly critical for the functioning of the electrode.
  • the titanium substrate must be completely covered, since otherwise a non-conductive cover layer of essentially TiO 2 is formed under anodic conditions.
  • an intermediate layer is often applied, which consists of a stable and conductive material in the anodic potential range. Precious metals, especially platinum, are used for this.
  • This intermediate layer must be continuous, its thickness can be 0.1-1 ⁇ m.
  • Such electrodes, provided with intermediate layers and electrocatalysts, are known (A.
  • Nidola “Technological Impact of Metallic Oxides as Anodes •, in“ Electrodes of Conductive Metallic Oxides ”, Part B, page 627, editor: S. Trasatti, ELSEVIER, Amsterdam, 1981; PCS Hayfield, WR Jacob, "Platinum / Iridium-coated titanium anodes in brine electrolysis •, in” Modern Chlor-Alkali Technology •, page 103, Editor: MO Coulter, Ellis Horwood Ltd., Chichester 1980, Th. Comninellis, E. Plattner, Journal of Applied Electrochemistry, 12, 399/1982).
  • the protection of the carrier material is now of particular importance if the electrocatalyst is not applied as a microscopically coherent layer, but in the form of a porous powder-binder mixture which does not completely cover the substrate due to the porous structure.
  • the non-passivating intermediate layer becomes more important if the titanium substrate is not a solid workpiece, but a porous substrate, e.g. B. is a sintered titanium foil as used in solid electrolyte cells.
  • porous titanium substrates are of great importance insofar as methods such as those used for planar and solid electrodes are out of the question in this case. This problem is exacerbated because, for economic reasons, only small amounts of noble metal 0.1 mg / cm 2 should be applied, but this is difficult with a relatively undefined surface, such as that of a porous substrate.
  • the invention is based on the object of specifying a method by means of which the surface of a porous body can be deliberately provided with a depassivation layer which has improved properties and a high stability and long service life with a minimal noble metal content.
  • Fig. 1 is the sheet-like substrate, for example in the form of a porous plate or foil made of titanium (longitudinal section).
  • 2 shows an elastic roll, which can advantageously consist of Teflon @ (polytetrafluoroethylene).
  • 3 is a sheet-like, flexible solution carrier which is said to be porous and absorbent in order to be able to absorb the metal salt solution. It is connected in the form of a felt or paper between the substrate 1 and the roll 2. In the rolling process indicated by arrows, 3 releases a thin layer of the metal salt solution onto the surface of 1.
  • the porous substrate 1 which is composed of individual grains with cavities in between.
  • 4 is the at least partially connected depassivation layer in film form, which is a submicroscopically fine, homogeneous mixture of electronically conductive suboxides and oxides of the substrate and that from the applied metal salt solution contains precious metals or metals in metallic and / or oxidic form.
  • a porous sintered titanium plate as the substrate (1) was provided with a depassivation layer. (4), which contained platinum.
  • a depassivation layer. (4) which contained platinum.
  • an aqueous 5. 10 -2 NH 2 PtC1 6 solution was carried out.
  • the coating was carried out by means of an elastic roll (2) made of Teflon and a solution carrier (3) in the form of a chromatography paper. Coating was carried out a total of 5 times, the amount applied being determined gravimetrically in each case.
  • the coated titanium plate was then dried and subjected to a chemo-thermal treatment in the form of an annealing in air at 450 ° C. for 30 minutes.
  • the amount of platinum applied was determined to be 0.1 mg / cm 2 .
  • a porous sintered titanium foil as substrate (1) was coated in an analogous manner as in Example I.
  • the metal salt solution consisted of a 5-10 -2 N solution of the formula H 2 M c Cl 6 , where M e was a mixture of Pt and Ir in an atomic weight ratio of 70:30.
  • the amount of noble metal was determined to be 0.05 mg / cm 2 .
  • the substrates coated according to Examples 1 and II were tested as current collectors on the anode side of solid electrolyte cells and, despite the fact that the noble metal content was ten times lower, gave the same cell voltages as electrodes produced by conventional methods (electroplating. Vapor deposition).
  • Depassivation layers of various types and compositions can be created using the new method.
  • All precious metals can generally be applied using a metal salt solution, both individually and in mixtures.
  • other metals that are not precious metals can be added.
  • noble metal oxides in particular the platinum metal groups
  • the finished depassivation layer can also contain gold and another component in the form of a metal or its oxide, in particular SnO 2 .
  • An essential part of the depassivation layer consists of an electrically conductive sub-oxide or oxide of the substrate, or mixtures thereof, generated on the surface during the chemo-thermal treatment.
  • All of the components listed form a submicroscopically fine, homogeneous mixture, whereby the individual components can have a dimension that goes down to close to the atomic range. This ensures an at least partially coherent film of the depassivation layer, which has optimal chemical and physical properties. In this way, the noble metal content of the depassivation layer can be kept to a minimum without accepting disadvantages, which has a favorable effect on the economy of the system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

  • Die Erfindung geht aus von einem Verfahren zur Herstellung einer Depassivierungsschicht nach der Gattung des Oberbegriffs des Anspruchs 1.
  • Die an die Elektroden elektrochemischer Zellen gestellten Anforderungen sind vielfältig und zum Teil divergierend, so dass diese Elektroden meist aus Verbundwerkstoffen aufgebaut werden müssen, um allen Bedingungen einigermassen gerecht werden zu können. Dies gilt insbesondere für Elektroden (Anoden), die unter oxydierenden Bedingungen arbeiten müssen. Normalerweise wird für derartige Elektroden ein als Substrat dienendes, korrosionsbeständiges Trägermaterial verwendet, das seinerseits mit einer oder mehreren zusätzlichen Schichten anderer Komponenten versehen ist. Im Falle der Verwendung von Feststoffelektrolyten für den Aufbau der elektrochemischen Zelle wird das Substrat aus porösem, flüssigkeits- und gasdurchlässigem Material aufgebaut.
  • Titan ist wegen seiner Korrosionsbeständigkeit als Substrat für Anoden bei technischen Elektrolyseprozessen besonders geeignet. Dabei wird je nach Elektrodenreaktion das Titansubstrat mit einem spezifischen Elektrokatalysator beschichtet. Besonders kritisch für die Funktion der Elektrode ist die Grenzfläche Elektrokatalysator/Titansubstrat. Das Titansubstrat muss vollständig bedeckt sein, da sich sonst unter anodischen Bedingungen eine nichtleitende Deckschicht von im wesentlichen Ti02 ausbildet. Um diese Deckschichtbildung zu verhindern, wird vielfach eine Zwischenschicht aufgebracht, die aus einem im anodischen Potentialbereich stabilen und leitfähigen Material besteht. Dafür werden Edelmetalle, im besonderen Platin verwendet. Diese Zwischenschicht muss zusammenhängend sein, ihre Dicke kann 0,1-1 µm betragen. Derartige, mit Zwischenschichten und Elektrokatalysatoren versehene Elektroden sind bekannt (A. Nidola, « Technological Impact of Metallic Oxides as Anodes •, in « Electrodes of Conductive Metallic Oxides », Part B, page 627, Editor : S. Trasatti, ELSEVIER, Amsterdam, 1981 ; P.C.S. Hayfield, W.R. Jacob, « Platinum/Iridium-coated titanium anodes in brine electrolysis •, in « Modern Chlor-Alkali Technology •, page 103, Editor : M.O. Coulter, Ellis Horwood Ltd., Chichester 1980, Th. Comninellis, E. Plattner, Journal of Applied Electrochemistry, 12, 399/1982).
  • Der Schutz des Trägermaterials (Titansubstrat) ist nun von besonderer Wichtigkeit, wenn der Elektrokatalysator nicht als mikroskopisch zusammenhängende Schicht, sondern in Form eines porösen Pulver-Binder-Gemisches aufgebracht ist, das das Substrat aufgrund der porösen Struktur nicht vollständig bedeckt. Ausserdem gewinnt die nichtpassivierende Zwischenschicht an Bedeutung, wenn es sich bei dem Titansubstrat nicht um ein massives Werkstück, sondern um ein poröses Substrat, z. B. eine gesinterte Titanfolie handelt wie sie bei FeststoffelektrolytZellen Verwendung findet. (Siehe zum Beispiel : B.V. Tilak, P.W.T. Lu, J.E. Coleman, S. Srinivasan, « The Electrolytic Production of Hydrogen », in Comprehensive Treatise of Electrochemistry, Volume 2, Edited by: J.O.M. Bockris, Brian E. Conway, Ernest Yeager, Ralph E. White, Plenum Press, N.Y. 1981).
  • Der Beschichtungstechnik bei porösen Titansubstraten kommt insofern eine wesentliche Bedeutung zu, als Methoden, wie sie bei planaren und massiven Elektroden angewendet werden, in diesem Fall nicht in Frage kommen. Dieses Problem wird noch erschwert, da man aus wirtschaftlichen Gründen möglichst nur kleine Mengen Edelmetall 0,1 mg/cm2 aufbringen möchte, dies aber bei einer relativ undefinierten Fläche, wie der eines porösen Substrats, schwierig ist.
  • Bisher wendete man folgende Verfahren an :
    • - Galvanische Abscheidung :
      • Diese Methode erfordert eine umfangreiche Vorbehandlung des Substrats, welche unter anderem im Entfetten, Aetzen, Waschen, Trocknen, Wägen vor und nach dem galvanischen Abscheiden etc. besteht. Die elektrochemische Abscheidung von kleinen Mengen eines Edelmetalls oder einer Mischung bei rauhen oder porösen Proben ist ausserdem schwierig, da keine gleichmässige Verteilung der Platinkeime erzielt wird. Zusätzlich wird Edelmetall im Inneren einer porösen Probe abgeschieden, wo es keine Depassivierungsfunktion erfüllt.
    • - Aufdampfen :
      • Aufdampfen kleiner Mengen eines Edelmetalls oder Edelmetalgemisches ist schwierig und der Aufdampfprozess relativ teuer.
    • - Aufpinseln oder Aufsprühen einer Lösung und anschliessende thermische Behandlung :
      • Diese Methoden werden bei planaren Elektroden angewandt. Für poröse Elektroden sind sie jedoch ungeeignet, da ein wesentlicher Teil der Lösung in das Innere des porösen Substrats eindringt und damit für die Depassivierung verloren ist.
  • Es besteht daher das Bedürfnis nach einem neuen preisgünstigen Verfahren zum Aufbringen von Depassivierungsschichten.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, mit dessen Hilfe die Oberfläche eines porösen Körpers gezielt mit einer Depassivierungsschicht versehen werden kann, welche bei minimalem Edelmetallgehalt verbesserte Eigenschaften sowie eine hohe Stabilität und Lebensdauer aufweist.
  • Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.
  • Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.
  • Dabei zeigt :
    • Fig. 1 das Verfahren anhand eines vereinfachenden Schemas,
    • Fig. 2 einen Querschnitt durch Substrat und Depassivierungsschicht.
  • In Fig. 1 ist das Herstellungsverfahren zur Erzeugung einer Depassivierungsschicht anhand einer vereinfachten Vorrichtung schematisch dargestellt. 1 ist das flächenförmige Substrat, beispielsweise in Form einer porösen Platte oder Folie aus Titan (Längsschnitt). 2 stellt eine elastische Rolle dar, welche vorteilhafterweise aus Teflon@ (Polytetrafluoräthylen) bestehen kann. 3 ist ein flächenförmiger biegsamer Lösungsträger, welcher porös und saugfähig sein soll, um die Metallsalzlösung aufnehmen zu können. Er wird in Form eines Filzes oder Papiers zwischen das Substrat 1 und die Rolle 2 geschaltet. Bei dem durch Pfeile angedeuteten Abrollvorgang gibt 3 eine dünne Schicht der Metallsalzlösung an die Oberfläche von 1 ab.
  • Fig. 2 zeigt einen Querschnitt durch das aus einzelnen Körnern mit dazwischenliegenden Hohlräumen aufgebaute poröse Substrat 1. 4 ist die mindestens teilweise zusammenhängende Depassivierungsschicht in Filmform, welche ein submikroskopisch feines, homogenes Gemenge von elektronisch leitenden Suboxyden und Oxyden des Substrats sowie die aus der aufgebrachten Metallsalzlösung stammenden Edelmetalle bzw. Metalle in metallischer und/oder oxydischer Form enthält.
  • Ausführungsbeispiels I Siehe Figuren 1 und 2!
  • Eine poröse gesinterte Titanplatte als Substrat (1) wurde mit einer Depassivierungsschicht. (4) versehen, welche Platin enthielt. Zu diesem Zweck wurde zunächst eine wässerige 5 . 10-2N H2PtC16-Lösung hergestellt. Die Beschichtung erfolgte mittels einer elastischen Rolle (2) aus « Teflon und eines Lösungsträgers (3) in Form eines Chromatographiepapiers. Es wurde insgesamt 5 x durch Abrollen beschichtet, wobei die aufgetragene Menge jeweils gravimetrisch bestimmt wurde. Daraufhin wurde die beschichtete Titanplatte getrocknet und einer chemo-thermischen Behandlung in Form eines Temperns während 30 min bei 450 °C an Luft unterzogen. Die aufgetragene Platinmenge wurde mit 0,1 mg/cm2 bestimmt.
  • Ausführungsbeispiel II
  • Eine poröse gesinterte Titanfolie als Substrat (1) wurde in analoger Weise gemäss Beispiel I beschichtet. Die Metallsalzlösung bestand aus einer 5 - 10-2N-Lösung der Formel H2McCl6, wobei Me eine Mischung von Pt und Ir im Atomgewichtsverhältnis 70 : 30 darstellte. Die Edelmetallmenge wurde zu 0,05 mg/cm2 bestimmt.
  • Die nach Beispiel 1 und II beschichteten Substrate wurden als Stromkollektoren auf der Anodenseite von Feststoffelektrolytzellen geprüft und ergaben trotz um eine Zehnerpotenz geringeren Edelmetallgehalt gleiche Zellenspannungen wie nach herkömmlichen Verfahren (Galvanik. Aufdampfen) hergestellte Elektroden.
  • Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Es können nach dem neuen Verfahren Depassivierungsschichten vielfältiger Art und Zusammensetzung erzeugt werden. Ausser Ti eignen sich Zr, Ta, Nb als Substratmaterialien. Alle Edelmetalle können grundsätzlich über eine Metallsalzlösung aufgetragen werden, sowohl einzeln als in Mischungen. Desgleichen können weitere Metalle, die nicht Edelmetalle sind, zugegeben werden. Die fertige Depassivierungsschicht kann neben Edelmetallen, Edelmetalloxyden (insbesondere der Platinmetallgruppen) auch Gold und eine weitere Komponente in Form eines Metalls oder dessen Oxyd, insbesondere Sn02 enthalten. Ein wesentlicher Teil der Depassivierungsschicht besteht aus einem bei der chemo-thermischen Behandlung auf der Oberfläche erzeugten elektrisch leitenden Suboxyd oder Oxyd des Substrats, bzw. Mischungen derselben. Alle angeführten Bestandteile bilden ein submikroskopisch feines, homgenes Gemenge, wobei die einzelnen Komponenten eine Dimension aufweisen können, die bis nahe an den atomaren Bereich heruntergeht. Dadurch wird ein mindestens teilweise zusammenhängender Film der Depassivierungsschicht gewährleistet, welcher optimale chemische und physikalische Eigenschaften besitzt. Der Edelmetallgehalt der Depassivierungsschicht kann auf diese Weise ohne Inkaufnahme von Nachteilen minimal gehalten werden, was sich günstig auf die Wirtschaftlichkeit der Anlage auswirkt.

Claims (5)

1. Verfahren zur Herstellung einer Depassivierungsschicht auf einer Elektrode einer elektromechanischen Zelle, wobei mindestens ein Edelmetall oder mindestens ein Edelmetall und ein weiteres Metall auf ein flächenförmiges Substrat aus mindestens einem der Elemente Titan, Zirkon, Tantal, Niob aufgebracht und durch eine chemothermische Behandlung in metallische und/oder oxydische Form übergeführt wird, wobei gleichzeitig die Oberfläche des Substrats (1) mindestens teilweise zu einem entsprechenden elektronisch leitenden Suboxyd und/oder Oxyd oxydiert wird und wobei eine aus einem submikroskopisch feinen homogenen Gemenge bestehende Depassivierungsschicht (4) in mindestens teilweise zu- . sammenhängender Filmform gebildet wird, dadurch gekennzeichnet, dass eine Metallsalzlösung, welche das oder die aufzubringenden Metalle enthält, mittels einer elastischen Rolle (2) und eines zwischen das Substrat (1) und die Rolle (2) geschalteten porösen, saugfähigen Lösungsträgers (3) in dünner Schicht auf das Substrat (1) durch ein- oder mehrmaliges Abrollen aufgebracht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Edelmetall und/oder Edelmetalloxyd mindestens ein Platinmetall oder Gold ist bzw. enthält.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Edelmetall mindestens eines der Metalle Platin, Iridium, Ruthenium ist.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Edelmetalloxyd mindestens ein Oxyd oder Suboxyd mindestens eines der Elemente Platin, lridium, Ruthenium ist.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Edelmetall Gold ist.
EP84107073A 1983-06-28 1984-06-20 Verfahren zur Herstellung einer Depassivierungschicht und Depassivierungschicht auf einer Elektrode einer elektrochemischen Zelle Expired EP0137911B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3531/83 1983-06-28
CH353183 1983-06-28

Publications (2)

Publication Number Publication Date
EP0137911A1 EP0137911A1 (de) 1985-04-24
EP0137911B1 true EP0137911B1 (de) 1988-07-27

Family

ID=4258004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107073A Expired EP0137911B1 (de) 1983-06-28 1984-06-20 Verfahren zur Herstellung einer Depassivierungschicht und Depassivierungschicht auf einer Elektrode einer elektrochemischen Zelle

Country Status (4)

Country Link
US (1) US4597846A (de)
EP (1) EP0137911B1 (de)
JP (1) JPS6024389A (de)
DE (1) DE3472979D1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726219B2 (ja) * 1986-08-14 1995-03-22 三井金属鉱業株式会社 電解用電極

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443055A (en) * 1966-01-14 1969-05-06 Ross M Gwynn Laminated metal electrodes and method for producing the same
US3933616A (en) * 1967-02-10 1976-01-20 Chemnor Corporation Coating of protected electrocatalytic material on an electrode
US3926773A (en) * 1970-07-16 1975-12-16 Conradty Fa C Metal anode for electrochemical processes and method of making same
DE2846576A1 (de) * 1978-10-26 1980-06-04 Basf Ag Verfahren zum beschichten von materialbahnen
DE2928910A1 (de) * 1979-06-29 1981-01-29 Bbc Brown Boveri & Cie Elektrode fuer die wasserelektrolyse
DE3004080C2 (de) * 1980-02-05 1986-03-20 Sigri GmbH, 8901 Meitingen Verfahren zum Beschichten einer porösen Elektrode
DE3106587C2 (de) * 1981-02-21 1987-01-02 Heraeus Elektroden GmbH, 6450 Hanau Elektrode und deren Verwendung
JPS6022074B2 (ja) * 1982-08-26 1985-05-30 ペルメレツク電極株式会社 耐久性を有する電解用電極及びその製造方法

Also Published As

Publication number Publication date
DE3472979D1 (en) 1988-09-01
US4597846A (en) 1986-07-01
EP0137911A1 (de) 1985-04-24
JPS6024389A (ja) 1985-02-07

Similar Documents

Publication Publication Date Title
DE69218075T2 (de) Elektrode für Elektrolyse
DE2636447C2 (de) Mangandioxidelektroden
DE69305668T2 (de) Sauerstoff-Entwicklungselektrode
DE3715444C2 (de)
DE1671422B2 (de) Elektrode zur verwendung in elektrolytischen prozessen und verfahren zu deren herstellung
DE69122910T2 (de) Verfahren zur Kupfer-Elektroplattierung
DE3717972C2 (de)
DD243718A5 (de) Elektrode fuer elektrochemiesche prozesse, verfahren zur herstellung derselben
DE69611476T2 (de) Aktivierte Kathode und deren Herstellungsverfahren
DE4438275B4 (de) Elektrolysezelle und Verfahren zur Elektrolyse einer wässrigen Kochsalzlösung
DE1105854B (de) Bleidioxyd-Elektrode fuer elektrolytische Verfahren
DD298437A5 (de) Formstabile anoden und verfahren zur herstellung von alkalidichromaten und chromsaeure unter deren verwendung
DE2338549B2 (de)
DE2852136C2 (de)
DE3447733A1 (de) Verfahren zur elektrolytischen behandlung von metall durch energiezufuhr mittels fluessigkeit
DE3004080C2 (de) Verfahren zum Beschichten einer porösen Elektrode
DE2818829A1 (de) Verfahren zur herstellung einer unloeslichen elektrode
DE69109029T2 (de) Anode für Chrom-Elektroplattierung, Verfahren zur Herstellung und Verwendung dieser Anode.
EP0137911B1 (de) Verfahren zur Herstellung einer Depassivierungschicht und Depassivierungschicht auf einer Elektrode einer elektrochemischen Zelle
DE2645414A1 (de) Verfahren zur herstellung von metallanoden fuer die elektrolytische gewinnung von mangandioxid
DE2844558A1 (de) Elektrode fuer die verwendung in einem elektrolytischen verfahren
DE2836353C2 (de) Verfahren zum Gewinnen von Wasserstoff und Schwefelsäure durch elektrochemisches Zerlegen eines Elektrolyten sowie Elektrode zur Durchführung der elektrochemischen Zerlegung
DE1256504B (de) Verfahren zur galvanischen Herstellung unloeslicher Anoden fuer elektrochemische Prozesse
DE3330961C2 (de) Aktivierte Elektroden auf der Basis von Ni, Co, Fe mit aktiver Beschichtung und Verfahren zur Herstellung derselben
DE3613997A1 (de) Anode fuer elektrolytische prozesse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19850304

17Q First examination report despatched

Effective date: 19860312

D17Q First examination report despatched (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3472979

Country of ref document: DE

Date of ref document: 19880901

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930512

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930519

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930917

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST